

is paired with a unique element in Y and vice versa, so that F is a function of X onto Y. The hypothesis of Lemma 2.9 is satisfied so that F is a homeomorphism. Also, since $x_t \in H$ implies $F(x_t) = f(x_t)$, it follows that $F|_{H} = f$.

References

- [1] John L. Kelley, General Topology, New York 1955.
- [2] B. Knaster and M. Reichbach, Notion d'homogénéité et prolongements des homéomorphies, Fund. Math. 40 (1953), pp. 180-193.
- [3] and K. Urbanik, Sur les espaces complets séparables de dimension 0, Fund. Math. 40 (1953), pp. 194-202.
- [4] Kazimierz Kuratowski, Topology vol. I, New York and London, Warszawa 1966.

LOUISIANA STATE UNIVERSITY Baton Rouge, Louisiana

Recu par la Rédaction le 1, 3, 1968

More decompositions of E^n which are factors of E^{n+1}

b

Donald V. Meyer * (Pella, Ia)

1. Introduction. Let G be a monotone upper semicontinuous decomposition of E^n , G_1 be the collection of nondegenerate elements of G, and assume G_1 is countable. We show in this paper that $E^n/G \times E^1$ is topologically E^{n+1} if either (1) for each element $g \in G_1$, there exists a positive integer n_g such that g is an n_g -frame, or (2) G_1 is a null collection and if $g \in G_1$, there exists a positive integer n_g such that g is an n_g -cell which is flat in E^{n+1} .

Bing proved [5] that the product of the dogbone space [4] and E^1 is E^4 . Thus E^4 has non-manifold factors. Using analogous techniques, Andrews and Curtis [1] have shown that the product of E^1 and a decomposition of E^n whose only non-degenerate element is an arc is E^{n+1} . Gillman and Martin [8] announced an extension of the result of Andrews and Curtis by proving case (1) above if each element of G_1 is an arc. Recently Bryant [6] has shown that if D is a k-cell in E^n that is flat in E^{n+1} and G is the decomposition of E^n whose only nondegenerate element is D, then $E^n/G \times E^1$ is topologically E^{n+1} . For a more complete summary of related results, the reader is referred to [2].

In Section 3 we show that if G_1 is countable and each element in G' ($G' = \{g \times w | g \in G, w \in E^1\}$) that corresponds to a given element of G_1 can be shrunk in a certain way (condition I), then all the elements of G' can be shrunk simultaneously (condition II). Using this we show that if G_1 is countable and G satisfies condition I, then E^n/G is a factor of E^{n+1} . The result for n_g -frames referred to above is proved in Section 4 by first showing, using techniques of Andrews and Curtis [1], that the product of E^1 and a decomposition of E^n whose only nondegenerate element is a k-frame is E^{n+1} . The result is then obtained by noticing that G satisfies condition G. The case for certain null collections of cells is shown in Section 5 by using Bryant's work [6] and condition G.

2. Notation and terminology. The statement that G is an upper semi-continuous decomposition of E^n means that (1) G is a collection of sub-

^{*} Partially supported by National Science Foundation, Grant GP-6866.

sets of E^n such that each point of E^n belongs to one and only one set of G and (2) if $g \in G$ and U is an open set in E^n containing g, then there exists an open set V in E^n such that $g \subset V$, $V \subset U$, and V is the union of elements of G is monotone if and only if each element of G is a compact continuum.

If G is a monotone upper semicontinuous decomposition of E^n , E^n/G denotes the associated decomposition space, P the projection map of E^n onto E^n/G , G_1 the set of nondegenerate elements of G, and G_1^* the union of the elements of G_1 . We shall identify E^n and $E^n \times 0$, thus $E^n \subset E^{n+1}$. If $g \subset E^n$ and $\varepsilon > 0$, let $V^n(g, \varepsilon)$ denote the ε -neighborhood of g in E^n , the superscript emphasizing that the space in which the neighborhood is being defined is E^n .

If G is a monotone upper semicontinuous decomposition of E^n , let G' be $\{g \times w | g \in G \text{ and } w \in E^1\}$. Then G' is an upper semicontinuous decomposition of E^{n+1} and E^{n+1}/G' is topologically equivalent to $E^n/G \times E^1$. Thus, to show that $E^n/G \times E^1$ is topologically equivalent to E^{n+1} , it suffices to show that E^{n+1}/G' is topologically E^{n+1} . We will think of E^{n+1} as $E^n \times E^1$, and the E^1 coordinate will be referred to as the w-coordinate.

If A is a set, IntA denotes the interior of A, and \overline{A} or $\operatorname{Cl} A$ denotes the closure of A. We denote the usual metric for E^n by d. A collection η of subsets of E^n is a null collection if for each positive number ε , there exists, at most, a finite number of sets of η of diameter more than ε .

3. Conditions I and II. Let G be a monotone upper semi-continuous decomposition of E^n , and consider the following two conditions. The identity map is denoted by id.

Condition I. If $\varepsilon>0$ and $g\in G_1$, there exists an isotopy $\dot{\mu}_t^g(t\in[0\,,1])$ of E^{n+1} onto itself such that

- (0) if $w \in E^1$, diam $\mu_1^g(g \times w) < \varepsilon$,
- (1) $\mu_0^g = id$,
- (2) if $t \in [0, 1]$, $\mu_t^g = \mathrm{id}$ on $(E^n V^n(g, \varepsilon)) \times E^1$,
- (3) if $g' \in G$ and $w \in E^1$, then either

$$\operatorname{diam} \mu_{1}^{g}(g' \times w) < \varepsilon \;, \qquad or \qquad \mu_{1}^{g}(g' \times w) \subset V^{n+1}(g' \times w \,,\, \varepsilon) \;,$$

- (4) μ_1^g is uniformly continuous,
- (5) if $t \in [0, 1]$, μ_t^g moves no w-coordinate by as much as ε .

CONDITION II. If $\varepsilon > 0$ and U is an open subset of E^n containing G_1^* , then there exists an isotopy f_t ($t \in [0, 1]$) of E^{n+1} onto itself such that

- (i) $f_0 = id$,
- (ii) if $t \in [0, 1]$, $f_t = id$ on $(E^n U) \times E^1$,
- (iii) if $g \in G$ and $w \in E^1$, then $\operatorname{diam} f_1(g \times w) < \varepsilon$,

- (iv) f_1 is uniformly continuous,
- (v) if $t \in [0, 1]$, f_t moves no w-coordinate by as much as ε .

Notice that Condition I states that for each element of G_1 a certain type of function exists, where as Condition II allows one to attack all of G_1 .

THEOREM 1. Suppose G is a monotone upper semicontinuous decomposition of E^n such that G_1 is countable. If G satisfies Condition I, then G satisfies Condition II.

Proof. Let ε be a positive number, U an open set in E^n containing G_1^* , and assume each component of U is bounded. We will work with each component D of U which contains elements of G with diameter as much as ε and get an isotopy f_t^D ($t \in [0,1]$) of E^{n+1} onto itself such that $f_t^D = \mathrm{id}$ on $(E^n - D) \times E^1$, if $g \in G$, $g \subseteq D$, and $w \in E^1$, then $\mathrm{diam} f_1^D(g \times w) < \varepsilon$, and f_t^D satisfies properties i, iv, and v of Condition II. Since each bounded subset of E^n intersects only a finite number of such components, f_t will be taken to be the composite of the isotopies f_t^D .

Thus let D be a component of U and $g_1, g_2, g_3, ...$ be the elements of G_1 which are contained in D. We will construct a sequence of isotopies $f_1^0, f_1^1, f_2^2, ...$ of E^{n+1} onto itself and a sequence $U_0, U_1, U_2, ...$ of open sets in E^n such that

(a) if i is a positive integer and $w \in E^1$,

$$\operatorname{diam} f_{\scriptscriptstyle 1}^i(g_i \times w) < \varepsilon$$
,

- (b) $(\bigcup_{i \leqslant i} g_i) \subset U_i \subset U_{i+1} \subset D$ and $f_1^i = f_1^{i+1} = f_1^{i+2} = \dots$ on $U_i \times E^1$,
- (c) if $w \in E^1$ and i and j are positive integers, then

$$\operatorname{diam} f_1^i(g_j \times w) \leq \operatorname{diam} f_1^{i-1}(g_j \times w) + \varepsilon/2^{i+1}$$
,

- (d) $f_t^i = id$ outside $D \times E^1$,
- (e) f_1^i is uniformly continuous,
- (f) f_t^i moves no w coordinate by as much as ε .

Then, as in the proof of Theorem 3 of [3], it will follow that there exists a positive integer N such that if j is a positive integer and w is a real number, then $\operatorname{diam} f_1^N(g_j \times w) < \varepsilon$. We will take f_t^D to be f_t^N .

STEP 1. Let f_i^0 be the identity and $U_0 = \varphi$. It follows from Condition I that there exists an isotopy f_i^1 of E^{n+1} onto itself such that

- (1a) if $w \in E^1$, diam $f_1^1(g_1 \times w) < \varepsilon/2^2$,
- (1b) $f_0^1 = id$,
- .(1c) if $w \in E^1$ and j is a positive integer, then

$$\operatorname{diam} f_1^1(g_j \times w) < \operatorname{diam} f_1^0(g_j \times w) + (\varepsilon/2^2)$$
,

- (1d) $f_t^1 = id$ outside $D \times E^1$,
- (1e) f_1^1 is uniformly continuous,
- (1f) f_t^1 moves no w coordinate by as much as $\varepsilon/2^2$.

Let U_1 be an open set in E^n such that $g_1 \subset U_1 \subset D$, and if $g \in G$ and $g \cap \overline{U}_1 \neq \varphi$, then for each w in E^1 , diam $f_1^1(g \times w) < \varepsilon$. To see that such an open set U_1 exists, notice that f_1^1 is uniformly continuous. Therefore there exists a positive number δ such that if $d(p_1, p_2) < \delta$, then $d(f_1^1(p_1), f_1^1(p_2)) < \varepsilon/4$. By upper semicontinuity, there is an open set U_1 in E^n such that $g_1 \subset U_1 \subset D$, and if $g \in G$ and $g \cap \overline{U}_1 \neq \varphi$, then $g \subset V^n(g_1, \delta)$. Then if $g \in G$, $g \cap \overline{U}_1 \neq \varphi$, $w \in E^1$, $p_1 \in (g \times w)$, and $p_2 \in (g \times w)$, there exist points g_1 and g_2 of $g_1 \times w$ such that $d(p_1, q_1) < \delta$ and $d(p_2, q_2) < \delta$. Then

$$\begin{split} d\left(f_1^1(p_1),f_1^1(p_2)\right) &\leqslant d\left(f_1^1(p_1),f_1^1(q_1)\right) + d\left(f_1^1(q_1),f_1^1(q_2)\right) + d\left(f_1^1(q_2),f_1^1(p_2)\right) \\ &< \varepsilon/4 + \varepsilon/4 + \varepsilon/4 < \varepsilon \;. \end{split}$$

STEP 2. If $g_2 \cap \overline{U}_1 \neq \varphi$, let f_t^2 be f_t^1 and U_2 be an open set in E^n such that $U_1 \cup g_2 \subset U_2 \subset D$, and if $g \in G$, $w \in E^1$, and $g \cap \overline{U}_2 \neq \varphi$ then $\dim f_1^2(g \times w) < \varepsilon$.

If $g_2 \cap \overline{U}_1 = \underline{\varphi}$, let V_1 be an open set in E^n such that $g_2 \subset V_1 \subset D$, and

if $g \in G$ and $g \cap \overline{U}_1 \neq \varphi$, then $g \cap V_1 = \varphi$.

Since f_1^1 is uniformly continuous, there exists a positive number δ_1 less than $\varepsilon/2^3$ such that if $S \subset E^{n+1}$ and diam $S < \delta_1$, then diam $f_1^1(S) < \varepsilon/2^4$. Let h_t^2 be an isotopy of E^{n+1} onto itself such that

(2a)' if $w \in E^1$, diam $h_1^2(g_2 \times w) < \delta_1$,

 $(2b)' h_0^2 = id,$

(2c)' if j is a positive integer and $w \in E^1$, then

either diam
$$h_1^2(q_i \times w) < \delta_1$$
 or $h_1^2(q_i \times w) \subset V^{n+1}(q_i \times w, \delta_1)$,

- (2d)' $h_t^2 = id$ outside $V_1 \times E^1$,
- (2e)' h_1^2 is uniformly continuous, and
- (2f)' h_t^2 moves no w coordinate as much as δ_1 .

Let $f_t^2 = f_1^1 h_t^2$ and U_2 be $U_1 \cup V_2$. Then we have

- (2a) if $w \in E^1$, diam $f_1^2(g_2 \times w) < \varepsilon/2^4 < \varepsilon$,
- (2b) $f_1^2 = f_1^1$ on $U_1 \times E^1$,
- (2c) if $w \in E^1$ and j is a positive integer, then

$$\operatorname{diam} f_1^2(g_j \times w) \leqslant \operatorname{diam} f_1^1(g_j \times w) + (\varepsilon/2^3),$$

- (2d) $f_t^2 = id$ outside $D \times E^1$,
- (2e) f_1^2 is uniformly continuous, and
- (2f) f_t^2 moves no w-coordinate by more than $\varepsilon/2^2 + \varepsilon/2^3$.

It is clear that one can continue inductively, thereby obtaining the sequences $f_0^t, f_1^t, f_1^t, \dots$ of isotopies and $U_0, U_1, U_2 \dots$ of open sets in E^n having properties (a)-(f).

We now show that there exists a positive integer N such that if j is a positive integer and $w \in E^1$, then $\operatorname{diam} f_1^N(g_j \times w) < \varepsilon$. For suppose that this statement is false. Then for each positive integer i, there exists a positive integer n_i and a real number w_i such that $\operatorname{diam} f_i^i(g_{n_i} \times w_i) \geqslant \varepsilon$. Without loss of generality we may assume that $\{g_{n_i}\}$ converges to a compact subset B of \overline{D} . Since G is an upper semicontinuous collection, there exists an element g_0 of G such that $B \subset g_0$. We show that g_0 is neither degenerate nor nondegenerate.

Notice that if i and i are positive integers and $w \in E^1$, then.

$$\begin{split} \operatorname{diam} f_1^i(g_j \times w) &\leqslant \varepsilon/2^{i+1} + \operatorname{diam} f_1^{i-1}(g_j \times w) \\ &\leqslant \varepsilon/2^{i+1} + \varepsilon/2^i + \dots + \varepsilon/2^2 + \operatorname{diam} f_1^0(g_j \times w) \\ &\leqslant \varepsilon/2 + \operatorname{diam} (g_j \times w) \;. \end{split}$$

Thus

$$\varepsilon \leqslant \operatorname{diam} f_1^i(g_{n_i} \times w_i) < \varepsilon/2 + \operatorname{diam} (g_{n_i} \times w_i) = \varepsilon/2 + \operatorname{diam} g_{n_i}$$

Therefore $\varepsilon/2 < \operatorname{diam} g_{n_t}$, g_0 is not degenerate, and there exists a positive integer k such that $g_0 = g_k$.

Now there exists a neighborhood O of g_k in U_k such that if $g \in G$, $g \subset O$, and $w \in E^1$, then diam $f_1^k(g \times w) < \varepsilon$. Therefore, if i is a positive integer greater than k, $g_{n_t} \not\subset O$ because $\operatorname{diam} f_1^i(g_{n_t} \times w_i) \geqslant \varepsilon$ and $f_1^i = f_1^k$ on O. But then $\{g_{n_t}\}$ does not converge to B, a contradiction. Our claim is established. We let f_t^D be f_t^N and f_t be the composite of the f_t^D 's.

LEMMA 1. Suppose that G satisfies the hypothesis of Theorem 1, $\varepsilon > 0$, U is an open set in E^n containing G_t^* , and f_t is an isotopy satisfying condition II relative to U and ε . There exists an open set V in E^n and a positive number γ such that

- (1) $G_1^* \subset V \subset U$ and each component of P(V) is of diameter less than e (relative to the metric of E^n/G), and
 - (2) if u is a component of V and $0 < (b-a) < \gamma$, then

$$\operatorname{diam} f_1(u \times \lceil a, b \rceil) < 2\varepsilon$$
.

Proof. Since f_t satisfies condition II, f_1 is uniformly continuous. Thus there exists a positive number $\gamma < \varepsilon/4$ such that if x and y belong to E^{n+1} and $d(x, y) < \gamma$, then $d(f_1(x), f_1(y)) < \varepsilon/4$. It follows that if $g \in G$ and $0 < (b-a) < \gamma$, then

diam
$$f_1(V^n(g, \gamma) \times [a, b]) < 2\varepsilon$$
.

Since G_1 is countable, there exists an open set V in E^n such that $G_1^* \subset V \subset U$, each component of P(V) is of diameter less than ε (relative

to the metric of E^n/G), and if u is a component of V, there is an element g_u of G_1 such that $u \subset V^n(g_u, \gamma)$. The lemma follows.

THEOREM 2. Suppose G is a monotone upper semicontinuous decomposition of E^n such that G_1 is countable and G satisfies condition II. There exists a pseudo isotopy f(x,t) $(x \in E^{n+1}, t \in [0,1])$ of E^{n+1} onto itself such that

- (1) f(x, 0) = x,
- (2) if $0 \le t < 1$, f(x, t) is a homeomorphism of E^{n+1} onto itself, and
- (3) f(x, 1) takes E^{n+1} onto itself and each element of G' onto a distinct point.

Proof. For each positive integer i, let $\varepsilon_i = 1/2^i$. There exists an isotopy f(x,t) $(x \in E^{n+1}, 0 \le t \le 1/2)$ such that f(x,1/2) is uniformly continuous, f(x,0) = x, if $g \in G$ and $w \in E^1$, diam $f(g \times w, 1/2) < \varepsilon_1$, and $f(E^n \times w, 1/2) \subset E^n \times [w - \varepsilon_1, w + \varepsilon_1]$.

By Lemma 1, there exists an open set V_2 and a positive number γ_2 such that $G_1^* \subset V_2$, each component of $P(V_2)$ is of diameter less than ε_1 , and if u is a component of V_2 and $0 < (b-a) < \gamma_2$, then diam $f(u \times [a, b], 1/2) < 2\varepsilon_1$.

Let δ_2 be a positive number such that if $S \subset E^{n+1}$ and diam $S < \delta_2$, then diam $f(S, 1/2) < \epsilon_2$. It follows, by condition II, that there exists an isotopy h(x, t) ($x \in E^{n+1}$, $1/2 \le t \le 2/3$) such that h(x, 1/2) = x, h(x, 2/3) is uniformly continuous, h(x, t) = x on $(E^n - V_2) \times E^1$, if $g \in G$ and $w \in E^1$, diam $h(g \times w, 2/3) < \delta_2$, and h(x, t) moves no point in the w direction more than $\min \{\gamma_2/2, \epsilon_3\}$.

If $1/2 \le t \le 2/3$, let f(x, t) = f(h(x, t), 1/2). Then f(x, 2/3) is uniformly continuous.

- (1') if $x \notin V_2 \times E^1$ and $1/2 \leqslant t \leqslant 2/3, \ f(x,\,t) = f(x,\,1/2),$ and
 - (2') if $g \in G$ and $w \in E^1$, diam $f(g \times w, 2/3) < \varepsilon_2$.
- (3') If u is a component of V_2 , $1/2 \le t \le 2/3$, and $w \in E^1$, then $h(u \times w, t) \subset u \times [w \gamma_2/2, w + \gamma_2/2]$ and $\operatorname{diam} f(u \times [w \gamma_2/2, w + \gamma_2/2], 1/2) < 2\varepsilon_1$. Thus no point moves more than $2\varepsilon_1$ during f(x, t) $(1/2 \le t \le 2/3)$.
 - (4') If $w \in E^1$, $f(E^n \times w, 2/3) \subset f(E^n \times [w \varepsilon_2, w + \varepsilon_2], 1/2)$.

Continuing inductively, we define f(x,t) $((i-1)/i \le t \le i/(i+1))$ as follows. There exists an open set V_i and a positive number γ_i such that $G_1^* \subset V_i \subset V_{i-1}$, each component of $P(V_i)$ is of diameter less than ε_i , and if u is a component of V_i and $0 < (b-a) < \gamma_i$, then diam $f(u \times [a, b], (i-1)/i) < 2\varepsilon_{i-1}$. Let δ_i be a positive number such that if $S \subset E^{n+1}$ and diam $S < \delta_i$, then diam $f(S, (i-1)/i) < \varepsilon_i$. By condition II, there exists an isotopy $h(x,t)(x \in E^{n+1}, (i-1)/i \le t \le i/(i+1))$ such that h(x, (i-1)/i)

= x, h(x, i/(i+1)) is uniformly continuous, h(x, t) = x on $(E^n - V_i) \times E^1$, if $g \in G$ and $w \in E^1$, diam $h(g \times w, i/(i+1)) < \delta_i$, and h(x, t) moves no point in the w direction more than $\min\{\gamma_i/2, \varepsilon_i\}$.

If $(i-1)/i \le t \le i/(i+1)$, let f(x,t) = f(h(x,t), (i-1)/i). Then f(x,i)/(i+1) is uniformly continuous,

- (1) if $x \notin V_i \times E^1$ and $(i-1)/i \le t \le i/(i+1)$, f(x, t) = f(x, (i-1)/i),
- (2) if $g \in G$ and $w \in E^1$, diam $f(g \times w, i/(i+1)) < \varepsilon_i$,
- (3) no point moves more than $2\epsilon_{i-1}$ during $f(x,t)\big((i-1)/i\leqslant t\leqslant i(i+1)\big)$, and

(4) if $w \in E^1$, $f(E^n \times w, i/(i+1)) \subset f(E^n \times [w - \varepsilon_i, w + \varepsilon_i], (i-1)/i)$.

We now have conditions satisfied which are analogous to conditions (1)-(4) in the proof of Theorem 3 of [5], and the proof can be completed using a similar argument.

Since E^{n+1}/G' and $E^n/G \times E^1$ are topologically equivalent, the following theorem is an immediate consequence of Theorems 1 and 2.

THEOREM 3. Suppose G is a monotone upper semicontinuous decomposition of E^n , G_1 is countable, and G satisfies condition I. Then $E^n/G \times E^1$ is topologically E^{n+1} .

4. Decomposition into frames. In this section it is shown in Theorem 4 that the product of E^1 and a decomposition of E^n whose only nondegenerate element is a k-frame is E^{n+1} . Theorem 5 follows by noticing that the shrinking which took place in the proof of Theorem 4 can be done without stretching certain sets a great deal. Thus condition I is satisfied and we can apply Theorem 3. Much of this section is completely analogous to parts of [1], thus we will be omitting many of the details.

Let k be a positive integer. A k-frame a_k is the union of k $\operatorname{arcs} A_1$, A_2 , ..., and A_k , with a distinguished point p such that 1) if k=1, p is an end point of A_1 , and 2) if k>1, p is an end point of each A_i and if $i\neq j$, $A_i\cap A_j=p$. If i is a positive integer, $1\leqslant i\leqslant k$, let B_i be the arc in E^2 with polar coordinates $0\leqslant r\leqslant 1$, $\theta=(2\pi/k)i$. The standard k-frame β_k is $\bigcup_{i=1}^k B_i$. A k-frame a_k in E^n is tame in E^n if there is a homeomorphism of E^n onto itself which carries a_k onto β_k .

LEMMA 2. If a_k is a k-frame in E^n , then there exists a homeomorphism Φ of E^{n+1} onto itself such that $\Phi(\beta_k) = a_k$.

Proof. If, as in the notation above, $a_k = \bigcup_{i=1}^{n} A_i$, it follows from Lemma 1 of [1] that each A_i is tame in E^{n+1} . Then by Theorem 1 of [7], a_k is tame in E^{n+1} . Thus the desired homeomorphism Φ exists.

Construction of neighborhoods of α_k . Assuming the notation of Lemma 2, we begin constructing certain neighborhoods of α_k

by first describing nice neighborhoods of β_k . These neighborhoods of β_k will be the union of a collection of (n+1)-cells as suggested in Figure 1 below. The homeomorphism Φ will map these neighborhoods onto neighborhoods (in_ E^{n+1}) of α_k .

Fig. 1

If i, j, and s are integers such that $1 \le i \le k, j \ge 4$, and $1 \le s \le (j-2)$, let $\varepsilon_j = (j+2)/j(j-1)$, $\delta_j = (\varepsilon_j - 1/j)\sin(\pi/2k)$,

$$P_{j,i}^{s} = \left\{ V^{2}(B_{i}, \delta_{j}) \cap \left\{ (r, \theta) | (j-s-1)\varepsilon_{j} - (1/j) \leqslant r \leqslant (j-s)\varepsilon_{j} - (1/j) \right\} \right\} \times \left[-\delta_{j}, \delta_{j} \right]^{n-1},$$

and

$$P_{j,i}^{(j-1)} = V^2((0,0), \varepsilon_j - 1/j) \times [-\delta_j, \delta_j]^{n-1}.$$

Notice that $P_{j,i}^{j-1} = P_{j,v}^{j-1}$. Let $P_j = \bigcup \{P_{j,i}^s | 1 \leqslant i \leqslant k, 1 \leqslant s \leqslant (j-1)\}$, $Q_j = \Phi(P_j)$, $Q_{j,i}^s = \Phi(P_{j,i}^s)$, $R_j = E^n \cap Q_j$, $R_{j,i}^s = E^n \cap Q_{j,i}^s$, $C_j = \{P_{j,i}^s | 1 \leqslant i \leqslant k, 1 \leqslant s \leqslant (j-1)\}$, $D_j = \{Q_{j,i}^s | 1 \leqslant i \leqslant k, 1 \leqslant s \leqslant (j-1)\}$, and $E_j = R_{j,i}^s | 1 \leqslant i \leqslant k, 1 \leqslant s \leqslant (j-1)\}$.

We will want these neighborhoods to have properties analogous to properties (i)-(iii) of [1] in order to allow us to build the appropriate (n+1)-cells. Recall that the construction of certain (n+1)-cells was accomplished in [1] by a push in the direction of the (n+1)-st axis. In particular, we can choose a subsequence $\{C_i\}$ of the C_i such that

- (i) for each i and each $d \in D_i$, (diam d) < 1/i,
- (ii) for each i and each element d of D_{i+1} , there exist two adjacent elements e_1 and e_2 of E_i such that $d \subset (e_1 \cup e_2) \times E^1$, and
 - (iii) for each i and each element e of E_i ,
 - a) there is an element d of D_{i+1} such that $d \subset e \times E^1$, and
- b) if $\{e_1, e_2, \dots, e_s = e\}$ is a chain of elements of E_i from one of the noncut points p of a_k to e, and $\{d_1, d_2, \dots, d_r = d\}$ is the chain of elements of D_{i+1} from p to d, then $(\bigcup_{i=1}^r d_i) \subset (\bigcup_{i=1}^s e_i) \times E^1$.

Now let $T_i=R_{2i}$. Then $\{T_i\}$ will be the sequence of neighborhoods of a_k for which we can construct isotopies and apply Theorem 1 of [1].

Building certain (n+1)-cells. We now have hypothesis and notation satisfied so that Theorem 2 and Corollary 1 of [1] follow. Note also that if s is a positive integer, $\varepsilon > 0$, a < b, and E is the (n+1)-cell such that

$$(T_{s+1} \times [a, b]) \subseteq E \subseteq T_s \times [a-\varepsilon, b+\varepsilon]$$
,

then condition (iii) above implies that if i and j are positive integers such that $1\leqslant j\leqslant k$, $1\leqslant i<(2s-1)$, there exists two (n+1)-cells U_1 and U_2 such that $U_1\cap U_2=\operatorname{Bd} U_1\cap\operatorname{Bd} U_2$ is an n-cell, $U_1\cup U_2=E$, $U_1\subset (\bigcup_{g=1}^i R_{2s,j}^g)\times E^1$, and $U_2\subset (T_s-\bigcup_{g=1}^{i-1} R_{2s,j}^g)\times E^1$.

LEMMA 3. Let $T_s \in \{T_i\}$. There exists an isotopy μ_t ($t \in [0, 1]$) of E^{n+1} onto itself such that (1) $\mu_0 = \operatorname{id}$, (2) μ_1 is uniformly continuous, (3) $\mu_t = \operatorname{id}$ outside $T_s \times E^1$, and (4) if $w \in E^1$, there exist four elements e_1, e_2, e_3 , and e_4 of E_{2s} such that $\bigcup_{i=1}^4 e_i$ is connected and $\mu_1(T_{s+(4s-7)} \times w) \subset (\bigcup_{i=1}^4 e_i) \times [w-3(2s-1)k, w+3(2s-1)k]$.

Proof. In an effort to make things easier to follow, we shall go through the proof in detail for the case k=3, i.e., a_k is a 3-frame or triod. The general case can be proved in a completely analogous fashion.

Recall that $T_s = R_{2s}$. Let m be (2s-1). Our isotopy is built using the techniques of [1] and [5], and differs only in the sense that we first attempt to push everything in towards $R_{2s,1}^m \times E^1$ by the map h. We then adjust h to push things to "small size" in the sets on which h was fixed. It follows from Lemma 2 of [1] that our final map can be assumed to be an isotopy.

STEP 1. Pushing in various levels of $A_1 \times w$. There exists a sequence of (n+1)-cells $K_{1,1}, K_{1,2}, ...$, and $K_{1,m-1}$ such that

$$\begin{split} T_s \times [0\,,\,9m] \supset K_{1,1} \supset & \operatorname{Int} K_{1,1} \supset T_{s+1} \times [1\,,\,9m-1] \\ \supset & K_{1,2} \supset \operatorname{Int} K_{1,2} \supset T_{s+2} \times [2\,,\,9m-2] \ldots \\ \supset & K_{1,m-1} \supset & \operatorname{Int} K_{1,m-1} \supset T_{s+(m-1)} \times [m-1\,,\,9m-(m-1)] \;. \end{split}$$

There exists a homeomorphism $h_{1,1}$ of $E^n \times [0, 9m]$ onto itself such that $h_{1,1} = \mathrm{id}$ outside $K_{1,1}, h_{1,1} = \mathrm{id}$ on $\left(T_s - (R^1_{2s,1} \cup R^2_{2s,1})\right) \times [0, 9m]$, and $h_{1,1} \left(\left(T_{s+1} \cap (R^1_{2s,1} \cup R^2_{2s,1})\right) \times [1, 9m-1] \right) \subset R^2_{2s,1} \times [0, 9m].$

Notice that $h_{1,1}$ may stretch $L_1 = (T_{s+1} \cap (R^1_{2s,1} \cup R^2_{2s,1})) \times ([0,1] \cup [9m-1,9m])$ into $(R^1_{2s,1} \cup R^2_{2s,1}) \times [0,9m]$, but future $h_{1,i}$'s, 1 < i

cm[©]

 $\leq (m-1)$, will leave $h_{1,1}(L_1)$ fixed. Also, if $1 \leq i \leq (m-1)$, $h_{1,i}$ will leave $(T_{s+1} - (R_{2s,1}^1 \cup R_{2s,1}^2)) \times ([0,1] \cup [9m-1,9m])$ fixed.

Suppose $1 \leq i < (m-1)$, and $h_{1,1}, h_{1,2}, \ldots$, and $h_{1,i-1}$ have been chosen. There exists a homeomorphism $h_{1,i}$ of $E^n \times [0,9m]$ onto itself such that $h_{1,i}=\operatorname{id}$ outside $h_{1,i-1}h_{1,i-2}\ldots h_{1,1}(K_{1,i}), h_{1,i}=\operatorname{id}$ on $(T_s-(\bigcup_{i=1}^{i+1} R_{2s,1}^j)) \times [0,9m]$, and

$$h_{1,i}h_{1,i-1}\dots h_{1,1}\left(\left(T_{s+i} \smallfrown (\bigcup_{j=1}^{i+1} R_{2s,1}^{j})\right) \times [i,9m-i]\right) \subseteq R_{2s,1}^{i+1} \times [i-1\,,\,9m-i+1]\;.$$

Again, $h_{1,i}h_{1,i-1} \dots h_{1,1}$ may stretch $L_i = (T_{s+i} \cap (\bigcup_{j=1}^{i+1} R_{2s,1}^j)) \times ([i-1,i] \cup ([9m-i,9m-i+1]))$ into $(R_{2s,1}^i \cup R_{2s,1}^{i+1}) \times [0,9m]$, but future $h_{1,i}$'s leave $h_{1,i}h_{1,i-1} \dots h_{1,1}(L_i)$ fixed.

Continuing, we obtain the composite $h_{1,m-1}h_{1,m-2}\dots h_{1,1}$. We extend this composite map vertically obtaining the homeomorphism h_1 of $E^n\times E^1$ onto itself. That is, if $q\in E^n\times E^1$, let q_n be the E^n coordinate of q and q_1 be the E^1 coordinate of q. Then if $(a,b)\in E^n\times [0,9m]$ and r is an integer, let $h_1(a,b+r9m)=(h_{1,m-1}h_{1,m-2}\dots h_{1,1}(a,b)_n,h_{1,m-1}h_{1,m-2}\dots h_{1,1}(a,b)_1+ r9m)$. h_1 copies $h_{1,m-1}h_{1,m-2}\dots h_{1,1}$ on each block $E^n\times [r\ 9m,\ (r+1)\ 9m]$.

STEP 2. Pushing in various levels of $A_2 \times w$. There exist (n+1)-cells $K_{2,1}, K_{2,2}, \ldots$, and $K_{2,m-1}$ such that

$$T_s \times [3m, 12m] \supset K_{2,1} \supset \operatorname{Int} K_{2,1} \supset T_{s+1} \times [3m+1, 12m-1] \supset \dots$$

 $\supset K_{2,m-1} \supset \operatorname{Int} K_{2,m-1} \supset T_{s+(m-1)} \times [3m+(m-1), 12m-(m-1)].$

Now, relative to the cells $K_{2,i}$ and the chain elements $R_{2s,2}^i$, define the functions $h_{2,i}$ in a completely analogous way as we did $h_{1,i}$. That is, if $1 \le i < (m-1)$ and $h_{2,1}, h_{2,2}, \ldots$, and $h_{2,i-1}$ have been chosen, let $h_{2,i}$ be a homeomorphism of $E^n \times [3m, 12m]$ onto itself such that $h_{2,i} = \mathrm{id}$ outside $h_{2,i-1} h_{2,i-2} \ldots h_{2,1}(K_{2,i})$, $h_{2,i} = \mathrm{id}$ on $(T_s - \bigcup_{i=1}^{i+1} R_{2s,2}^i) \times [3m, 12m]$, and

$$h_{2,i}h_{2,i-1}\dots h_{2,1}ig([T_s \cap (\bigcup_{j=1}^{i+1} R_{2s,2}^j)) imes [3m+i,12m-i]ig) \ \subset R_{2s,2}^{i+1} imes [3m+(i-1),12m-(i-1)].$$

We thus obtain the composite map $h_{2,m-1}h_{2,m-2}...h_{2,1}$ which is a homeomorphism of $E^n \times [3m, 12m]$ onto itself. Extend this homeomorphism vertically obtaining the homeomorphism h_2 of $E^n \times E^1$ onto itself.

STEP 3. Pushing in various levels of $A_3 \times w$. There exists a sequence $K_{3,1}, K_{3,2}, ...$, and $K_{3,m-1}$ of (n+1)-cells such that

 $T_s \times [6m, 15m] \supset K_{3,1} \supset \operatorname{Int} K_{3,1} \supset T_{s+1} \times [6m+1, 15m-1] \supset ...$

$$\supset K_{3,m-1} \supset \operatorname{Int} K_{3,m-1} \supset T_{s+(m-1)} \times [6m+(m-1), 15m-(m-1)].$$

Now, relative to the cells $K_{3,i}$ and the chain elements $E_{2s,3}^i$, define the functions $h_{3,1}$ on $E^n \times [6m, 15m]$, and extend the composite vertically obtaining the homeomorphism h_3 of $E^n \times E^1$ onto itself.

Let h be the composite $h_1h_2h_3$. Let

$$W = \bigcup_{i=0}^{\infty} \left([3mj - (m-1), 3mj + (m-1)] \cup [-3mj - (m-1), -3mj + (m-1)] \right).$$

Notice that if $w \in E^1 - W$, $h(a_k \times w)$ is already "small" in the sense that $h(a_k \times w) \subset (R_{2s,1}^m \cup (\bigcup_{j=1}^3 R_{2s,j}^{m-1})) \times [w-9m,w+9m]$. However, for $w \in W$, we can not make such a statement. In particular, $h(a_k \times 0)$ may be very "long" as h is fixed on $(a_k \cap (\bigcup_{j=1}^{m-1} R_{2s,1}^j)) \times 0$. It remains to adjust h on parts of $E^n \times W$.

STEP 4. Adjusting h on components of $T_s \times W$. We shall describe how to adjust h on the subset $T_s \times [9m - (m-1), 9m + (m-1)]$ of $T_s \times W$.

There exists a sequence $K_{1,m}, K_{1,m+1}, ...,$ and $K_{1,2m-5}$ of (n+1)cells such that

$$(\operatorname{Int} K_{3,m-1} \cap \operatorname{Int} K_{2,m-1}) \supset T_{s+(m-1)} \times [9m - (m-3), 9m + (m-3)]$$

$$\supset K_{1,m} \supset \operatorname{Int} K_{1,m} \supset T_{s+m} \times [9m - (m-4), 9m + (m-4)] \supset \dots$$

$$\supset K_{1,2m-5} \supset \operatorname{Int} K_{1,2m-5} \supset T_{s+2m-5} \times [9m-1, 9m+1]$$
.

There exists a homeomorphism $h_{1,m}$ of $h(T_s \times [9m - (m-1), 9m + (m-1)])$ onto itself such that $h_{1,m} = \text{id}$ outside $h(K_{1,m})$, $h_{1,m} = \text{id}$ on $h(T_s \cap (\bigcup_{j=1}^{m-2} R_{2s,1}^j)) \times [9m - (m-1), 9m + (m-1)]$, and

$$h_{1,m}h(T_{s+m} \cap (T_s - \bigcup_{j=1}^{m-2} R_{2s,1}^j)) \times [9m - (m-4), 9m + (m-4)]$$

$$\subset R_{2s,1}^{m-1} \times [9m - (m-3), 9m + (m-3)].$$

If $m < m+i \le 2m-5$ and $h_{1,m}, h_{1,m+1}, \ldots$, and $h_{1,m+i-1}$ have been defined, let $h_{1,m+i}$ be a homeomorphism of $h(T_s \times [9m-(m-1), 9m++(m-1)])$ onto itself such that $h_{1,m+i}=\mathrm{id}$ outside $h_{1,m+i-1}\ldots h_{1,m}h(K_{1,i})$, $h_{1,m+i}=\mathrm{id}$ on

$$h_{1,m+i-1} \dots h_{1,m} h(T_s \cap (\bigcup_{j=1}^{m-i-2} R_{2s,1}^j)) \times [9m-(m-1), 9m+(m-1)],$$

and

$$h_{1,m+i}h_{1,m+i-1}\dots h_{1,m}h(T_{s+m+i}\cap (T_s-\bigcup_{j=1}^{m-i-2}R_{2s,1}^j))$$

$$\times [9m - (m-i-4), 9m + (m-i-4)]$$

$$\subset R^{m-i+1}_{2s,1} \times [9m - (m-i-3), 9m + (m-i-3)]$$
.

The new map $h_{1,2m-5} \dots h_{1,m}h$ is the adjusted h on the subset $T_s \times \times [9m-(m-1),9m+(m-1)]$ of $T_s \times W$. Now for each component Q of W, adjust h on $T_s \times Q$ in a similar way, and let μ_1 be the resulting homeomorphism. Since μ_1 can be assumed to be the final stage of an isotopy μ_t such that $\mu_0 = \mathrm{id}$, and μ_1 satisfies the conclusion of Lemma 3, this establishes the lemma for the special case k=3. The general case follows in much the same way; there are simply more "directions" in which one must push after pushing "almost everything" towards $R_{2s,1}^m \times E^1$.

Theorem 4. Suppose G is a decomposition of E^n whose only non-degenerate element is a k-frame. Then $E^n/G \times E^1$ is topologically E^{n+1} .

Proof. This follows as in Corollary 4 and Theorem 1 of [1].

The following lemma is a technical lemma pointing out what happens to certain subsets of E^{n+1} under the homeomorphism h_1 described in the proof of Lemma 3. Analogous considerations for the maps of which the final μ_1 is the composite point out why we can require G to satisfy Condition I in the case when G satisfies the hypothesis of Theorem 5.

Continue to assume the above notation. If i is an integer, $0 \le i \le m$, let N_i be $T_{s+i} \times [i, 9m-i]$.

LEMMA 4. If $0 \le i+2 \le m$ and $Q \subset (N_i-N_{i+2})$, then

$$h_{\mathbf{l}}(Q) \subset \big(\!(R_{2s,\mathbf{l}}^{i+1} \cup R_{2s,\mathbf{l}}^{i+2}) \times [0\,,\,9m]) \, \cup \, \big(\!(Q \smallfrown \big(\!(T_s \bigcup_{i=1}^{i+2} R_{2s,\mathbf{l}}^{i}) \times [0\,,\,9m]\!)\!\big).$$

Proof. $N_{i+2} = T_{s+i+2} \times [i+2, 9-(i+2)] \subset K_{1,i+2}$, and each of $h_{1,i+2}, h_{1,i+3}, \ldots$, and $h_{1,m-1}$ is the identity outside $h_{1,i+1} \ldots h_{1,1}(K_{1,i+2})$. Since $Q \cap N_{i+2} = \varphi$, it follows that $h_1 \mid Q = h_{1,i+1}h_{1,i} \ldots h_{1,1} \mid Q$.

Let

$$Q' = Q \cap \left(\left(T_{s+i} \cap \left(\bigcup_{j=1}^{i+2} \dot{R}_{2s,1}^{j} \right) \right) \times [i, 9m-i] \right)$$

and

$$Q'' = Q \cap ((T_{s+i} - \bigcup_{j=1}^{i+2} R_{2s,1}^j) \times [i, 9m-i]).$$

 $h_{1,i+1}h_{1,i}\dots h_{1,1}\mid Q''=$ id. Thus we need only check the result of $h_{1,i+1}h_{1,i}\dots h_{1,1}$ on Q'.

$$h_{1,i+1}h_{1,i}\dots h_{1,1}(T_{s+i}\cap (\bigcup_{j=1}^{i+2}R_{2s,1}^j))\times [i,9m-i]$$

$$= h_{1,i} \ldots h_{1,1} \left(\left(T_{s+i} \cap (\bigcup_{j=1}^{i+2} R_{2s,1}^j) \right) \times [i,\, 9m-i] \right) \subset (R_{2s,1}^{i+1} \cup R_{2s,1}^{i+2}) \times [0,\, 9m] \; .$$

Thus $h_1(Q) = h_1(Q' \cup Q'') \subset ((R_{2s,1}^{i+1} \cup R_{2s,1}^{i+2}) \times [0, 9m]) \cup Q''$. This establishes the lemma.

We remark here that if ε is a positive number, Q is connected, and the diameter of the set $(R_{2s,1}^{i+1} \cup R_{2s,1}^{i+2}) \times [0, 9m]$ is less than ε , then in addition to the conclusion of Lemma 4 we would have that either diam $h_1(Q) < \varepsilon$ or $h_1(Q) \subset V^{n+1}(Q, \varepsilon)$, depending upon whether $Q'' = \varphi$ or $Q'' \neq \varphi$.

THEOREM 5. Suppose G is a monotone upper semicontinuous decomposition of E^n , G_1 is countable, and if $g \in G_1$, there exists a positive integer k_g such that g is a k_g -frame. Then $E^n/G \times E^1$ is topologically E^{n+1} .

Proof. We wish to show that G satisfies condition I. The result will then follow from Theorem 3. Thus let $\varepsilon > 0$ and $g \in G_1$. There exists a positive integer k such that g is a k-frame a_k .

Now let $\{T_i\}$ be the sequence of neighborhoods constructed above with the additional property (iv) that if $g' \in G$ and $g' \cap T_{i+1} \neq q$, then $g' \subset T_i$. That this property can be assumed follows from the fact that G is an upper semicontinuous collection.

There exists a positive integer s such that $T_s \subset V^n(\alpha_k, \varepsilon)$, and if i and j are integers such that $1 \leqslant i \leqslant k$, $1 \leqslant j \leqslant 2s-1$, then $(\operatorname{diam} R^j_{2s,t}) < (\varepsilon/8)$. In addition, assume the w-scale has been adjusted so that $\operatorname{diam}[0, 3km] < \varepsilon/8$. Then the isotopy μ_t of Lemma 3 has properties (0)—(5) of Condition I.

To see that property (3) of Condition I is satisfied, let $g' \in G$ such that $g' \cap T_{s+1} \neq \varphi$, and let $w \in [0, 3km]$. Then by property (iv) above, there exists a positive integer n such that $g' \subset (T_{s+n} - T_{s+n+2})$.

It follows that either $g' \times w \subset T_{s+m-1} \times [m-1, 3km-(m-1)]$, or there exists a positive integer j such that $0 \leq j < (m-1)$ and $g' \times w \subset (T_{s+j} \times [j, 3km-j]) - (T_{s+j+2} \times [j+2, 3km-(j+2)])$. Then Lemma 4 indicates what happens to $g' \times w$ under the function h_1 , which would be the first function of which the μ_1 of Lemma 3 is the composite.

Similar considerations for $g' \in G$, $w \in E^1$, and the functions of which μ_1 is the composite can be given to show that either $\mu_1(g' \times w) \subset V^{n+1}(g' \times w, \varepsilon)$ or diam $\mu_1(g' \times w) < \varepsilon$.

An alternative way of describing the image of $g' \times w$ under μ_1 is the following. Let O_1 be $\{\mu_1(p)|p \in g' \times w, \mu_1(p) \neq p\}$ and O_2 be $\{\mu_1(p)|p \in g' \times w, \mu_1(p) \neq p\}$

 $\epsilon g' \times w$; $\mu_1(p) = p$. Then $\mu_1(g' \times w) = O_1 \cup O_2$. By considerations similar to those of Lemma 4, it can be shown that the components of O, have small diameter. Thus, if $O_2 \neq \varphi$, $\mu_1(g' \times w) \subset V^{n+1}(g' \times w, \varepsilon)$, and if $O_2 = \varphi$ diam $u_1(g' \times w) < \varepsilon$. This completes the proof of Theorem 5.

5. The case for certain null collections of cells. In this section we show that if G is a monotone upper semicontinuous decomposition of E^n . G_1 is a null collection, and if $g \in G_1$, there exists a positive integer k_a such that q is a k_q -cell in E^n which is flat in E^{n+1} , then $E^n/G \times E^1$ is topologically E^{n+1} . The proof consists of noticing that with a slight adjustment of Bryant's techniques of proof in [6], we are able to show that G satisfies Condition I. Our result then follows from Theorem 3.

Let $I^k = \{(x_1, x_2, ..., x_{n+1}) \in E^{n+1} | 0 \le x_i \le 1, \text{ for } 1 \le i \le k, \text{ and } i$ $x_i = 0$, for i > k. A k-cell in E^n is the image of I^k under an embedding $f: I^k \to E^n \times 0 \subset E^{n+1}$. A k-cell D in E^{n+1} is flat in E^{n+1} if and only if there exists a homeomorphism F of E^{n+1} onto itself such that $F(D) = I^k$.

Given integers $1 \le m \le k \le n$, consider $I^k = I^{k-m} \times I^m$, $I^0 = \{0\}$, and let H'(n, k, m) denote the following statement:

Let $f: I^k \to E^n \times 0 \subset E^n \times E^1 = E^{n+1}$ be an embedding and $\eta = \{g_1, \dots, g_n\}$ $g_2, g_3, ...$ be a null collection of mutually disjoint continua such that if j is a positive integer, $g_i \subset E^n - f(I^k)$. Then for each $\varepsilon > 0$, there exists an isotopy $h_t(t \in [0,1])$ of E^{n+1} such that

- (1) $h_0 = id$.
- (2) if $t \in [0, 1]$, $h_t = \text{id outside } V^{n+1}(f(I^k) \times E^1, \varepsilon)$.
- (3) h_1 is uniformly continuous.
- (4) if $t \in [0, 1]$, h_t changes E^1 coordinates less than ε ,
- (5) if $x \in I^{k-m}$ and $w \in E^1$, then diam $h(f(x \times I^m) \times w) < \varepsilon$,
- (6) if $w \in E^1$, there exists $y_w \in I^m$ such that for each $x \in I^{k-m}$, $h_1(f(x \times I^m) \times w) \subset V^{n+1}(f(x, y_w) \times w, \varepsilon)$, and

(7) if
$$g \in \eta$$
 and $w \in E^1$, then either $h_1 | g \times w = \text{id}$ or $\dim h_1(g \times w) < \varepsilon$.

Notice that our statement H'(n, k, m) differs from Bryant's [6] statement H(n, k, m) only in that we require an additional property relative to the null collection η . Since the following discussion is analogous to that of [6], we shall include only a brief outline.

If m and p are positive integers, let A be $\{(a_1, a_2, ..., a_k) | a_i \text{ is an }$ integer, if $1 \le i < k$, $1 \le a_i \le p$, and $1 \le a_k \le 2m$. Let

$$I_a = \left[\frac{a_1-1}{p}, \frac{a_1}{p}\right] \times ... \times \left[\frac{a_{k-1}-1}{p}, \frac{a_{k-1}}{p}\right] \times \left[\frac{a_k-1}{2m}, \frac{a_k}{2m}\right].$$

Then $\{I_a | a \in A\}$ is a subdivision of I^k into rectangular cubes.

Let $f: I^k \to E^n \times 0 \subset E^n \times E^1 = E^{n+1}$ be an embedding. We shall assome through out the remainder of this section that $f(I^k)$ is flat in E^{n+1} . Thus let g be a homeomorphism of E^{n+1} onto itself such that $a \mid I^k = f$.

If $\varepsilon > 0$, let $\{P_a^{\varepsilon} | a \in A\}$ be a covering of I^k in E^{n+1} of (n+1)-cubes P_{σ}^{ε} such that

- (1) each P_a^e is a product of closed intervals.
- (2) $P^{\varepsilon} = \bigcup \{P_a^{\varepsilon} \mid a \in A\}$ is the (n+1)-cell $\operatorname{Cl}(V^{n+1}(I^k, \varepsilon))$,
- (3) $P_a^s \cap P_b^s$ is a face of each,
- (4) $P_a^s \cap I^k = I_a$, and
- (5) if $0 < \varepsilon' < \varepsilon$, then $P_{\sigma}^{\varepsilon'} \subset P_{\sigma}^{\varepsilon}$.

Let N_0 and N_0' be compact neighborhoods of $f(I^k)$ in E^n and δ_0 , δ_0' and ε_0 be positive numbers such that

$$N_0'\times [-\delta_0',\ \delta_0']\subset \operatorname{Int} g(P_0^s)\subset g(P_0^s)\subset \operatorname{Int}(N_0\times [-\delta_0,\ \delta_0])\ .$$

Let ψ be a homeomorphism of $E^{n+1} = E^n \times E^1$ onto itself that changes only E^1 coordinates such that $\psi(N_0 \times [-\delta_0, \delta_0]) = N_0 \times [0,$ 2m-1 and $\psi(N_0'\times [-\delta_0',\delta_0'])=N_0'\times [1,2m-2].$

Let $Q^{\epsilon_0} = \psi q(P^{\epsilon_0})$; if $a \in A$, $Q_a^{\epsilon_0} = \psi q(P_a^{\epsilon_0})$; if i = 1, 2, ..., m-1, let $Q_r^{\epsilon_0} = \bigcup \{Q_a^{\epsilon_0} | a_k \geqslant r\}; \text{ and for } a' \in A' = \{(a'_1, a'_2, \dots, a'_{k-1}) | 1 \leqslant a'_i \leqslant p, a'_i \text{ and } a'_i \leqslant p, a'_i \end{cases}$ integer), let $R_{a'}^{\epsilon_0}$ be $\cup \{Q_{a'}^{\epsilon_0} | a_i = a'_i \text{ for } 1 \leq i < k\}$. Let γ be max $\{\operatorname{diam}((Q_{2i}^{e_0}-Q_{2i+3}^{e_0}) \cap R_{a'}^{e_0}) \mid a' \in A' \text{ and } 0 \leqslant i \leqslant (m-2)\}, \text{ with } Q_0^{e_0} = Q^{e_0}. \text{ Let }$ η be a collection satisfying the hypothesis of H'(n, k, m).

THEOREM 6. There exist an isotopy $h_i(t \in [0,1])$ of E^{n+1} onto itself and a sequence $N_1, N_2, ..., N_m$ of compact neighborhoods of $f(I^k)$ in E^m such that $N_1 \subset N_0$ and $N_{i+1} \subset \operatorname{Int} N_i$;

$$\begin{array}{l} h_0 = \mathrm{id}, \\ h_t \mid E^{n+1} - (N_1 \times [0\,,\,2m-1]) = \mathrm{id}, \\ h_t \mid Q_{2m}^{\epsilon_0} = \mathrm{id}, \\ h_t \mid Q_{2m-2}^{\epsilon_0} \smallfrown (E^{n+1} - (N_{m-1} \times [m-2\,,\,m+1])) = \mathrm{id}, \\ \vdots \\ h_t \mid Q_4^{\epsilon_0} \smallfrown (E^{n+1} - (N_2 \times [1\,,\,2m-2])) = \mathrm{id}; \\ h_1(f(I^k) \times [m-1\,,\,m]) \subset Q_{2m-2}^{\epsilon_0}, \\ h_1(f(I^k) \times [m-2\,,\,m+1]) \subset Q_{2m-4}^{\epsilon_0}, \\ \vdots \\ h_1(f(I^k) \times [1\,,\,2m-2]) \subset Q_2^{\epsilon_0}; \end{array}$$

$$h_1(f(I^k) \times [1, 2m-2]) \subset Q_2^{\epsilon_0}$$

if $a' \in A'$, $h_t(R_a^{e_0}) = R_a^{e_0}$; and if $w \in [0, 2m-1]$ and j is a positive integer, then either $h_1 \mid g_j \times w = \mathrm{id}$ or $\mathrm{diam} \, h_1(g_j \times w) < 3\gamma$.

Proof. Let N_1 be a compact neighborhood of $f(I^k)$ in E^n such that $N_1 \subset N_0'$ and if $g_j \in \eta$ and $g_j \cap N_1 \neq \varphi$, then $\operatorname{diam} g_j < \gamma$. If $1 \leq i \leq m-1$, let X_i be $f(I^k) \times [i, 2m-1-i]$. Let ε_1 and δ_1 be positive numbers and N_1 be a compact neighborhood of $f(I^k)$ in E^n such that $\varepsilon_1 < \varepsilon_0$ and

$$N_1' \times [-\delta_1, \delta_1] \subset \operatorname{Int} g(P^{\epsilon_1}) \subset g(P^{\epsilon_1}) \subset \operatorname{Int} (N_1 \times [-\delta_0', \delta_0'])$$
.

Now adjust ψ on $\operatorname{Int} g(P^{\epsilon_0})$ so that $\psi(N_1' \times [-\delta_1, \delta_1]) = N_1' \times [1, 2m-2]$. Thus $X_1 \subset \operatorname{Int} g(P^{\epsilon_1})$, and if $g_j \in \eta$ and $g_j \cap g(P^{\epsilon_1}) \neq \varphi$, then $(\operatorname{diam} g_j) < \gamma$. Assume definitions of Q^{ϵ_1} , Q^{ϵ_1} , Q^{ϵ_1} , Q^{ϵ_1} , and $R^{\epsilon_1}_{a'}$ for $\psi g(P^{\epsilon_1})$ analogous to those defined above for $\psi g(P^{\epsilon_0})$. Notice that in each case we have

$$Q_a^{\varepsilon_1} \subset Q_a^{\varepsilon_0}, Q_r^{\varepsilon_1} \subset Q_r^{\varepsilon_0}, \quad \text{and } R_{a'}^{\varepsilon_1} \subset R_{a'}^{\varepsilon_0}.$$

There exists an isotopy $h_t^l(t \in [0, 1])$ of E^{n+1} onto itself such that $h_0^1 = \mathrm{id}$, $h_1^l(X_1) \subset \mathrm{Int} Q_2^{e_1}$, and if $t \in [0, 1]$ and $a' \in A'$, then $h_t^1 = \mathrm{id}$ on $(E^{n+1} - Q^{e_1}) \cup Q_3^{e_1}$ and $h_t^l(R_{a'}^e) = R_{a'}^{e_1}$. Notice that if $x \in E^{n+1}$, then $d(x, h_t^l(x)) < \gamma$. Thus if h_1^1 is not the identity on some $g_1 \times w$, then diam $h_1^l(g_1 \times w) < 3v$.

Let N_2 be a closed neighborhood of $f(I^k)$ in E^n such that $N_2 \subset N_1$ and if $g_j \in \eta$, $g_j \cap N_2 \neq \varphi$, and $w \in E^1$, then diam $h_1^1(g_j \times w) < \eta$. Let ϵ_2 and δ_2 be positive numbers and N_2' be a compact neighborhood of $f(I^k)$ in E^n such that $\epsilon_2 < \epsilon_1$ and

$$N_2'\times [\delta_2,\,\delta_2] \subseteq \operatorname{Int} g(P^{\epsilon_2}) \subseteq P^{\epsilon_2} \subseteq \operatorname{Int} N_2 \times [-\,\delta_1,\,\delta_1] \;.$$

Again assume ψ has been adjusted on $\operatorname{Int} g(P^{e_1})$ so that $\psi(N_2' \times [-\delta_2, \delta_2]) = N_2' \times [2, 2m-3]$, define Q^{e_2} , $Q_a^{e_2}$, $Q_r^{e_2}$, and $R_{\alpha'}^{e_2}$, and assume that Q^{e_2} has been chosen so that $h_1^1(Q^{e_2}) \subset Q_r^{e_3}$.

There exists an isotopy $h_t^2(t \in [0, 1])$ of E^{n+1} onto itself such that $h_0^2 = h_1^1, h_1^2 h_1^1(X_2) \subset Q_2^{\epsilon_3}$, and if $t \in [0, 1]$ and $a' \in A'$, then $h_t^2 = h_1^1$ on $(E^{n+1} - h_1^1(Q^{\epsilon_2})) \cup Q_5^{\epsilon_3}$ and $h_t^2(R_{\epsilon_3}^{\epsilon_3}) = R_{\epsilon_3}^{\epsilon_3}$. Notice that if $h_1^2(y) \neq h_1^1(y)$, then $d(h_1^2 h_1^1(y), h_1^1(y)) \leq \gamma$. In particular, if $g_j \in \eta$ and $w \in E^1$, then $h_1^2 = h_1^1$ on $g_j \times w$ or $\dim h_1^2 h_1^1(g_j \times w) < 3\gamma$. Thus if $g_j \in \eta$, either $h_1^2 h_1^1(g_j \times w)$ is the identity or $\dim h_1^2 h_1^1(g_j \times w) < 3\gamma$.

One continues inductively in this manner, obtaining the final isotopy $h(t \in [0, 1])$ as a composite of isotopies.

As mentioned above, the following lemmas follow as in [6]. Lemmas 5 and 6 imply that under the hypothesis of Theorem 6, Condition I is satisfied. Then Theorem 6 follows from Theorem 3.

LEMMA 5. If n and k are positive integers, $1 \le k \le n$, and $f: I^k \to E^n \times 0 \subset E^{n+1}$ is an embedding such that $f(I^k)$ is flat in E^{n+1} , then H'(n, k, 1) is true.

LEMMA 6. If n and k are positive integers, $1 \le k \le n$, then H'(n, k, 1) implies H'(n, k, k).

THEOREM 7. If G is an upper semicontinuous decomposition of E^n , G_1 is a null collection, and if $g \in G_1$, there exists a positive integer k_g such that g is a k_g -cell in E^n which is flat in E^{n+1} , then $E^n/G \times E^1$ is topologically E^{n+1} .

COROLLARY 1. If G is an upper semicontinuous decomposition of E^3 , G_1 is a null collection, and if $g \in G_1$, there is an integer $i_g \in \{1, 2, 3\}$ such that g is an i_g -cell, then $E^3/G \times E^1$ is topologically E^4 .

Proof. Cells of dimension 1, 2 or 3 in \mathbb{E}^3 are flat in \mathbb{E}^4 . See [1] and [9].

References

- J. J. Andrews and M. L. Curtis, n-space modulo an arc, Ann. of Math., 75 (1962), pp. 1-7.
- [2] S. Armentrout, Monotone decompositions of E³, Topology Seminar Wisconsin, 1965,
 Princeton University Press (1966), pp. 1-25.
- [3] R. H. Bing, Upper semicontinuous decompositions of E³, Ann. of Math., 65 (1957), pp. 363-374.
- [4] A decomposition of E³ into points and tame arcs such that the decomposition space is topologically different from E³, Ann. of Math., 65 (1957), pp. 484-500.
- [5] The cartesian product of a certain non-manifold and a line is E^4 , Ann. of Math. 70 (1959), pp. 399-412.
- [6] J. L. Bryant, Euclidean space modulo a cell, Fund, Math. 63 (1968) pp. 43-51.
- [7] J. C. Cantrell, n-frames in euclidean k-space, Proc. Amer. Math. Soc., 15 (1964), pp. 574-578.
- [8] D. S. Gillman and J. M. Martin, Countable decompositions of E³ into points and point-like arcs, Notices Amer. Math. Soc., 10 (1963), p. 74.
- [9] Unknotting 2-manifolds in 3-hyperplanes in E⁴, Duke Math. J., 33 (1966) pp. 229-245.

UNIVERSITY OF GEORGIA Athens, Georgia CENTRAL COLLEGE Pella, Iowa

Reçu par la Rédaction le 30. 5. 1968