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is paired with a unique element in Y and vice versa, so that F is a function
of X onto Y. The hypothesis of Lemma 2.9 is satisfied so that F is a homeo-
morphism. Also, since »; ¢ H implies F(x;) = f(2:), it follows that F|y = f.
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More decompositions of #" which are factors of "

by
Donald V. Meyer * (Pella, Ia)

1. Introduction. Let ¢ be a monotone upper semicontinuous decom-
position of E", @ De the collection of nondegenerate elements
of @&, and assume G is countable. We show in this paper that E"/G x B
is topologically BE™* if either (1) for each element g e @, there exists
a positive integer n, such that g is an ny-frame, or (2) G, is a null col-
lection and if g € G4, there exists a positive integer n, such that g is an
ng-cell which is flat in E™.

Bing proved [5] that the product of the dogbone space [4] and B
is B*. Thus E* has non-manifold factors. Using analogous techniques,
Andrews and Curtis [1] have shown that the product of E' and a de-
composition of B" whose only non-degenerate element is an are is ™
Gillman and Martin [8] announced an extension of the result of Andrews
and Curtis by proving case (1) above if each element of ; is an arc.
Recently Bryant [6] has shown that if D is a k-cell in E” that is flat
in B"* and @ is the decomposition of " whose only nondegenerate ele-
ment is D; then B/ x B* is topologically E"*'. For a more complete
summary of related results, the reader is referred to [2].

In Section 3 we show that if @ is countable and each element in ¢
(6" = {g x w| g e@ weB'}) that corresponds to a given element of G
can be shrunk in a certain way (condition I), then all the elements of G
can be shrunk simultaneously (condition II). Using this we show -that
if @ is countable and & satisties condition I, then E™/@ isafactor of B
The result for n,-frames referred to above is proved in Section 4 by first
showing, using technigues of Andrews and Curtis [1], that the product
of B' and a decomposition of B* whose only nondegenerate element is
a k-frame is Z™'. The result is then obtained by noticing that G satisties
condition I. The case for certain null collections of cells is shown in
Section 5 by using Bryant’s work [6] and condition L.

2. Notation and terminology. The statement that & is an upper
semi-continuous decomposition of B" means that (1) & is a collection of sub-

* Partially suppofterl by National Science Foundation, Grant GP-6866.

Fundamenta Mathematicae, T. LXVII 4


GUEST


50

D.V. Meyer

sets of E™ such thabt each point of B” belongs to one and only one
set of ¢ and (2) if g @ and U is an open set in E"™ containing g, then
there exists an open set V in &® such that gCV, VC U, and V is the
union of elements of @. G is monotone if and only if each element of @
is a compact continuum.

If ¢ is a monotone upper semicontinuous decomposition of K",
E"@ denotes the associated decomposition space, P the projection map
of E" onto E"/d, G the set of nondegenerate elements of @, and G the
union of the elements of G;. We shall identify E" and " x 0, thus " C E"*,
If gCE" and &> 0, let V(g, ¢) denote the e-neighborhood of g in B,
the superseript emphasizing that the space in which the neighborhood
is being defined is E".

If @ is a monotone upper semicontinuous decomposition of E",
let G" be {gxw| g e and w e F'}. Then G is an upper semicontinuous
decomposition of B™** and B¢ is topologieally equivalent to E™/@ x E'.
Thus, to show that BYGx B is topologically equivalent to B, it
sutfices to show that B*Y /@ is topologically E"*. We will think of B
as B" x B', and the B coordinate will be referred to as the w- coordinate.

If 4 is a set, Int.A denotes the interior of 4, and & or ClA denotes
the closure of 4. We denote the usual metric for ™ by d. A collection 7
of subsets of B" is a null collection if for each positive number & there
exists, at most, a finite number of sets of 5 of diameter more than e.

3. Conditions I and IL Let & be a monotone upper semi-continu-
ous decomposition of E", and consider the following two conditions.
The identity map is denoted by id.

ConpIrioN L. If e > 0 and g e Gy, there exists an isofopy ul(t €[0,1])
of B onto itself such that

(0) if we B, diamul(g x w) < s,

1) 45 =1id,

(2) if $e[0,1], uf =id on (B"-Vy,

(3) if ¢’ € @ and w ¢ B, then either

&) x B',

diamp(g' xw) <e,  or g xw)CV" ™y xw, ),

(4) ,u‘f is uniformly continuous,
3) if 1€ [0, 1], u moves no w-coordinate by as much as e.
CO’\IDITIOT\‘ IL. If e> 0 and U 4s an open subset of B® containing G,
then there emists an isotopy f; (1 €[0,11) of EB"™ onto itself such that
(@) fo=
(i) 4f te[O, 1, fi=1d on (B"—U)yx B,
(i) if g€ G and w e B, then diamfi(g xw) < &,

icm
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(iv) fu 45 uniformly continwous,

(v) if te[0,1], f;-moves no w-coordinate by as much as e.

Notice that Condition I states that for each element of @; a certain
type of function exists, where as Condition II allows one to attack
all of Gy.

THEOREM 1. Suppose @ is a monotone upper semicontinuous decompo-
sition of B such that Gy is countable. If G satisfies Condition I, then @
satisfies Condition I1I.

Proof. Let ¢ be a positive number, U an open set in E" containing 6%,
and agsume each component of U is bounded. We will work with each
component D of U which containg elements of & with diameter as much
as & and get an isotopy f¥ (¢ € [0,1]) of B™" onto itself such that fF = id
on (B"-D)xF, if je@, gCD, and we B, then diamfi(gxw)< s
and 7 satisties properties i, iv, and v of Condition II. Since each bounded
subset of E"™ intersects only a finite number of such components, f; will
be taken to be the composite of the isotopies fP.

Thuy let D be a component of U and gy, g5, ¢s, ... De the elements
of G, which are contained in D. We will construct a sequence of isotopies
1, ft, fiy ... of B*™ onto itselt and a sequence U, Uy, U,,.. of open
sets in E" such that

(a) it 7 is a positive integer and w e B,

diamfi(gs x w) < ¢,
(U ) CU:C U CD and fi=fit' =

i<i

(c) if weB* and ¢ and j are positive integers, then

42 1
= .. on U;x B,

diamfig; » w) < diamfi™(g; x w) + /27,

d) ff=id outside D x B,
(e) f% is uniformly. continuous,
) ff moves no w coordinate by as much ag £.
Then, ag in the proof of Theorem 3 of [3], it will follow that there
exists a positive integer N such that if j iy a positive integer and w is
a real number, then dlamfl gi X w) < e. We will tale fg to be f

Brep 1. Let fi be the identity and U,= ¢. It follows from Con-
dition T that there exist§ an isotopy fi of E™ onto itself such that

(1a) if w e BY, diamjfi(g, x w) < &/2°,
(1b) fs =

(1e) if we®* and j is a positive integer, then

g (612

)

diamfi(g; x w) < diamfi(g; x w) +
4*
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aa) fi=id outsuie Dx B,
(1e) fi is uniformly continuous,

(1) f moves no w coordinate by as much as 52",

Let U, be an open set in E" such that g, C Uy CD, and if g « G and
g~ U, # ¢, then for each w in B, diam fi(g x w) < & To see that such
an open set U, exists, notice that f1 is uniformly continuous. Therefore
there exists & positive number ¢ such that if d(py, ps) < 4, then cl(f1 (p4),
Fis) )) < &/4. By upper semicontinuity, there is an open set U, in B"
such that g, CU;C D, and if ge G and g~ U, # ¢, then g C Vg, 9).
Then if geG, grn Ui # ¢, weB', pre(gxw), and p,e(gxw), there
exist points ¢, and ¢, of g Xw such that d(p:, &) <6 and d(p,, ) < 6.
Then

d(ﬁ(]?l);fi(l’z) (f1101 fl !l1)‘l"d(flql fIQ2)|"d(fl

< edtefdtefd<e.

Stue 2. If g, ~ Uy # ¢, let fi be fi and U, be_ an open set in B such
thait UlugZC U,CD, and if ge@, weF, and g~ U, s£¢ then
dialnf1 gXw) < e

It g, ~ U, = g, let ¥, be an open set in " such that g, CV, CD, and
if ge@ and g~ U, # @, then g~ Vi=¢.

Since fi is uniformly continuous, there exists & positive number J;
less than £/2° such that if § C E"** and diam§ < &y, then diamfi(8) < &/2*.

Let i be an isotopy of E"** onto itself such that

(2a)" it w e B, diamhi(g, X w) < 8y,

(2b) Bg = id,

(2¢)’ if j is a positive integer and w ¢ B', then

CV™ ™ gs xw, 8))

Fi(p)

either diamhi(g; X w) < &, or hi(g; X w)

=id outside V,x B,
is uniformly eontinuous, -and

(2d)" %

(2e)" B2

“(2t) B moves no w coordinate as much as d;.

Let fi=fihi and U, be U;wV;. Then we have

(2a) if w e B, diamfi(g. X w) < e/2 <&,

(2b) fi=ft on U, xE',

(2¢) if weB* and j is a positive integer, then
diamfi{(g; X w) <

(2d) fi =id outside .D x B,

(2e) f3 is uniformly continuous, and

(2f). 7 moves no w-coordinate by more than s2°+ £/2°.

diamyfi{g; X w) + (¢f2"),

icm®
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Tt is clear that one can continue inductively, thereby obtaining the
sequences f%,fi,fi, .. of isotopies and Uy, U, U,... of open sets in E"
having properties (a)-(f).

We now show that there exists a posmve integer NV such that if j is
a positive integer and w e B, then dlamfl g; X w) < e. For suppose that
this statement is false. Then for each positive integer 4, there exists
a positive integer #; and a real number w; such that diamfi(ga, ¥ we) = &
Without loss of generality we may assume that {g,} converges to a com-
paet subset B of D. Since G is an upper semicontinuous collection, there
exists an element g, of G such that BCg,. We show that g, is neither
degenerate nor nondegenerate.
Notice that if 4 and § are positive integers and w ¢ B, then .

diamfi(g; x w) < /27 + diamfi~Y(g; x w)
< ¢/2™ 4 gf2° ..+ &[2° 4 diamfi(g; X w)
< g/24 diam (g7 X w) .
Thus
& < QHamf(gn, X i) < &f2+ diam (gn, X w;) =&/2 + diam g,

Therefore &/2 < diamgy,, g, is not degenerate, and there exists a posi-
tive integer k such that g, = gx.

Now there exists a nelghboﬂlood O of g in Uy such that if g ¢ @,
gCO, and we B, then diam g < w) < e Therefore, if ¢ is & posmve
integer greater th’m %y gn, @ O Dbecause Aiamfi(gn, X ws) > & and fi=
on 0. But then {g,} does not converge to B, a contradiction. Our claim
is established. We let f£ be fY¥ and f; be the composite of the 12

LeMMA 1. Suppose that G satisfies the hypothesis of Theorem 1, > 0y
U 4s an open set in E™ containing G¥, and f; is an isolopy satisfying con-
dition 1T relative to U and e. There emsts an open set V in B™ and a positive
number y -such that

(1) B CV C U and each component of P(V
(relative to the 'metric of E"|Q), and ]

(2) if u is a component of V and 0 < (b—a) <<y, then

) is of ddameter less than e

diamf(w x [, b]) < 2¢.

Proof. Since f, satisfies condition II, f; is uniformly continuous.
Thus there exists a positive number y < ¢f4 such that if # and y belong
to B and d(z, y) <y, then d(fi(#), fi(y)) < ¢/4. It follows that if ge &

and 0 < (b—a) <y, then

diam f(V™g, y) % [a; b]) < 2e.

Sinee @ is countable, there exists an open seb V in E" such that
¥ CV C U, each component of P(V) is of diameter less than e (relative
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to the metric of E"/@), and if « is a component of V, there is an element
gu of Gy such that % C V™(gy, y). The lemma follows.

THEOREM 2. Suppose G is a monotone upper semicontinuous de-
composition of H* such that Gy is countable and G satisfies condition IT.
There ewists a pseudo isotopy f(z,1) (@ e B te[0,1]) of B™™ onto dtself
such that

1) f(m7 0) ==,
@) if 0 <<t<l, flw,1) is a homeomorphism of E™™ onto dtself, and

(3) f(w, 1) takes E™* onto ilself and each clement of & onto & distinct
point. '

Proof. For each positive integer i, let & = 1/2i. There exists an
isotopy f(#,1) (v e B0 <t<1/2) such that f(z,1/2) is uniformly
continuous, f(z, 0)=#, if ge @ and w e B, diamf(gxw, 1/2) < ¢, and

B xw, 1)2) C B X [w—er, we]. '

By Lemma 1, there exists an open set V5 and a positive number y,
such that GF CV,, each component of P(V,) is of diameter less than 81-
and if « is & component of ¥, and 0 << (b— a) < y,, then diamf(u < [a, b]’
1/2) < 2¢. ’

Let 8, be a positive number such that if § C E*' and diam8 < 4,,
then diamf(8,1/2) < &,. It follows, by condition II, that there exis’gs
anisotopy h(w, 1) (v ¢ B, 1/2 <t < 2/3) such that h(w, 1/2) = =, h(z, 2/3)
is- uniformly continuous, h(#, ) = @ on (E"—V,) x B, if g ¢ G and w < B,
diam (g xw, 2/3) < §,, and h(w,?) moves no point in the w direction
more than min{y,/2, &}. ‘ .

If 1/2 <t <23, let flz,1)=f(h(x,1),1/2). Then f(x,2/3) is uni-
formly continuous.

(1) if ¢V, xF* and 1/2 <t<2/3, f(z,1) = f(z, 1/2),
and : :

(2) if ge@ and w e B, dlamf(g X w, 2/3) < &. .

(8) If w is a component of V,, 1/2<t<2/3, and w T, then
h(uXw, 1) Cu x[w—yp,yf2, w+p,[2] and diamf(w X [w— 9,2, w-+ y.,/z’] 1/2)
< 2¢;. Thus no point moves more than 2, during f(x, ) (1/2 <‘t €,2/3).

(#) Tt w e B, f(E" xw, 2/3) C f{B" X [10— &, w+£5], 1/2).

Continuing inductively, we define f(z,?) (({—1)}i << i/(i+1)) as
foPows. There exists an open set V; and a positive number y; such that
.Gl Cc I_’,- CV;1, each component of P(V;) is of diameter less than e;, and
lf- %3 a component of ¥y and 0< (b—a) < y;, then diamjf(u x [a,b],
(’{—1)/:0) < 2&;_;. Let & be a positive number such that if §C B ;.nd
dla.rf:uS < ¢, then dia.mf(S, (i—l)/i) < &. By condition II, there exists
an, isotopy h(w, ){w e B, (i—1)}i <t <if(i+1)) such that h(e, (i—1)/%)
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— w, 1, 9j(i-+1)) is uniformly continuous, h(z,?) =& on (B"—T74)x B,
it ge@ and w < B, diamh(g X w, if(4+1)} < &, and h(z,1) moves no
point in the w direction more than min {ys2, &}.

I (-Lfi<t<ifE+1), let  flz,1)=f(h(z,1), (i—1)}i). Then
fle, i/(i41)) is wniformly continuous,

Q) if 2 ¢ Vex B and  (I-1)i <t <iJ(i+1), flz, ) = flz, (i—1)}i),

(@) if ge@ and we B, diamf(gxw, (i 41)) < &,

(3) no point moves more than 2e; during flw, {(E-1)i <1
< ij(i+1)), and .

(1) if we B, FB" xw, if(i+1)) Cf(E" x [w— e, wted, (i—1)}5) .

We now have conditions satisfied which are analogous to conditions
(1)-(4) in the proof of Theorem 3 of [5], and the proof ean be completed
nsing a similar argument.

Since B"@ and B x B are topologically equivalent, the following
theovem is an immediate consequence of Theorems 1 and 2.

THEOREM 3. Suppose G is @ monolone upper SEMicontinuous decompo-
sition of E", Gy is countable, and G satisfies condition T. Then BYG < T
is topologically ™.

4. Decomposition into frames. In this section it is shown in The-
ovem 4 that the product of E* and a decomposition of E" whose only
nondegenerate element is a k-frame is E"*. Theorem 5 follows by noticing
that the shrinking which took place in the proof of Theorem 4 can be
done without stretching certain sets a great deal. Thus condition I is
satisfied and we can apply Theorem 3. Much of this section is completely
analogous to parts of [1], thus we will be omitting many of the details.

Tet & be a positive integer. A k-frame ax is the union of % arcs Ay,
A,, ..., and Ay, with a distinguished point p such that 1) if k=1, p is
an end point of Ay, and 2)if k>1, p is an end point of each A4; and if
i#j, Ain A;=p. If i is a positive imteger, 1 < i<k let B; be the
are in B with polar coordinates 0 <7 <1, 0= (2n/k)i. The standard
k-frame 1, is (f B,. A k-frame ay in I is tame in E" if there is & homeo-

=1

morphism of E* onto itself which carries o onto fi.
LEMMA 2. If ag is @ k-frame in B, then there exists a homeomorphism @
of B™* onto itself such that $(fx) = k.

k
Proof. If, as in the notation above, ax = | 4j, it follows from
=1

iz
_Lemnm 1 of [1] that each A; is tame in B**'. Then by Theorem 1 of {71,
ap is tame in B Thus the desired homeomorphism & exists.
Construction of neighborhoods of as. Assuming the mo-
tation of Lemma 2, we begin constructing certain neighborhoods of ax
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by first describing nice neighborhoods of fi. These neighborhoods of i
will be the union of a collection of (n-1)-cells as suggested in Figure 1
below. The homeomorphism @ will map these neighborhoods onto neigh-
borhoods (in E™?) of a.

£

If 4,4, and s are integers such that 1 < ¢ <k, j = 4, and 1 < 8 << (5 —2),
let &= (j+2)[j(j—1), 8;= (&s~1[j)sin(=/2F),

P = (VX(Bi, ) ~ {(r, O)] (f—s—1)es— (1)) <7 < (J—8) &5~ (1]}
x[= 85, 67",
and

P =70, 0), e5—1/j) x [— 85, 6, .

Notice that Pi7'= Pl Let Py= | {Pj:| 1<i<k, 1<s<(j—1)}
Qi=D(Py), Qii=0(Pis), Ri=1T"nQ; Rii=E"n~@Qj; C;j={Pi
M<i<h 1<s<(§-1)}, Di= {074 1<i<h, 1<s<(j—1)}, and By
=RiJ1<i<k,1<s<(j—1)

‘We will want these neighborhoods to have properties analogous
to properties (i)-(iii) of [1] in order to allow us to build the appropriate
(n-+1)-cells. Reecall that the construction of certain (n-41)-cells was
accomplished in [1] by a push in the direction of the (n--1)-st axis. In
particular, we can choose a subsequence {C;} of the C; such thatb

(1) for each 4 and each d e Dy, (diamd) < 1/,
(ii) for each ¢ and each element d of D;y,, there exist two adjacent
elements e, and ¢, of E; such that dC (¢, v &) x B, and

(ii) for each i and each element e of Xy,

a) there is an element d of D;i; such that d C ex B*, and

4 b) if {el.’ 3y ..., 6= 6y i3 a chain of elements of E; from one
of the noncut points p of ax to ¢, and {d;, d,, ..., d, = d} is the chain of

elements of Dy, from p to d, then ( ) d;)C ( ) o) x 2.
=1

=1 1

- ©
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Now let T;= Rs;. Then {T;} will e the sequence of neighborhoods
of a for which we can construct isotopies and apply Theorem 1 of [1].

Building certain (n+41)-cells. We now have hypothesis and
notation satisfied so that Theorem 2 and Corollary 1 of [1] follow. Note
also that if s is a positive integer, ¢ > 0, & < b, and F is the (n4-1)-cell
such that

(Teyr X [a, b)) CEC Ty xla—e, b4e],
then condition (iii) above implies that if 4 and j are positive integers such
that 1<j<k, L<i<(28—1), there exists two (n+1)-cells U, and
U, such that Uy~ U,=DBadU;~BdU, is an a-cell, T, v U,=E,
i i—1
U,C () Bhay) x B, and U, C (Ts— ) Bloy) x B
g=1 q=1

LemvA 3. Let Ty e {T;}. There exists an isotopy w (t €[0, 1) of B™
onto dtself such that (1) ug=1id, (2) g is uwniformly conlinuous, (3) m=1id
outside Ty x B*, and (4) if w e T", there ewist four elements ey, ey, €5, and ¢,

4 4
of Fos such that | J e; is connected and s Tsagesny X W) C (U &) %
=1

i
% [w—3 (25 —1) &, w43 (25 —1) .

Proof. In an effort to make things casier to follow, we shall go
through the proof in defail for the case k=3, Le., a i8 a 3-frame or
{riod. The general case can be proved in a completely analogous faghion.

Recall that T, = Ra. Let m be (2s—1). Our isotopy is built using
the techniques of [1] and [5], and differs only in the sense that we fivst
attempt to push everything in towards Riz.x E' by the map h. We
then adjust » to push things to “small size” in the sets on which % was
tixed. It follows from Lemma 2 of [1] that our final map can be assumed
to be an isotopy.

StEp 1. Pushing in various levels of 4, xmw. There exists
a sequence of (n-+1)-cells Ky, Ipo, ..., and Ky m-1 such that

Ty %[0, 9m] D Ky D Int Ky D Ty X [1, 9m—1]
DKy D IntKipD Toga x[2, 9m—2] "
D Kym-1 D Int Ky D Tspim—ny X [m—1, 9m— (m~—1)].

There exists a homeomorphism hy, of F*x[0,9m] onto itself such
that hy,=id outside Ky, hia=id on {Ts— (Risn v Risn)) x [0,9m], and
(s ~ (Bhox o Bhs)) x[1, 9m—1]) C Bao x [0, 9] -

Notice that hy, may streteh Iy = (Tsy1 (Ris1 v Bosn)) x ([0, 1] v
w[9m—1,9m]) into (Rae v R%.) x[0,9m], but future hyy's,1 <4
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< (m—1), will leave hyi(L,) fixed. Algo, if 1 <4 < (m—1), hy,; will leave
(Ts41— (Rasx v Ris)) X ([0, 1] w [9m—1, 9m]) fixed. :

Suppose 1 <i< (m—1), and hyi, M1, ..., and hy ;¢ have heen
chosen. There exigts a lomeomorphism %, of H" x[0, 9m)] onto itselt
such tha,’ﬁ hyg=1id outside Ay s1higs i B (Kyg)y hys=1d on

(Ts— U Ricq) ) x [0, 9m], and
i+l I ) .
Raghaims oo B (T o (U Rh)) X0, 9m—i]) C REE x [i—1, 9m—i+1].
=1

41 .
Again, huihy oy oo ly may streteh Ly = (Topp ~ ( U Riy)) x ([i—1,4) v

[9m—i, 9m—i+1]) into (Riq v RED %[0, 9m], but foture 7y,;'s leave
ha,iha it oo Bao(L;) fixed.

Continuing, we obtain the composite hym—1him-z ... k11 We extend
this composite map vertically obtaining the homeomorphism %, of B" x B
onto itself. That is, if g e #" x B, let ¢, be the B coordinate of g and ¢
be the 7' coordinate of ¢. Then if (a, b) ¢ B"x [0, 9m] and # is an integer,
let Ty(a, b+r9m) = (hrm-slim—sz o P11(@, By Bim—1bames o Baal@, b), +
+79m). Ry copies him—iHim—z ... b1 on each block B x [r 9m, (r--1)9m].

SteEp 2. Pushing in various levels of A4,xw. There exist
(n+1)-cells Koy, Kooy ...y and Ksypy such that

Tex[83m, 12m] D Koy D Int Koy O Toyy X [3m 41, 12m—1]D ...
D Ko D Int K o1 O Tspn—ny X [Bm+(m —1), 12m — (m—~1)] .
Now, relative to the cells K,; and the chain elements Ri;», define the
funetions hs,; in a completely analogous way as we did Ay;. That is,

if 1<i<(m—1) and foy, hogy ..., and hs ;. have been chosen, let he;
be a homeomorphism of E"x[3m,12m] onto 1tse1f such that he;=id

outside ha i1 b i-n ... hg_,l(K i)y by =1d on (Ts— U Ris) % [3m, 12m],and

i+l
[ P 712.1((1’3 A (U Blp) x [3m+41, 12m—72])
i=1
C REIX [3m4-(i—1), 12m— (i —1)].

‘We thus obtain the composite map hom—1hem—s ... hey which is
a homeomorphism of E"x[3m,12m] onto itself. Extend this homeo-
morphism vertically obtaining the homeomorphism %, of E™xE' onto
itself. .

Step 3. Pushing in various levels of A,xw. There exists
% sequence Ky, Kye, ..., and Kgm-; of (n-1)-cells such that

More decompositions of E™ i9
T, % [6m, 1)71)]3 Ky DInt Ky D Toiq 2 [6m—+1, L3m—1]1D ..
D Kgm—1 2 Int Ky o1 D Topn—1y X [6m+ (m—1), 1bm — (m—1)] .

Now, relative to the cells Kj; and the chain elements R§3,3, define
the functions hey on E™ x [6m, 15m], and extend the composite vertically
obtaining the homeomorphism hy of E"x E' onto ifself.

Let % be the composite h h,hy. Let

= G ([30)70' — (m—1), 3mj 4 (m—1)]w [—3mj — (1m—1),—3mj+ (mwl)]) .

Notice that if w e B*—W, h(ax xw) is already “small” in the sense that
3 -
B(apx w) C (Bags v (1) E’;}‘)) % [w—9m, w--9m]. However, for weW,
j=1
we can not make Su(y)h a statement. In particular, h(ax x 0) may be very
1 i
“long” as h iy fixed on (ak A (mU Rgs,l)] % 0. It remains to adjust & on
i=1
parts of BV x W .
StEp 4. Adjusting A on ecomponents of TyxW. We shall
describe how to adjust h on the subset Ts X [9m— (m—1), 9m 4 (m—1)]
of ToxW.

There exists a sequence Ky, Kimy1, ..., and Kigm-5 of (n41)-
cells such that
(Mt K1 ~ In6 K2 1) D Tsigmo1) X [9m — (m—3), 9m 4 (m—3)]
DK DInb Ky D Topm X [9mM—(m—4), Im+ (m—~4)]D ...
D Kian-s D Int Kygn-s3 D Topem—s % [9m—1, 9m 1] .
There exists a homeomorphism Ty, of h(T8 x [9m— (m—1), 9m+

+('m—1)]) onto itself such that k. = id outside h(Kym), hum = id on
h({ A U Risp)) * [9m-(m—1), 9m—|—(m«1)]), and

hl,mh((TsM, A~ (T~ U Rlyp)) < [9m—(m—4), 9m+(m~~l)])‘

C Rzt x [9m— (m-—3), 9m+(m—3)].

I m<m+ti<2m—5 and hym, bymry oy 804 Rimpia have been
defined, let hy,.¢ De a homeomorphism of h(T,, % [9m— (m—1), 9m+
+km—~1)]} onto itself such that hym: = id outside hymii-1 .- Tn,m b (Kaa)s,
hymes=1id on

Rumics oor T (T uRm) [9m—(m—1), 9m+(m~1)]),
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and .
m—i—2 .
hl,m+ih1,m+i‘1 7)‘1,mh((Ts+m+i A (Ts— U R;s,l))}
i=1

X[9m— (m—i—4), 9m+ (m—i—4)])
C RETH X [9m—(m—i—3),9m+(m—i—3)],

The new map hiom—s ... lamh is the adjusted h on the subset T x
¥ [9m—(m—1), 9m+ (m—~1)] of TsxW. Now for each component @
of W, adjust 7 on T, x @ in a similar way, and let u; Dbe the resulting
homeomorphism. Since p; can be assumed to be the final stage of fhil
isotopy w: such that u, = id, and g satisfies the conclusion of Lemma 3
this establishes the lemma for the special case & = 3. The general caJsé
follows in much the same way; there are simply more “directions’ in
which one must push after pushing “almost everything” towards Ri,; X E'.

28,
TreoREM 4. Suppose @ is a decomposition of E" whose only mon-
degenerate element is a k-frame. Then E"|Gx E" is topologically B™'',

Proof. This follows as in Corollary 4 and Theorem 1 of [1].

The following lemma is a technical lemma pointing out what happens
to certain subsets of E"™" under the homeomorphism h, described in
the proof of Lemma 3. Analogous considerations for the maps of which
the final g, is the composite point out why we can require G to satisly
Gonditiox; I in the case when G satisfies the hypothesis of Theorem 5.

Continue to assume the above notation. If ¢ iy an integer, 0 <i < m
let Ny be Toyp x4, 9m—4]. ’

Levyma 4. If 0<<i+2 < m and Q C(N;—Nyy,), then
i+ e pom SR
7y(@) C ((Bis w Rasz) x [0, 9m]) w (@ ~ (75 U Ris) % [0, 9m])).
J=1

Proof. Nys= Tyrio X[i42,9—(i+2)]C K12, and each of
Ifll,,,-ﬂ, hiivsy ooy B0A Ry is the identity outside hiir ... hoa(H1,iv0)-
Since @ ~ Nyyo = ¢, it follows that k| @ = hysp1ba,i ... gl Q-

Let ,

@ = (T ~ ([ B x 05, 0m 1)
and
Q" =Q A ((Tsrs— ;CJ: RL) % [i, 9m—1i]) .

hisiihyi . Ina| Q7 =id. Thus we need only " check the result. of
hyierhyi o By on Q' .

icm®
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i . ' . ite
Tu,iv1 = 10 outside B,ihaieg oo Poa(Ee)y Rivr=id on (Ts— |J Rasq)

« [0, 9m], and K141 C Ny Therefore -

T
s

[ 71,1,1((1’3“- ~ (1. Rgs,l)) x[1, 9m— i])
7

{
A

re . .
=hyi e Pig ((Ts+i ~ Ulliis,l)) x[i, 9m— ’L'v])C (R © RIED) x 10, 9m].
j= .

Thus (@) = h(Q' « @) C (B v R [0, 9m]) v @”. This esta-
plishes the lemma.

We remark here that if & is a positive number, ¢ is connected, and
the diameter of the set (R U Ri7)x[0,9m] is less than e then in
addition to the conclusion of Lemma 4 we would have that either
diamh, (@) < & or hy(@) CV"™Q,¢), depending upon whether Q" = ¢
or Q" # ¢.

THEOREM b. Suppose G is a monolone upper semacontinuous decompo-
sition of B, Gy is countadle, and if ¢ € G, there exists & positive integer k,
such that g is a ky-frame. Then B'|G x B' is topologically B

Proof. We wish to show that G satisties condition I. The result
will then follow from Theorem 3. Thus let ¢ > 0 and g e G;. There exists
a positive integer & such that ¢ is & I-frame az. -

Now let {7} be the gequence of neighborhoods constructed above
with the additional property (iv) that if ¢' < & and g~ Tiy1 # ¢, then
¢’ C T;. That this property can he assumed follows from the fact that &
is an upper semicontinuous collection.

There exists a positive integer s such that TsC V*ag, &), and if ¢
and § are integers such that 1<i<k, 1 < j < 2s—1, then (diam Riss)
< (g/8). In addition, assume the w-seale has been adjusted so that
diam[0, 3%km] < &/8. Then the isotopy u of Lemma 3 has properties (0)—
(8) of Condition I.

To see that property (3) of Condition I is satisfied, let g' € G such
that ¢' ~ Teyy # @, and let w [0, 3km]. Then by property (iv) above,
there exists a positive integer n such that ¢ C (Toswn—Tsrnta)

It follows that either g¢'x0 C Topm—sx[m—1, 3km—(m~1)], or
there exists a positive infeger j such that 0 < j < (m—1) and ¢ xw
C(Tors X[, 8Tm—i1) — (Towrsre X [+2, Skm—(J+ 2)]). Then Lemma 4
indlicates what happens to ¢’ x w under the function Ty, which would be
the first funetion of which the g, of Lemma 3 iy the composite.

Similax considerations for g e G, w « B, and the functions of which uy
is the composite can be given to show that either wly’ ¥ w) CV* g xw, &)
or -diam g (g’ X w) < &

An alternative way of describing the image of g xw under p is

the following. Leb 0; be {u(p)lp ¢’ X, m(p) #p} and Oy be {u(p)p
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eg’ Xw;y m(p) = p}. Then gy xw)= 0; v 0,. By considerations similar
to those of Lemma 4, it can be shown that t}}e compouents of O; have
small diameter, Thus, if 0, # ¢, (g’ < w) CT* (g X w, &), and if 0, =

?
diam (9" X w) < e. This completes the proof of Theorem 5.

5. The case for certain null collections of cells. In this section we
show that if @ is & monotqne npper semicontinuous decomposition of B",
G, i3 & null collection, and if ¢ € G;, there exists a positive integer k, such
that g is a k,- cell in B" which is flat in B"*", then B"/¢ x B'is topologically
I, The proof consists of noticing that with a slight adjustment of
Bryant’s techniques of proof in [6], we are able to show that G satisfies
Condition. I. Our result then follows from Theorem 3.

Lot I = {(@, @y, .., turr) e B"| 0 <y <1, for 1<i<h and
@y =0, for i > k}. A k-cell in B" is the image of I” under an embedding
i I*E'x 0 CE™. A k-cell D in B is flat in B if and only if
there exists a homeomorphism ¥ of E"* onto itself such that F(D) = I*,

Given integers 1 < m < k < n, consider I" — 1°"" x [™ 1° — {0}, and
let H'(n, &k, m) denote the following statement:

Let f: I">B"x0C B x B'= E"" be an embedding and y — {0,
23 35 .} be a null collection of mutually disjoint continua sueh that
if § is a positive integer, g; C E"— f(I"). Then for each & > 0, there exists
an isotopy hy(te[0,1]) of B""" such that

(1) ko= id,
2) it t[0,1], iy =id outside V" (F(1*) x B, 4 ,
3) Ty is uniformly continuous,
4) if te[0,1], by changes B' coordinates less than g,
5) if 2 eI"™ and w e B, then diam R (f(2 x I"™) x w) < &,
6) if w e B, there exists y,ecI™ such that for each e I,

ha(f(2 % I™) x w) C V"™ f (@, y) x w, g, and
(7) if g en and w ¢ B', then either h,| ¢xw = id or
. diamhy (g X w) << ¢, '

Notice that our statement H'(n, %, m) differs from: Bryant’s [6]
statement H(n, &, m) only in that we require an additional property
relative to the null collection 7. Since the following discussion is analogous
to that of [6], we shall include only a Dbrief outline. )

It s and p are positive integers, let 4 be {(ay, ay, ..., ap)] a; is an
integer, f 1<i<h, 1<ai<p, and 1 < az < 2m}. Let ’

a—1 a Ag-1—1 g ar—1 a
Ip=|2t—= 2w .. k-1 Gr—1 k A |
S [10 ’p]% X[ ' Sm '%m

(
{
(
(
(

» P

Then {I,} a e A} is a subdivision of I* into rectangular cubes.
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Let f: TF+B"x 0C B x B' = B*™ be an embedding. We shall as-
sume through out the remainder of this section that f(I¥) is flat
in B*'. Thus let ¢ be a homeomorphism of E"™* onto itself such
that ¢| I* = f. T

If e> 0, let {Pg| a e A} be a covering of I" in B of (n-+1)-cubes
P; such that

(1) each Pg is a product of closed intervals.

(2) P*=\J {Pa| aed} is the (n+1)-cell CUI(I", &),
(3) Por Py is a face of each,

() Po~I=1,, and

(5) if 0 < &' < ¢, then P%C P,

Let N, and N§ be compact neighborhoods of f(Ik) in B and &, 6
and ¢ be positive numbers such that .

Ng X [—8g, 65] C Intg(P5) C g (Pg) C Inb(No x [—do, do]) -

Let v be a homeomorphism of E*™' = E"xE' onto itself that
changes only E' coordinates such that w(N,Xx[—0dy, 6]) = Nyx[0,
2m—1] and p(Ng % [—dg, d]) = Ny x [1, 2m—2].

Let @ =wyg(P*); if aed, Q@ =12pg(Pg); if i=1,2,..,m—1, let

D= J{@% ax = r};and for ¢’ e A’ = {{a1, ¢35, ..., 011)] L << @7 < P, af an
integer}, let Rg be v {Q2| as=a; for 1<i<k} .Let 4 besqmax
{diam (@33 —@54s) ~ Rf{')\ o ed” and 0< ‘L < (m—2)}, with @’ = Q. Let
1 be a collection satisfying the hypothesis of H'(n, k, m).

THEOREM 6. There ewist an isotopy It <[0,1]) of B onto itsel;jL
and a sequence Ny, N,, ..., Nu of compact neighborhoods of f(I°) in B
such that Ny C N, and Ny CInt Ny

ho = id,

he| BT — (N, %[0, 2m—1]) = id,

he| Qo = id,

hel Qfu—p ~ (B Ny % [m—2, m-1])) = id,

| QF ~ (B — (N, % [1, 2m—2])) = id;
B(f(T%) < [m—1, m]) C @8z,
hy(f(I*) % [m—2, m+1]) C Qn-s,

Iy(f(I¥) x [1, 2m~2]) C Q5
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if a"e A’y hi(Ry) = Rigs amd if w e [0, 2m—1] and j is a positive miteger,
then either hy] g; xw = id or diamh(g; X w) < 3y.

Proof. Let N; be a compact neighborhood of f(I") in B" such that
N, C Ng and if g;en and g5 ~ Ny # o, then diamg; < y. If 1 <i < m—1,
let X; be f(I%) x.[4, 2m—1 —4]. Let & and &, be positive numbers and N,
be a compact neighborhood of f(Ik') in B" such that & < & and

Ni xX[—6;, 6;]1C Intg(P*).C g(P™) CInt (N, x[—8, 1) .

Now adjust p on Intg(P*) so that y(Nix[—0dy, &) = N{x[1, 2m-2],
Thus X, C Intg(P?), and if g;en and g; ~ g(P™) # ¢, then (diamgy) < y.
Assume definitions of @7, QF, @, and Rg for yg(P™) analogous to those
defined above for g (P*). Notice that in each case we have

2 COL QI CQr, and R}CRy.

There exists an isotopy k(¢ €[0,1]) of B"™™ onto itself such that
o =id, hX,) CInt@QF, and if ¢e[0,1] and o < A’, then A} =id on
(B™—@") Q3 and hi(R%) = Ri. Notice that it # ¢ B"*, then d(z, k()
<. Thus if 71 is not the identity on some g; x w, then diamA}(g; x w) < 3y.

Let W, be a closed neighborhood of f(I*) in E" such that N,C N
and if gyem, g5 N, # @, and w e B, then diamhi(g;xw) < Leb .
and d, be positive numbers and N; be a compact neighborhood of f(I”)
in B* such that &< ¢ and . '

N % [8y, 8, C Tntg (P**) C P* C Int N, % [— 6y, 8,] -

Again assume p has been adjusted on Intg(P™) so that yp(Nsx[— 8y, ])
= N:X[2,2m~3], define %, 02, @7, and R, and assume that Q% has
been chosen so that Q%) C Q%

There exists an isotopy hi(t [0, 1]) of E™*' onto itself such that
Bo = i, BiAN(X,) CQF, and if #¢[0,1] and o e A’, then hf=h} on
(B™ —hi(Q™) © @5 and hi(R%) = R%. Notice that if hi(y) s hi(y), then
ahiy), y)) <y. In particular, if gjey and weB', then k= k!
on g;xXw or diambili(g; X w) < 3y. Thus if gyevn, either hZhY| g5 w is
the’ identity or diamhihi(g; x w) < 3.

One: continues inductively in. this manner, obtaining the final iso-
topy Rt €[0,1]) as a composite of igotopies.

As mentioped above, the following lemmas follow as in [6]. Lemmas 3
and 6 imply that under the hypothesis of Theorem 6, Condition I is sabis-
fied. Then Theorem 6 follows from Theorem 3.

LEMyMA 5. If n and k are positive integers, 1 < k< n, and f: I*>E"
X 0 CE"™ 4s an embedding such that F(I* is flat in B then H'(n, k, 1)
8 true. : -
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LrymA 6. If n and k ave positive integers, 1 <k < n, then H'(n, k,1)
implies H'(n, k, k). ‘

THEOREM 7. If G is an upper semicontinuous decomposition of E",
G, is a null collection, and if g € Gy, there exislts a positive integer k, such
that g is a Jy-cell in B™ which is flat in 'Y, then B™G % B is topologic-
ally B

CoRoLLARY 1. If G is an upper semicontinuous decomposition of P,
Gy is a null collection, and if g e Gy, there is an integer iy € {1, 2, 3} such
that g 18 an ig-cell, then B*|@ x B* is topologically E*.

Proof. Cells of dimension 1, 2 or 3 in E? ave flat in B*. See [1] and [9].
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