

onto a dendroid D there exists one and only one continuous mapping g of $\Delta(X)$ onto D such that the diagram

$$(4.7) X \xrightarrow{\varphi} \Delta(X)$$

commutes, and g is monotone.

In fact, take an arbitrary point $d \in A(X)$. It follows from (4.6) that $f(\varphi^{-1}(d))$ is a point. Denote this point by g(d). If $d = \varphi(x)$, then g(d) = f(x), thus $g(\varphi(x)) = f(x)$ for every $x \in X$, i.e. diagram (4.7) commutes. The mapping φ being continuous and defined on a metric continuum, it is closed (see [4], Theorem 9, p. 104). Since f is continuous, the continuity of g follows from Theorems 1 and 3 in [6], § 13, XV, p. 119. The uniqueness of g follows from the definition. From the definition of g we conclude also that

$$g^{-1}(y) = \varphi(f^{-1}(y))$$
 for every $y \in D$.

The mapping f being monotone, $f^{-1}(y)$ is a continuum, hence $\varphi(f^{-1}(y))$ is also a continuum. So $g^{-1}(y)$ is, and g is monotone. Therefore we have proved that Corollary 3 leads to Theorem 7. The opposite way is quite obvious.

COROLLARY 4. If a dendroid D is the hyperspace of an upper semicontinuous decomposition of a λ -dendroid X into continua, then it is a monotone image of the dendroid $\Delta(X)$.

References

- J. J. Charatonik, On ramification points in the classical sense, Fund. Math 51 (1962), pp. 229-252.
- [2] Confluent mappings and unicoherence of continua, Fund. Math. 56 (1964), pp. 213-220.
- [3] An example of a monostratiform λ-dendroid, Fund. Math. 67 (1970) pp. 75-87.
- [4] R. Engelking, Outline of general topology, Amsterdam, Warszawa, 1968.
- [5] K. Kuratowski, Théorie des continus irréductibles entre deux points, Fund. Math. 3 (1922), pp. 200-231 and 10 (1927), pp. 225-275.
- [6] Topology I, Warszawa 1966.
- [7], Topologie II, Warszawa 1961.
- [8] H. C. Miller, On unicoherent continua, Trans. Amer. Math. Soc. 69 (1950), pp. 179-194.
- [9] G. T. Whyburn, Analytic Topology, New York 1942.

INSITUTE OF MATHEMATICS OF THE WROCŁAW UNIVERSITY UNIVERSITY OF KENTUCKY

Reçu par la Rédaction le 25. 1. 1968

Irreducibly generated algebras

by

Helen Skala (Chicago, Ill.)

The study of functions involves, in a most fundamental way, the study of the composition of functions. If Δ is a set of elements, then any mapping of Δ^p (i.e., of the pth product $\Delta \times ... \times \Delta$) into Δ is a p-place function over Δ . The composite $F_0(F_1, ..., F_p)$ of any p+1 p-place functions $F_0, F_1, ..., F_p$ is again a p-place function defined in the usual manner:

$$F_0(F_1, \ldots, F_p)(x_1, \ldots, x_p) = F_0(F_1(x_1, \ldots, x_p), \ldots, F_p(x_1, \ldots, x_p))$$

for (x_1, \ldots, x_p) in Δ^p . From here it easily follows that composition satisfies the superassociative law (cf. [2]), namely that

$$(1) \quad (F_0(F_1, \dots, F_p))(G_1, \dots, G_p) = F_0(F_1(G_1, \dots, G_p), \dots, F_p(G_1, \dots, G_p))$$

for any p-place functions F_0, F_1, \ldots, G_p over Δ . A set $\mathfrak S$ of functions is called an algebra of functions if $\mathfrak S$ is closed with respect to composition.

Equation (1) serves as a point of departure for the study of a more abstract algebraic structure. Let $\mathfrak S$ be a set of elements with a (p+1)-ary operation, i.e., an operation which associates with each (p+1)-tuple of elements S_0, S_1, \ldots, S_p of $\mathfrak S$ an element of $\mathfrak S$ denoted by $S_0(S_1, \ldots, S_p)$. If the superassociative law is valid in $\mathfrak S$, then $\mathfrak S$ will be called a p-place Menger algebra and its operation will be called composition. Clearly any algebra of functions is a Menger algebra. That the converse is true was shown by Dicker (cf. [1]) — for any Menger algebra $\mathfrak S$ there exists a set Δ such that $\mathfrak S$ is isomorphic to an algebra of functions over Δ .

The structure of Menger algebras in general have been studied in [1]-[4]. This paper, however, deals with a particular type of Menger algebra. The Menger algebra $\mathfrak S$ is said to be irreducibly generated if each subset of $\mathfrak S$ is also an algebra, that is, is closed with respect to composition. Therefore, for elements S_0, S_1, \ldots, S_p in $\mathfrak S$, the composite $S_0(S_1, \ldots, S_p)$ must be one of the elements S_0, S_1, \ldots, S_p since the set $\{S_0, S_1, \ldots, S_p\}$ forms an algebra. An element S_0 of $\mathfrak S$ is constant if $S_0(S_1, \ldots, S_p) = S_0$ for each sequence (S_1, \ldots, S_p) of elements from $\mathfrak S$; S_0 is called a k-th place selector relative to a subset $\mathfrak I$ of $\mathfrak S$, if $S_0(T_1, \ldots, T_p) = T_k$ for each sequence (T_1, \ldots, T_p) from $\mathfrak I$.

As an abbreviation we write $F_0(F_1,\ldots,F_p)(G_1,\ldots,G_p)$ to mean $[F_0(F_1,\ldots,F_p)](G_1,\ldots,G_p)$.

THEOREM 1. If an irreducibly generated algebra $\mathfrak S$ contains at least three constant elements, then each nonconstant element S in $\mathfrak S$ is a selector relative to the algebra consisting of S and all constant elements in $\mathfrak S$.

Let C be the set of constant elements of \mathfrak{S} (containing at least three elements) and let $\mathcal{C}_S = \{S\} \cup \mathcal{C}$ for each element S of \mathfrak{S} . We proceed by induction on the place number p of \mathfrak{S} .

The case p=1 does not require the assumption that C contains at least three elements. Let S be a nonconstant element of $\mathfrak S$ and M any constant element. Since $\{S,M\}$ is an algebra, S(M)=M or S(M)=S. If S(M)=S, then S(T)=S(M)(T)=S(M(T))=S(M)=S for every element T of $\mathfrak S$ —that is, S is a constant element. By assumption S is nonconstant and S(M)=S is therefore impossible and hence S(M)=M for every element M of C. Furthermore, since $\{S\}$ is an algebra S(S)=S and hence S is a first place selector relative to $\mathfrak S_S$.

For p=2, since $\{S,M\}$ is an algebra, S(M,M)=M or S(M,M)=S. Now S(M,M)=S implies S(T,U)=S(M,M)(T,U)=S(M(T,U),M(T,U))=S(M,M)=S for each pair of elements (T,U) from $\mathfrak S.$ But since S is nonconstant S(M,M)=S is impossible—that is, S(M,M)=M for every element M in $\mathfrak C.$ Let A be in $\mathfrak C.$ S(S,A)=S or S(S,A)=A. In the first case we will show that S is a first place selector relative to S; in the second case that S is a second place selector relative to S.

Suppose first that S(S, A) = S.

Then

(3)
$$S(M, S) = M$$
 for each constant element M .

For from (2), M = S(M, M) = S(S, A)(M, M) = S(M, A) = S(M, S)(A, A). And for $M \neq A$, M = S(M, S)(A, A) implies S(M, S) = M. Also S(A, S) = A. For suppose, on the contrary, that S(A, S) = S. Then, similarly as above, M = S(M, M) = S(A, S)(M, A) = S(A, M) = S(S, M)(A, A). And for $M \neq A$, S(S, M) = M. Since C contains at least three elements, let B and C be distinct constant elements different from A. Then S(B, C) = S(S, C)(B, B) = C(B, B) = C. And from (3), S(B, C) = S(B, S)(C, C) = B(C, C) = B. Clearly this is impossible since $B \neq C$. Hence also S(A, S) = A and (3) follows.

Equations (2) and (3) imply

(4)
$$S(S, M) = S$$
 for each constant element M .

If M = A, then (4) reduces to (2). So suppose $M \neq A$. If, on the contrary, S(S, M) = M, then S(S, M)(A, A) = M(A, A) = M. But from (3),

S(S,M)(A,A)=S(A,M)=S(A,S)(M,M)=A(M,M)=A. Sinc $M\neq A,\ S(S,M)\neq M$ —that is, S(S,M)=S and (4) follows.

If M and N are constant elements, then from (3), S(M, S)(N, N) = S(M, N) = M(N, N) = M, whence

(5) S(M, N) = M for each pair of constant elements (M, N).

Equations (3), (4), and (5) together imply that S is a first place selector relative to C_S .

By similar reasoning, it can be shown that S is a second place selector relative to C_S if S(S, A) = A.

Suppose now that the assertion of Theorem 1 is true for any (p-1)-place Menger algebra satisfying its conditions and let $\mathfrak S$ be an irreducibly generated p-place Menger algebra (where $p\geqslant 3$) containing at least three constant elements. For any nonconstant element S of $\mathfrak S$, we show first that there exists a p-tuple (H_1,\ldots,H_p) such that for some k $(1\leqslant k\leqslant p)$ $H_k=S$ and for $i=1,\ldots,k-1,\ k+1,\ldots,p,\ H_i=A$ for some constant element A and such that $S(H_1,\ldots,H_p)=H_k=S$. Having shown this, we then prove that S is a kth place selector relative to S. (We remark that since S is nonconstant $S(M_1,\ldots,M_p)=M$ for any constant element M).

Suppose, on the contrary, that S(S,M,...,M)=S(M,S,M,...,M) = S(M,...,M,S)=M for every constant element M; or briefly, we write

(6)
$$S\{S, M, ..., M\} = M$$
 for every constant element M ,

where $S\{T_1, ..., T_p\} = T_0$ means that for any permutation $\pi(T_1, ..., T_p)$ of the sequence $(T_1, ..., T_p)$, $S(\pi(T_1, ..., T_p)) = T_0$.

If A and B are distinct constant elements, then

(7)
$$S\{A, B, S, ..., S\} = S$$
.

For suppose there is a permutation $\pi(A,B,S,...,S)$ of the sequence (A,B,S,...,S) such that $S(\pi(A,B,S,...,S)) \neq S$. Without loss of generality we may suppose that $\pi(A,B,S,...,S) = (A,B,S,...,S)$. Then S(A,B,S,...,S) is either A or B. But S(A,B,S,...,S) = B implies S(A,B,S,...,S)(A,...,A) = S(A,B,A,...,A) = B(A,...,A) = B which is contrary to (6) since S(A,B,A,...,A) = S(A,S,A,...,A)(B,...,B) = A(B,...,B) = A. Similarly the assumption that S(A,B,S,...,S) = A leads to a contradiction and (7) follows.

From (6) and (7) we have

(8)
$$S\{S, A, B, ..., B\} = B$$
.

For suppose there exists a permutation, say (S,A,B,...,B), such that $S(S,A,B,...,B) \neq B$. If S(S,A,B,...,B) = A then S(B,A,B,...,B)

 $=S(S,A,B,\ldots,B)(B,\ldots,B)=A\,(B,\ldots,B)=A\,\,\text{which is contrary to }(6).$ So suppose $S(S,A,B,\ldots,B)=S\,\,\text{and let}\,\,C\,\,\text{be a constant element distinct}$ from A and B. Then $S(C,A,B,\ldots,B)=S(S,A,B,\ldots,B)(C,\ldots,C)=S(C,\ldots,C)=C.$ But from $(7),\,S(C,A,B,\ldots,B)=S(C,A,S,\ldots,S)\times \times (B,\ldots,B)=S(B,\ldots,B)=B.$ Since $B\neq C,\,\,S(S,A,B,\ldots,B)\neq S\,\,\text{and }(8)\,\,\text{follows}.$

Now assume that for any two distinct constant elements \boldsymbol{A} and \boldsymbol{B} and for some integer k

$$(9_k) S\{A, B_1, ..., B_k, S, ..., S\} = S$$

and

$$S\{S, B_1, ..., B_k, A, ..., A\} = A$$

where $B_i = B$ for i = 1, ..., k. The case k = 1 was proved above; assuming (9_k) and $(9'_k)$ we prove (9_{k+1}) and $(9'_{k+1})$.

Suppose there exists a permutation, say $(A, B_1, ..., B_{k+1}, S, ..., S)$ where $B_i = B$ for i = 1, ..., k+1 such that $S(A, B_1, ..., B_{k+1}, S, ..., S) \neq S$. If $S(A, B_1, ..., B_{k+1}, S, ..., S) = A$, then $S(A, B_1, ..., B_{k+1}, S, ..., S) \times (B, ..., B) = S(A, B_1, ..., B_{k+1}, B, ..., B) = A$ contradicting (6). If $S(A, B_1, ..., B_{k+1}, S, ..., S) = B$, then $S(A, B_1, ..., B_{k+1}, S, ..., S) \times (A, ..., A) = S(A, B_1, ..., B_{k+1}, A, ..., A) = B(A, ..., A) = B$, again a contradiction since by $(9_k')$ $S(A, B_1, ..., B_{k+1}, A, ..., A) = S(A, B_1, ..., B_k, S, A, ..., A)(B, ..., B) = A(B, ..., B) = A$. Hence we must have $S(A, B_1, ..., B_{k+1}, S, ..., S) = S$.

Now suppose there exists a permutation, say, $(S, B_1, ..., B_{k+1}, A, ..., A)$ such that $S(S, B_1, ..., B_{k+1}, A, ..., A) \neq A$. If $S(S, B_1, ..., B_{k+1}, A, ..., A) = B$, then

$$\begin{split} \mathcal{S}(S,\,B_1,\,\dots,\,B_{k+1},\,A\,,\,\dots,\,A)(A\,,\,\dots,\,A) &= \mathcal{S}(A\,,\,B_1,\,\dots,\,B_{k+1},\,A\,,\,\dots,\,A) \\ &= \mathcal{B}(A\,,\,\dots,\,A) = \mathcal{B}\;. \end{split}$$

From (9'k), however, $S(A, S, B_1, ..., B_k, A, ..., A)(B, ..., B) = S(A, B_1, ..., B, B_{k+1}, A, ..., A) = A(B, ..., B) = A$. So suppose that $S(S, B_1, ..., B, B_{k+1}, A, ..., A) = S$ and let C be a constant element different from A and from B. Then $S(S, B_1, ..., B_{k+1}, A, ..., A)(C, ..., C) = S(C, B_1, ..., B_{k+1}, A, ..., A) = S(C, ..., C) = C$.

But from (9_{k+1}) which we have just proved, we have $S(C, B_1, ..., B_{k+1}, S, ..., S) = S$ and hence $S(C, B_1, ..., B_{k+1}, S, ..., S)(A, ..., A) = S(C, B_1, ..., B_{k+1}, A, ..., A) = S(A, ..., A) = A$, again a contradiction, and one obtains (9_{k+1}) . By induction then (9_{p-2}) and $(9'_{2-2})$ follow, that is $S\{A, B, ..., B, S\} = S$ and $S\{S, B, ..., B, A\} = A$ for every pair of distinct constant elements A and B. This is clearly impossible and hence

there exists a constant element, say A, and a p-tuple which, without loss of generality, we may assume is (S, A, ..., A) such that

(10)
$$S(S, A, ..., A) = S$$
.

From here we prove that S is a first place selector relative to C_S . For every p-tuple of elements $(T_0, T_1, ..., T_{p-1})$ from \mathfrak{S} and any two integers $a, b \leq p, a < b$ and $a, b \neq 0$, we define a p-ary operation σ_{ab} by the following:

$$\sigma_{ab}(T_0,\,T_1,\,\ldots,\,T_{p-1})=\,T_0(T_1,\,\ldots,\,T_a,\,\ldots,\,T_a,\,T_b,\,\ldots,\,T_{p-1})\;.$$

That is, T_a appears in the p-tuple $(T_1, \dots, T_a, \dots, T^a, T_b, \dots, T_{p-1})$ both in the ath and the bth place. It is easy to verify that σ_{ab} is superassociative. Hence denoting by \mathfrak{S}_{ab} , the set of elements of \mathfrak{S} with the operation σ_{ab} , we have that \mathfrak{S}_{ab} is a (p-1)-place Menger algebra. Since S is nonconstant in \mathfrak{S} , and hence $S(A, \dots, A) = A$, $\sigma_{ab}(S, A, \dots, A) = S(A, \dots, A) = A$ and S is nonconstant in \mathfrak{S}_{ab} .

Suppose first that $a \neq 1$. Then $\sigma_{ab}(S, S, A, ..., A) = S(S, A, ..., A) = S$ from (10) and hence S is a first place selector relative to $(C_{ab})_S$, where C_{ab} is the set of constant elements of \mathfrak{S}_{ab} . Clearly $\mathfrak{C} \subseteq C_{ab}$ for every a and b. Hence

(11)
$$S(H_1, ..., H_p) = H_1$$

for any p-tuple $(H_1, ..., H_p)$ from C such that $H_a = H_b$ for some integers $a < b \leq p$ and $a \neq 1$.

For the case a = 1, we first prove that

(12)
$$S\{A, S, B, ..., B\} = A$$
.

For example, we show S(A, S, B, ..., B) = A. Since $p \ge 3$, S(A, S, B, ..., B)(B, ..., B) = S(A, B, ..., B) = A by Equation (11). But then S(A, S, B, ..., B) = S or B is impossible since $S(B, ..., B) = B(B, ..., B) = B \ne A$. By composing (A, ..., A) with the equalities in (12) we also have S(A, A, B, ..., B) = S(A, B, A, B, ..., B) = ... = S(A, B, ..., B, A) = A. Hence $\sigma_{1b}(S, A, B, ..., B) = S(A, B, ..., A, B, ..., B) = A$ and therefore S is a first place selector relative to $(C_{1b})_S$. Or, in other words, Equation (11) holds whenever $H_a = H_b$ for any integers a, b $(1 \le a, b \le p)$.

Now let (H_1,\ldots,H_p) be a p-tuple from $\mathbb C$ such that $H_i\neq H_j$ whenever $i\neq j$ $(i,j=1,\ldots,p)$. If $H_k=S$ for some $k\leqslant p$, then $S(H_1,\ldots,H_p)=H_1$. If, on the contrary, $S(H_1,\ldots,H_p)=H_j\neq H_1$, then $S(H_1,\ldots,H_p)\times (H_1,\ldots,H_1)=H_j(H_1,\ldots,H_1)=S(H_1,\ldots,H_1,\ldots,H_p)=H_1$ by (11). Since $H_j\neq H_1$, H_j must equal S. But if $S(H_1,\ldots,H_p)=S$, choose m such that $H_m\neq H_1$ and $H_m\neq S$, which is possible since $p\geqslant 3$ and since the H_1,\ldots,H_p are distinct. Then $S(H_1,\ldots,H_p)(H_m,\ldots,H_m)=S(H_m,\ldots,H_m)=H_m=S(H_1,\ldots,H_m,\ldots,H_m,\ldots,H_p)=H_1$, which is clearly impossible.

Thus Equation (11) holds for every p-tuple $(H_1, ..., H_p)$ from C_S and hence S is a first place selector relative to C_S . This completes the proof of Theorem 1.

Additional structure of Menger algebras and, in particular, of irreducibly generated Menger algebras may be derived from the following considerations. Elements F and G of a p-place Menger algebra $\mathfrak S$ are said to be equivalent, written $F\equiv G$, if $F(M_1,\ldots,M_p)=G(M_1,\ldots,M_p)$ for every sequence (M_1,\ldots,M_p) of constant elements in $\mathfrak S$. Consequently, if $F_i\equiv G_i,\ i=0,1,\ldots,p$, then $F_0(F_1,\ldots,F_p)\equiv G_0(G_1,\ldots,G_p)$. For let (M_1,\ldots,M_p) be a sequence of constant elements in $\mathfrak S$. Then $F_0(F_1,\ldots,F_p)(M_1,\ldots,M_p)=F_0(F_1(M_1,\ldots,M_p),\ldots,F_p(M_1,\ldots,M_p))=F_0(G_1(M_1,\ldots,M_p))$.

Now $G_i(M_1,\ldots,M_p)$, $i=1,\ldots,p$, is a constant element, since $G_i(M_i,\ldots,M_p)(S_i,\ldots,S_p)=G_i\big(M_1(S_1,\ldots,S_p),\ldots,M_p(S_1,\ldots,S_p)\big)=G_i(M_1,\ldots,M_p)$.

Hence $(G_1(M_1, \ldots, M_p), \ldots, G_p(M_1, \ldots, M_p))$ is a sequence of constant elements in \mathfrak{S} and $F_0(G_i(M_1, \ldots, M_p), \ldots, G_p(M_1, \ldots, M_p)) = G_0(G_1(M_1, \ldots, M_p), \ldots, G_p(M_1, \ldots, M_p)) = G_0(G_1, \ldots, G_p)(M_t, \ldots, M_p);$ i.e., $F_0(F_1, \ldots, F_p) \equiv G_0(G_1, \ldots, G_p)$.

Denoting by F^* the class of all elements of \mathfrak{S} equivalent to F, we may therefore define a superassociative operation on the set \mathfrak{S}^* , which consists of all equivalence classes of \mathfrak{S} , namely,

$$F_0^*(F_1^*, \ldots, F_p^*) = [G_0(G_1, \ldots, G_p)]^*$$

for any elements G_i in F_i^* , i = 1, ..., p. In particular,

(13)
$$F_0^*(F_1^*, ..., F_p^*) = [F_0(F_1, ..., F_p)]^*.$$

THEOREM 2. If \mathfrak{S} is a p-place Menger algebra, \mathfrak{S}^* is isomorphic to an algebra of p-place functions over a set whose cardinality is the same as the cardinality of the set of constant elements of \mathfrak{S} .

If A and B are constant elements, then $A^* \neq B^*$ and hence the set $C^* = \{A^* | A \in C\}$ has the same cardinality as C. If A_1, \ldots, A_p are constant elements, then $F(A_1, \ldots, A_p)$ is constant for any element F. Hence $F^*(A_1^*, \ldots, A_p^*)$ is in C^* and we may define a one-to-one mapping α from C^* onto a subset of the algebra of p-place functions over C^* , where αF^* is defined as follows:

$$(\alpha F^*)(A_1^*, \ldots, A_p^*) = F^*(A_1^*, \ldots, A_p^*).$$

First, α is on-to-one. Let $F^* \neq G^*$ so that there exists a sequence (H_1, \ldots, H_p) of constant elements such that $F(H_1, \ldots, H_p) = A \neq B = G(H_1, \ldots, H_p)$ where A and B are constant elements. Then from (13),

$$(aF^*)(H_1^*, ..., H_p^*) = F^*(H_1^*, ..., H_p^*) = A^* \neq B^* = G^*(H_1^*, ..., H_p^*)$$

= $(aG^*)(H_1^*, ..., H_p^*)$.

Hence $\alpha F^* \neq \alpha G^*$. It is easily shown that α is an isomorphism, that is, $a[F_0^*(F_1^*,\ldots,F_p^*)]=aF_0^*(\alpha F_1^*,\ldots,\alpha F_p^*)$ for any elements F_i $(i=0,\ldots,p)$ in \mathfrak{S} If the Menger algebra S is isomorphic to S*, that is, if each equivalence class consists of a single element of S, then the Dicker result follows. Moreover, if S is irreducibly generated and contains at least three constant elements, then, by Theorem 1, each nonconstant element S in S is a selector relative to the set of constant element of S. Hence for for each sequence $(H_1, ..., H_p)$ of constant elements, where S is, say a kth place selector relative to C_S , $\alpha S^*(H_1^*, ..., H_n^*) = S^*(H_1^*, ..., H_n^*)$ $= [S(H_1, ..., H_n)]^* = H_k^*$; that is, αS^* is the kth place selector function. E* therefore has a completely trivial structure, consisting only of selector and constant functions. Furthermore if $(T_0, ..., T_p)$ is a sequence from \mathfrak{S} such that $T_0^*, T_1^*, \dots, T_p^*$ are distinct classes, and T_0 is a kth place selector relative to C_{T_0} , then $T_0(T_1, \ldots, T_p) = T_k$. For $\alpha T_0^*(\alpha T_1^*, \ldots, \alpha T_p^*) = \alpha T_k^*$ $= \alpha [T_0^*(T_1^*, ..., T_n^*)] = \alpha ([T_0(T_1, ..., T_n)]^*)$. Since α is one-to-one, T_k^* $= [T_0(T_1, ..., T_p)]^*$. Now $T_0(T_1, ..., T_p)$ equals one of $T_0, T_1, ..., T_p$ since \mathfrak{S} is irreducibly generated and from $T_i^* \neq T_k^*$ for $j \neq k$, it follows that $T_0(T_1, \ldots, T_n) = T_k$. Thus each element S of an irreducibly generated Menger algebra is a selector on a much wider class of p-tuples.

References

- 1] R. M. Dicker, The Substitutive Law, Proc. London Math. Soc. 13 (1963), p. 500.
- [2] K. Menger, Superassociative Systems and Logical Functors, Math. Annalen. 157 (1964), pp. 278-295.
- [3] B. M. Shine, The Theory of Semigroups as the Theory of the Composition of Multiplace Functions, Report of 1966 Meeting in USSR.
- [4] H. I. Whitlock, A Composition Algebra for Multiplace Functions, Math. Annalen. 157 (1964), pp. 167-178.

ILLINOIS INSTITUTE OF TECHNOLOGY

Recu par la Rédaction le 16. 2. 1968