30 J.J. Charatonik

ondo a dendroid D there exisis one and only one continwous mapping g of A(X)
onto D such that the diagram
X z 4(X)
(4.7) \f\ e
rd
\ D¥

#

commutes, and g is monotone.

In fact, take an arbitrary point d e (X). It follows from (4.6) that
Flp~*(@) is a point. Denote this point by g(d). If d = p(x), then g(d) = f(z),
thus g(gp(w)) = f(z) for every xeX, ie. diagram (£.7) commutes. The
mapping ¢ being continuous and defined on a metric continunm, it is
closed (see [4], Theorem 9, p. 104). Since f is continuous, the continuity
of g follows from Theorems 1 and 3 in [6], § 13, XV, p. 119. The
uniqueness of ¢ follows from the definition. From the definition of g we
conclude also that

97 ) = olf ')

The mapping f being monotone, f(y) is a continuum, hence lp( f"l(g/))
is also a eontinuum. 8o ¢g~'(y) is, and g is monotone. Therefore we have
proved that Corollary 3 leads to Theorem 7. The opposite way is quite
obvions.

for every yeD.

COROLLARY 4. If a dendroid D is the hyperspace of an upper semi-
continuous decomposition of a A-dendroid X into continua, then it is @ mono-
tone image of the dendroid A(X).
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Irreducibly generated algebras

by
Helen Skala (Chicago, Iil.)

The study of functions involves, in a most fundamental way, the
study of the composition of functions. If 4 is a set of elemenjc-s, then any
mapping of A% (i.e., of the pth product 4 x .. x 4) into 4 is & p—p‘lace
function over 4. The composite Fo(Fy, ..., Fp) of any p +1 p-place functions
Fy, Fy, ..., By i again a p-place function defined in the usual manner:

Fo(Fyy e Tp) (@1 ooy @p) = FO(Fl(wl? cory Bp)y weey Fp(@ry ooy wn))

for (@, ..., @p) in 4. From here it easily follows that composition satisties
the superassociative law (cf. [2]), namely that

(O (FolFar oy F) (G s G) = Fo TG, ey Gy oy TGy e, G

for any p-place functions Fy, I, ..., Gy over 4. A set & of func.tl.on_s
is called an algebra of functions if  is closed with respect to composition.

Equation (1) serves as a point of departure for the sfc-udy of a more
abstract algebraic structurve. Let & be a set: of elements with a (p +1)-ary
operation, i.e., an operation which associates with each (p-+1)-tuple of
elements Sy, 8y, ..., 5 of S an element of S denoted by Sy(Sy; ..., Sp)-
If the superassociative law is valid in &, then & will be galled a p-place
Menger algebra and its operation will be called composition. Qlea.rly any
algebra of functions is a Menger algebra. That the converse Is true was
shown by Dicker (cf. [1]) -—for any Menger algebra & there exists a set 4
such that & is isomorphic to an algebra of functions over 4. o

The structure of Menger algebras in general have been studied in
[1}-{4]. This paper, however, deals with a particular type of Menger
algebra. The Menger algebra & is said to be irreducibly generated 1f‘e.ach
subset of & is also an algebra, that is, is closed with respect to composition.
Therefore, for elements S, 81, ..., Sp in &, the composite Sy(Sy, ..., Sp)
must be one of the elements Sy, Sy, ..., Sp since thg set {So, Siy ey Spf
forms an algebra. An element S, of S is constant 1.f So(B1y ey Bpy = 8y
for each sequence (S, ..., Sp) of elements from S; 8, is called & k-ih place
selector relative to a subset J of &, if Sy(Ty, ..., Tp) = T for each sequence
(T4, ..., Typ) from 3.
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As an abbreviation we write Fo(Fy, ..., Fy) (G, ..., G4) to . mean
(FU(FJ.) ---;Fp))(Gu ey Gp)~

THEOREM 1. If an drreducibly gemerated algebra S coniains at least
three constant elements, then each monconstant element 8 in G is o selector
relative 1o the algebra consisting of S and all constant elements in .

Let C be the set of constant elements of & (containing at least three
elements) and let Gy = {S} v C for each element § of S. We proceed by
induection on the place number p of &.

The case p = 1 does not require the assumption that C coutains at
least three elements. Let § be a nonconstant element of & and M any
constant element. Since {§, M} is an -algebra, S(M)= I or & (M) = 8.
It 8(M) =8, then S(T)= S(M)(T)= S(M(T)) = §(M) =8 for every
element 7' of G—that is, § is a constant element. By assuraption § is
noneonstant and S(M) = § is therefore impossible and hence § (M)y=M
for every element M of C. Furthermore, since {8} is an algebra S(8) = §
and hence S is a first place selector relative to Cg. :

For p = 2, since {§, M} is an algebra, S (M, M) = M or S(M, M) = 8.
Now §(M, M)= 8 implies S(T,U)= 8(M,M)(T, U)= ST, v),
M(T, U)) = 8(M, M).= § for each pair of elements (T, U) from G.
But since § is nonconstant §(I, M) = § is impossible—that is, S(M, M)
= M for every element M in €. Let 4 bein C. §(8, 4) = S or 8(8, 4)= A.
In the first case we will show that § is a first place selector relative to Cg;
in the second case that S is 4 second place selector relative to Cg.

Suppose first that

(2) 8(8,4)= 8.
Then
(3) 8(M,8)= M for each constant element I .

For from (2), M = S (M, M) = 8(8, 4) (M, My=S8(M,A)=8(M,R8)(4,4).
And for M A, M=S8(M,R8)(4,4) implies S§(M,S)= M. Also
S8(4,8)=A. TFor suppose, on the contrary, that S(4,8)=48.
Then, similarly as above, I = S(M, M) = S(4, 8)(M, A)= 84, M)
= 8(8, M)(4, 4). And for M = A, 8(8, M) = M. Since C contains at
least three elements, let B and ¢ be distinet constant elements different
from A. Then 8(B, C) = 8(8, 0)(B, B) = 0(B, B) = €. And from (38),
8(B, 0)= 8(B, 8)(C, €)= B(C, €)= B. Clearly this is impossible since
B # C. Hence also 8(4,8) = 4 and (3) follows.
Equations (2) and (3) imply

(4) 8(8, M)=8 for each constant element 17 .

If M = A, then (4) reduces to (2). So suppose M £ 'A. If, on the contrary,
S(8, M) = M, then S(8,M)(4, )= M(4,A)= M. But from (3)

’
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88, M)A, 4) = 8(4, M)=8(4,8) (M, M) = A(M, M)= A. Since
M+ A, 8(8, M)+# M — that is, S(8, M)= 8 and (4) follows.

If M and N are constant elements, then from (3), S(J, S)(¥, N)
=8(M,N)= M(N, N)= M, whence

() S(M,N)=M for each pair of constant elements (M, N).

. Equations (3), (4), and (5) together imply that § is a first place selector

relative to Cg.

By similar reasoning, it can be shown that § is a second place selector
relative to Cg if S(S, 4)= A.

Suppose now that the assertion of Theorem 1 is true for any (p—Al)-
-place Menger algebra satisfying its conditions and let @ be an irreducibly
generated p-place Menger algebra (where p > 3) containing at least
three constant elements. For any nonconstant element § of &, we show
firgt that there exists a p -tuple (Hy, ..., Hp) such thatforsome k (1 <k < p)
Hy= 48 and for i =1, .., k-1, k+1,...,p, Hi= A for some consta.nt
element 4 and such that S(Hy, ..., Hp) = Hxy= §. Having shown this,
we then prove that § is a kth place selector relative to Cy. (We remark
that since § is nonconstant S(3, ..., M) = M for any constant element ).

Suppose, on the contrary, that S(8, M, .., M) = 8(M, §, M, ey M)
= 8(M, ..., M,8) = M for every constant element M; or briefly, we
write .

(6) 8{8, M,..,M}y= M for every constant element M ,

where S{Ty, ..., Tp} = T, means that for any permutation z(Ty, .., Tp)
of the sequence (T, ..., Tp)y -8 (@ (Ty, ..., Tp)) = To-
If A and B are distinet constant elements, then

(1) S{4,B,8,..,8=48.

For suppose there is a permutation =(4, B, §, ..., 8) (?f the sequence
(4,B,8,..,8) such that S(z(4,B,8,...,8)) # 8. Without loss of
generality we may suppose that =(4,B,8,..,8)= (A., B,S8,.., 8.
Then 8(4,B,8,...,8) is either 4 or B. But S(4, B, 8, .., 8y=B

implies §(4,B, 8, ...,8)(4,..,4) = 8(4,B,4,..,4)=B(4,..,4)=B
which is contrary to (6) since §(4, B, 4, ...,4) =8(4,8,4,..., A}(B,..., B)
= A(B, ..., B) = A. Similarly the assumption that 8(4, B, §,..., 8) = A

leads to a contradiction and (7) follows.
From (6) and (7) we have

(8) 8{S,4,B,.,B=B.

For suppose there exists a permutation, say (8 ,A, B, ..., B), su'%h
that (8, 4,B,..,B)# B.If §(8, 4, B, .., B)= A then (B, 4, B, ..., B)

3
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So suppose S(8, 4, B, ..., B) = 8 and let ¢ be a constant element distinct
from A and B. Then S(0,4,B,..,B)=8(8,4,B,..,B)(, .., 0
= 8(C, ..., €)= C. But from (7), 8(C, 4, B, ..., B)= 8(C, 4, 8, ..., §) x
X (B, ..;B)=8(B,..,B)=B. Since B#(C, S(8,4,B,..,B)%4g
and (8) follows.

Now assume that for any two distinet constant elements 4 and B
and for some integer k

(9z) 8{4,B,,..,B;,8,..,8 =8
and
(9%) 8{8, By, .., By, 4, ..., A} = 4

where B; = Bfor i =1, ..., k. The case k = 1 was proved above; assuming
(9%) and (9%) we prove (9%11) and (9%4i).

Suppose there exists a permutation, say (4, Bi, ..., Beyi, 8, .., 8
where B; = Bfor i=1, .., k+1 such that S(4, By;..., Brys, 8, ..., 8) # 8.
It 8(4, B, .., By1, 8, ..., 8) = 4, then 8(4,B,.., By, 8, .., 8)x
X(B, .., B)=8(4, By, ..., Bys, B, ..., B) = A contradicting (6). If
8(4, By, ..., By41, 8, ..., 8)=B, then &§(4,B,,.., Bri1, 8, ..., 8)x
X(4,..,4)=8(4,B;,...;Bry1, 4, ..., 4) = B(4,..,4) = B, again
a contradiction since by (9%) S(4, B, ..., Byi1, 4, ..., 4) = S(4, By, ...
oy B, 8,4, .., 4)(B,...,By= A(B, .., B)= A. Hence we must have
8(4,B,, ..., By1, 8, ..., 8) = 8.

Now suppose there exists a permutation, say, (8,Byy ..., By, 4, ..., A)
such that §(8, By, ..., Byi1, 4, ..., Ay 2 A. It 8(8,B,, ..., Biyi, 4,y .., 4)
= B, then :

8(8,Byy s Buiy A, ooy A)(A, ooy A) = S(4, By, o, Bpyay 4, ..., 4)
=B(4,..,4)=B.

From (9%), however, 8(4, 8, Bi, ..., By, A, .., 4)(B,...,B) = 8(4, B, ..
w3 Bry, 4, ., 4) = A(B, ..., B) = A. 8o suppose that S8, By, ...
oy Bisry Ay .y A)= 8 and let ¢ be a constant element different from
4 and from B. Then 8(8, B, ..., By, 4, ..., A)C, .., 0y = 8(C, By, ...,
Bri1s 4, )= 8(0, ..., 0)= O
But from (9;+1) which we have just proved, we have §(C, B, ...
s Brgas8,; .., 8) = 8 and hence §(0, By Bigiy, 8,0, 8)(4, ..., 4)
=8(C, By, ..., Byp1, A, ..., 4) = 8(4, .., 4)= 4, again a contradiction,
and one obtains (9%.1). By induction then (9p-2) and (9,-s) follow, that is
8{4,B,..,B,8 =18 and S{8, B,..,B,A}=A for every pair of
distinet constant elements A and B. This is clearly impossible and hence
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there exists a constant element, say 4, and a p-tuple which, withous
Joss of generality, we may assume is (8,4, .., 4) such that

(10) S(8, 4, .y d)= 8.

From here we prove that S is a first place selector relative to Cg.

For every p-tuple of elements (T, Ty, ..., Tp—;) from & and any
two integers @, b < p, a < b and a, b # 0, we define a p-ary operation oy
by the following:

O'ub(T(n Tl, K] Tz?—l) = To(Tu ey Tlu -y —Ta: -Tba ey Tm—l) .

That is, T, appears in the p-tuple (T, ..., Tay ..., Ta, Ty, ..., Tp_1) both
in the ath and the bth place. It is easy to verify that o, is superassociative.
Hence denoting by Sg, the set of elements of G with the operation og,
we have that S is a (p —1)-place Menger algebra. Since S is nonconstant
in &, and hence S(4,..,4)=A4, oa(8,4,...,4)=8(4,..,4)=4
and § is nonconstant in Gg.

Suppose first that @ # 1. Then ou(S, S, 4, ..., 4)= 8(8,4, .., 4)
= § from (10) and hence § iy a first place selector relative to (Cuw)s,
where Gy is the set of constant elements of Sy, Clearly € C Cy for every a
and b. Hence
1y, S(Hy, ..., Hy) = H,

for any p-tuple (Hy, ..., Hy) from C such that Hu = H, for some integers
a<b<pand a#1. )
For the case a = 1, we first prove that

(12) S{4,8,B,..,By=A4.

For example, we show S(4, 8, B, ..., B)= 4. Since p > 3, §(4, 8, B,...
., B)B,..,B)=S8(4,B,..,B)=A4 by Equation (11). But then
8(4,8, B, ..., By= 8 or B is impossible since §(B, ..., B) = B(B, ..., B)
=B # 4. By composing (4, ..., 4) with the equalities in (12) we also
have S(4,4,B,..,B)=8(4,B,4,B,..,B)=..=8(4,B,..,B, 4)
= A.Hence oy(S8, 4, B, ..., B)= 8(4, B, .., 4, B, ..., B) = 4 and there-
fore § is a first place selector relative to (Cp)g. Or, in other words, Equa-
tion (11) holds whenever H,= H, for any integers a,b (1<a,b < p).
Now let (H,, ..., Hp) be a p-tuple from C such that H; # H; whenever
1% (,j=1,..,p) If H,= 8 for some k < p, then S(H,, ..., Hy) = H,.
If, on the contrary, S(Hy,.., Hp)= H;+ H;, then S(H,, ...,H?,)x
X(Hy, .oy Hy)) = Hi(Hy, ..., H:) = S(Hy, ooy Hy,y ooy Hy) = Hy by (11). Since
H; + Hy, H; must equal 8. But if S(Hi, ..., Hp) =8, choose m such
that H,, + H, and H,, # 8, which is possible since p > 3 and since the
H,, ..., By are distinet. Then 8(Hy, .., Hp)(Hm, -y Hu) = 8(Hpy -y Hu)
=Hn=S(Hy, ..., Hny o.; Hny ..., Hp) = Hy, which is clearly impossible.
3%


GUEST


36 ' H. Skala

Thus Equation (11) holds for every p-tuple (Hy, .., Hp) from CGg and
hence § is a first place selector relative to Cg. This completes the proof
of Theorem 1.

Additional structure of Menger algebras and, in particular, of irre-
ducibly generated Menger algebras may be derived from the following
considerations. Elements ' and & of a p-place Menger algebra & are
said to be eguivalent, written F' = @, if F(My, ..., My) = G(M,, ..., M)
for every sequence (M, ..., M) of constant elements in . Consequently,
if Fi=Gy, 9=0,1,...,p, then Fy(F, ..., Fp) = GGy, ..., &,). For let
(My, ..., Mp) be a sequence of constant elements in &. Then TyFy, ...
Fp) (I, ..., M) =Fo( (DM, ooy Mp), oy Bp( My, ...y M,,)) = FU(GI(M17
M)y ooy Gyl My, ooy )

Now Gy(M;, .., Mp), i=1,..,p, is a constant element, since
Gl(-z_;[;; ooy M) (85 ey 8p)= Gi(‘M-l(SI; s Sp): (] MP(SI7 sy Sp))= G'Z(Mu
ey M) .

Hence (G4y(My, ..., Mp), ..., Gp(My, ..., My)) is & sequence of constant
elements in & and Fy(Gi(My, ..., Myp), vy Gp( My, ..., My)) = GGy (M, ...,
My)s ooy Gy( My, ey M) = oGy ooy Gp) (M, ...y My); iee., Ty(Fy, ..., 1)
= Go(Gh, ..., Gp) -

Denoting by F* the clags of all elements of & equivalent to 7, we
may therefore define a superassociative operation on the set ©*, which
consists of all equivalence classes of &, namely,

?

)

FE(FL "-7F2’§) = [GU(G15 ey G'p)]*
for any’ elements @; in F¥, i =1,..,p. In particular,
(13) FS(FY 5 ooy B) = [Fo(Fyy ey Fp)T* .

TEEOREM 2. If & is a p-place Menger algebra, G* is isomorphic to
an algebra of p-place functions over a set whose cardinality is the same as
the cardinality of the set of constant elements of G.

If A and B are congtant elements, then A* B* and hence the get
C*= {4* 4 <C} has the same cardinality as C. If A, ..., Ap are constant
elements, then F(4,,..,4,;) is constant for any element F. Hence
F*(AY, ..., A3)is in C* and we may define a one-to-one mapping a from &*
onto a subset of the algebra of p-place functions over C*, where of™* is
defined as follows:

(aB™*) (AL, ..., A}) = FX 45, ..., 4%).

First, ais on-to-one. Let F™* s G* 50 that there exists a sequence (Hy, ..., Hyp)
of constant elements such that F(Hy, ..., Hy)= A # B= G(H,, ..., Hy)
where A and: B are constant elements. Then from (13),
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(F*)(HE, .., H) = FHHY, ..., H}) = A* # B* = G¥HY, ..., HY)
= (aG*)(HY, ..., H}).

Hence aF™* # 6. It is easily shown that « is an isomorphism, that is,
a[F3(FY, .., )] = aF§(aFY, ..., aFy) for any elements F; (i =0, ..., p) in G,

If the Menger algebra & is isomorphic to G*, that is, if each equi-
valence clags consists of a single element of &, then the Dicker result
follows. Moreover, if & ig irreducibly generated and contains at least
three constant elements, then, by Theorem 1, ela.ch noneconstant element §
in G is a selector relative to the set of constant element of S. Hence for
for each sequence (H,, ..., Hy) of constant elements, where S is, say
a kth place selector relative to Cg, oS*(HY,..., Hy)= S*(H%, ..., H})
= [S(Hy, ..., Hp)]* = H%; that is, a8* is the kth place selector function.
G* therefore has a completely trivial structure, consisting only of selector
and constant funections. Furthermore if (7', ..., Tp) is a sequence from &
such that T¢, T%, ..., T} are distinet classes, and 7 is a kth place selector
relative to Cry, then To(Ty, ..., Tp) = T%. For olf(aTi, ..., als) = aT%
= a[THTE, o, T = a([To(Ty, ..., Tp)]¥). Since o is one-to-one, T%
= [Ty(Tyy ooy Tp)]*. Now To(Ty, ..., Tp) equals one of Ty, Ty, .., T,
since & is irreducibly generated and from TF = T% for j + k, it follows
that To(Ty, ..., Tp) = Tk. Thus each element § of an irreducibly gener-
ated Menger algebra is a selector on a mueh wider class of p-tuples.
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