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But if there were » e M — (Ly UED vilyu -.HT',,,,), then we could apply
Claim 2, Claim 3 in reference to H,, and the fact that v, and w, ¢ H, to
arrive at a contradiction to M being C.C. This then completes the sufficiency
part of this theorem. :

To establish the necessity half of this theorem, we will agsume that I
is not C.C. but it does satisty Condition 2 and deduce that it is of the
form expressed in 2.

Lemma 6 shows that Condition 2 implies (2) of Theorem 1, and so
assuming M is not C.C. means that there exists # and y ¢ M such that
L;nLy,= @ and yet {o} v {y} cut no two points of M — (L, v L,).

Since Lz n Ly = @ we know that there exist two continua H and K
which are irreducible between L, and Ly and M =1L, v H vI,u K.
Letting ¢ e Int(H) and 2z <Int(K) we see by the above comments that
there exist a eontinuum O such that 7, z « € and %, y ¢ (. So by Lemma, 8,
L,= H for each 7 ¢Int(H), therefore using the fact that Int(H)= H
(Result 3), we see that H is indecomposable. Analogous comments hold
for K. Also we know from Lemma 8 that H ~ K == @.

Now L, = H for each r e Int(H) implies by Lemma 5 that @ e Int(L,)
and y e Int(ZLy). It is not difficult to see that Int(L,) = L, and Int(L,) = L,

.

So to finish the proof we only need show that for each r e Int(Ly), Ly = L. -

Clea,r?y L, C ‘.Ez' Therefore, Ly ~ Ly = @. Let H’ and K’ be the continua
associated with I, and L, mentioned in the statement of Condition 2.
Clearly we can take K C K’ and H C H'. Letting ¢ ¢ Int(K) and v ¢ Int(H)
we know that Iy~ L, # @, by Lemma 5 # and y ¢ Ly~ L,, and so by
Lemma 8
: H=IL=H and K =IL=K
Bu’t M=HvwlvEvL, and so Int(L,) C L, which implies L,C L,.
Thls then completes the proof of the theorem. ' B
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Dilating mappings, implicit functions
and fixed point theorems in finite-dimensional spaces

by
M. Altman (Warszawa)

Tt is the purpose of this paper to investigate some properties of
non-linear mappings of a finite-dimensional Euclidean spaces into itself.
The argument presented here consists in a combination of two facts:
Borsuk’s theorem on s-mappings in the narrow sense and Banach’s
contraction principle. By means of this method several theorems con=
cerning non-linear mappings of finite-dimensional Banach spaces into
themselves are obtained. In particular, an implicit function theorem
for dilabing mappings, & generalization of the contraction principle and
some results concerning the non-linear eigenvalue problem are included.

Let f be a continuous transformation of a finité-dimensional Euclidean
space X into itself. The transformation f is called an s-mapping in the
narrow semse if it has the following property:

(B) there exist two positive pumbers #z and ¢ such that the

condition

, If@)—fleM<n, o,a"eX
implies )

o' —="l| <.

In paper [1] K. Borsuk proved the following

TaroreM. If f(#) has property (B), then f is a mapping onio, i.e.
fX)=X. :

Implicit functions. In order to make use of Borsuk’s theorem
et us observe that if the mapping f possesses the following property:
there exists a positive number ¢ such that

cflay— @l < fIf () —f (@)l

for arbitrary @, @,

consequently, f(X) = X. Moreover, fis a homeomorphism of X onto itsel.

After this remark we shall prove the following implicit function

theorem.

£y

of X, then fis an e-mapping in the narrow sense and,
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THEOREM 1. Let f be a continuous mapping defined on the product
space X X Y with values in X.

Suppose that the following conditions are satisfied. There exists a positive
number ¢ such that ‘

A1) ollwy— @all < If (@1, 9)—F (2, 9l

for arbitrary y of ¥ and x,, m of X.
There exists a positive number K such that

2) If (@, 92)—F (2, ga)ll < Kllga— .l

Sor arbitrary w of X and y,, y, of an arbitrary metric space Y. Then there
exists a unique continuous function & = g(y) satisfying the equation

3 - f(g(y)yf’!)zoy ye¥.

Proof. It follows from (1) and from the above remark that for
arbitrary fixed y of ¥ the mapping f(#, y) is an e-mapping in the narrow
sense. Hence, there exists a unique element » = ¢(y) satisfying relation (3).
Conditions (1), (2) yield :

olies—@sl] < Wf (01, Y1) —f (22, y)Il = [|f (@, 91) — (%2 y2)ll < Ellyy— w3l

where @, = g(3,), #,= g(y») and f(a;, y;) = f(my, ys) = 0.

Thus, we have

g @) —g (@l < Ko lgy— .l ,

which completes the proof.

Let us remark that ¥ can be replaced by an arbitrary metric space
and the variable ¥ can be restricted to an arbitrary subset of ¥.

Suppose that the mapping F of X into itself is strictly contractive,
ie. there exists a positive number a < 1 sueh that

I (@) —F (@)} < aljay — ]
for arbitrary ,, , of X. It is easily seen that the mapping f(z) = x—F (z)
satisfies the relation ‘ .
(A —alfe—mll < |1f () —F ()]
for arbitrary =, o, of X. Hence, it follows that f (w) is an e-mapping in
the narrow sense and by Borsuk’s theorem it is a mapping onto X.
‘T’hus, the mapping f is a homeomorphism of X onto itself and, in

partmn.la.r, there exists a unique element z* of X such that flz*) =0,
ie. w*:l*’(af*) and, consequently, * is the unique fixed point of F.

) A mapping F of X into itself is said to be a dilating mapping if there
exists a positive number o« < 1 such that
4 oy — 5] < Q| () ~F ()]
for arbitrary z,,, of X. Consider the mapping f(#) = &—F (z).

o © .
lm Dilating mappings, implicit functions and fized poini theorems 13:

‘We have ‘
() I (@) —f (@)l = (a7 —1) [l — s} -

Thus, it follows that fis an e-mapping in the narrow sense Theorem L
implies the following

THEOREM 2. Suppose that the mapping F with values in X 4is defined
on the product space X x ¥. Let us assume that the following conditions are
satisfied. There emist two positive numbers K and a <1 such that
(6) flae, — )| < | (21, Y) —F (2, YU
for arbitrary #,, @, of X and y of Y, and
(M W (@, y1)—F (2, ya)ll < Kllys—all

for arbitrary » of X and yi, Y, of Y. ) o
Then there ewists a unigue continuous funetion = g(y) satisfying
the relation

®) 9@ =Fl9@),y), ye¥.
Proof. The mapping f(z,y)=s—F(s,9) satisfies relation (1)
with ¢ = a*—1.
Further, we obtain by assumptions (6), (7)
< al| B (@, 9) =T (@2, H1)l
< a(]]F(wly Y1) —F (%2, Y|+ 1 F (@25 Ya) —F (s, yl)”)
< afjwy— -+ oK fly1— ¥l

where @, = g(yy) and &, = g (%) satisfy relation (8). Hence, we obtain.

llar— 4]

&) (1— a)llg () — 9 @)l < oK [y~ all
. . . nuity of ¢(y).

The last inequality yields the continuity of ¢ . o

The remark concerning the variable y in Theorem 1 is also valid in
this case. B

TEEoREM 3. Suppose that ¥ = X. If, in addition t'o the hypotheses
of Theorem 2, the numbers o and K are subject to the resiriction K<a—1,
then there emists o unique fiwed point y* such that

gy =y ie yT=FH"9).
Proof. In virtue of (9) we have

llg () —g (@l < oK (1—a) g —vall -

Hence, it follows that the mapping g is contr'a,ct'ive and the assertion of
the theorem results from the- contraction principle.
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. ) principle. Let F(x) and L(x

two c(?ntlnuous mappings of X into itself and put f(#) = x—F (.1;)( )Tiz
fo]}owgg theorem is a generalization of the well-known con .
principle. : '

THROREM 4. Suppose that F(x) and L) sati 07

N : i8fy the follo -

ditions: There ewist two positive numbers ¢ and K suZ]i that ollowing con

traction

{10) olits—aall < [If () —f(@)|
Jor arbitrary ,, @, of X, - '
(11) (@) ~L (w0)]] < Efjw, — A
Jor arbitrary m, %, of X and
(12) K<e.

Then

(a) the mapping F(x)-+L(z) has a uni 3
{ nique fized g i ‘e i,
@ unigue element o* of X such that o* — F' (ail*)+];(;*) poinh Lo there s
: ?

(b) the mapping y =f(#)—L(z) = g—F
of X onto itself and

(c) the dnverse MAPPInGg =
constont (c—K)7, i.e. [jn(y,)—
o X]le'l(;;;)fi.t s(ie(;fu(}iltign %0) implies that the mapping fis a homeomorphism

; - Let @ be a fixed element of i
4 unique element Rz of X such that o - Then for (o) there exists

{13)

(#)—L(x) is a homeomorphism

(y) s Lipschitz continwous with the
2@l < (6—E) 7y, — . '

f(Bz) = L(z) .
“Consider now the mapping - Rx.
In virtue of (10),(13) and (11) we obtain
IRy —Rall < [If(Ray)— f(Bay)|| = |IL () —L(m,)l| < Klfm,
Hence we ‘have
(14) |

— [

[HEm, —Rasy)| << K 0_1““"1 —

for arbitr:

m&pg;lgm;? Ti’z @y ; £ Thus, we see that the mapping R is a contractive
e hajt Rm*l ! ollows that there exists a unique element z* of X
completes the ;)zfl f[enee, We obtain f(a*) =L (s*), by (13), which
from relations 1()14 . dssertion (@), since the uniqueness of #* follows
assertion (b) foll » (12) by putting Fof = of, Kot = #f. The proof of
i (19) 1 ows by means of the same argument by replacing L

) by L(@)+y for fixed y of X. Thus we obtain Phong L(0)

(15)

f(B2) =L(z)+y

© Dilating mappings, implicit functions and fived poini theorems 133
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instead of (13). Relations (11), (14) remain unchanged while we replace
the mapping L(x) by the mapping L(zx)-+y in assertion (a), provided
that ¥ is an arbitrary but fixed element of X. Consequently, we infer
by means of the contraction principle for Ex that for arbitrary y of X
there is a unique element z of X such that

(16) s—F(@)—L(@) =y.
Hence, it follows from (10) that
oll@y— @l < |If (@) —f (@)l <L (@) =L (@)l +- g — sl -
Thus, we obtain
(e—H) ey — )] < [l92—ll

in virtue of (11), where @; = ®(yy), #, = 2(¥,) are solutions of equation (16)
for ¥, ¥, respectively. Since condition (12) is satisfied by assumption,
the last inequality proves assertion (c).

Remark. Putting F () = 0 in Theorem 4, we obtain ¢ = 1 and K < 1,
ie. I is a contractive mapping. Thus, Theorem 4 generalizes the well-
known contraction principle.

Let us observe that the proof of Theorem 4 can be reduced directly
to the contraction principle by considering the contractive mapping
fL(z), where f* denotes the inverse mapping. It follows from (10)
that the inverse exists and is Lipschitz continuous with the constant o~*.

Now suppose that F(w) is a dilating mapping, i.e. that relation (4)
is satisfied. Then Theorem 4 assumes the following formulation

THEOREM 5. Let F be a dilating mapping and L o Lipschitz continuous
mapping satisfying relation (11) with the Lipschitz constant K subject to
the restriction K < a~i—1. Then assertions (a), (b) and (c) of Theorem 4

hold, where ¢ = a=*—1.

Proof. It follows from (5) that relation (10) is satistied with ¢ = a~'—1.
Since by assumption we have K <a™'—1=¢, We conclude that all
hypotheses of Theorem 4 are fulfilled.

On the basis of Theorem 4 we obtain the following implicit function
theorem. )

TrEOREM 6. Let F, I be two continuous mappings defined on the
product space X x ¥ with values in X. Let us assume that F(z, y), L(z,y)
satisfy the following conditions. There ewist two positive numbers ¢ and K
such that '

17 : cflasy — ol < IIf (1, 9) —f (@2, Y)I
for arbitrary z,, s of X and y of X, where f(av, y) = s—F(z, ¥)-
(18) Ly, ) —L(@a, )| < K lJoy— 2l

Fundamenta Mathematicae, T. LXVIII 9
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for arbitrary »,, a2, of X and y of Y.

(19) K<e.

In addition, there exists a positive number a such that

(20) VB (@, y:)—F (2, y) +-L(2, y2) —L{@, o)l < ally; — yall

for arbitrary % of X and y,,vy, of Y.

Then there evists a umique continuous fumction o= 9(y) satisfying
the equaiion

(21) 9 =F(g(¥), 9)+L(g(¥), v).

Proof. In virtue of Theorem 4, it follows from conditions (17)—(19)
that for arbitrary fixed y of ¥ there exists a unique element  — gy}
satisfying equation (21). We have, by (21)

9@ — g2 —F(g(9), 9:) +F (9(v2), 9:)
= [2(9(92), 92) ~F (9 v2), o) +L(9(3), 9:) — L (g v2) , )] +

+[Z{g )y 1) — L9 (92, 9] -
Hence, it follows, by (17), (20) and (18),

3

clg(y)— gl < allyy —yall +-Ellg (42) — g ()] -
Thus, we obtain, by (19), the inequ@lity

gty =gl < ale—E) Yy, —vil,

which proves the Lipschitz continuity of g(y).
Assumming that F' is a dilating mapping ‘with respect to z but uni-
formly in y, we obtain the following

THEOREM 1. If in addition to relations (18) and (20) there ewists
@ positive number o < 1 such that

(22) oy —a| > allF (2, y)—F (x,, y)|
for arbitrary z,, %, of X and y of ¥ and
(23) K <ai-1

’
then there emists a unique continuons Junction g(y) saiisfying equation (21).

Proof. It is easily seen that conditions (17) and (19) follow from
conditions (22) and (23) with ¢ = a—1—1. Thus, all the hypotheses of
Theorem 6 are fulfilled.

Let us remark that in Theorems 6,7 Y can be an arbitrary ‘metric»
space and the variable y can be restricted to an arbitrary subset of Y.
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Resolvents. (A) On the basis of Theorem 4 it is possible to in-
vestigate some families of continuous mappings depending on a real
parameter. ’

Put y = T.(0) = po—F (x)—L(z), &,y ¢ X.

The real number ux is called a regular value if the mapping T, is
2 homeomorphism of X onto itself, The mapping R, is called the resolvent
of T, if y = T(R,y) for arbitrary y of X. The real number x is called
an eigenvalue of the mapping F(x)-+L(z) if there exists a vector z of X
such that
(24) p = F(z)+L().

The vector o is called the eigenvector corresponding to the eigen-
value p. If F' and L are both linear mappings, the vector = 0 is always
an eigenvector. Thus, in the linear case the trivial zero eigenvector is
excluded.

THEOREM 8. Suppose that the mappings F and L satisfy conditions
(10)~(12).

TLet us assume that u satisfies the condition
(25) 1—pl < e—K.

Then the resolvent B, exists and satisfies the relations

(26) B —Ruyall < (0—E—[1— ) "la—vill,
(@n ’ IRy —Rsyll < |B—al(¢—E—[1—af) " Epyll »
where o and B are subject to restriction (25). ) ]

Moreover, for every u satisfying relation (25) there ewisis e wnique
eigenvector © corresponding to the eigenvalue p, i.e. p and o satisfy relation (24).

Proof. Let us write

y = T,(2) = po—F(2)—L(z) = 2—F(2)—[L—pa+L@)] .

Then, replacing in Theorem 4 L(z) by (1— ,u)w.—)—L(w) and the I_Ap—
schitz constant K by K-+[1—pl|, we infer that T, is 2 l}omeomgrplusm
of X onto itself. Thus, the resolvent R, exists and satisfies relation (26)
in virtue of assertion (¢) of Theorem 4. Hence, it Tesults th?,t z= R,y
for y = 0 is the unique eigenvector corresponding to the elgel‘lvalugﬁ ®
for each u satisfying inequality (25). It remains to prove relation (27).
For o and § satisfying inequality (25) we have

Y = Tu(Rey) = By —F (Boy)—[(1— ) Boy +L(Bay)],
Y = To(Bpy) = Ry —F (Rpy)—[(1— ) Bpy +L(Epy)] -
Hence, it follows that
By —F (Boy)— [Bsy —F (Bgy)]
= (1— )Ry — (11— p) Rpy— [L(Bay) —L(Eay)1,
g%
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and by (10) and (11) we obtain
(6—E)|Buy —Rp3ll < (1 — a) By — (1 — B) Ryy|]
= (1 —a)(Bey —Rgy) + (8~ o) Bpyl.
Since ¢ and g satisfy relation (25), we conclude from the last inequality
that the relation
(=K —[1—al} By —Bsyll < |B— ol||Ryyll
holds, which proves inequality (27).

Thus, we see that the resolvent R, is continuously dependent on
the parameter u in the sense that R,y converges toward Bey if a-p.

Remark. If F ig a dilating mapping, i.e. relation (4) holds, then
Theorem 8 is valid, where ¢= a~'—1 and K is subject to restriction (23).
(B) Another family of continuous mappings depending on a real
parameter can be introduced as follows. Put
y=Tl(m)=m“F(m)_/1L(m); z,yeX.

The real number A is called a regular value if the mapping T, is
a homeomorphism of X onto itself. The mapping RB; is called the resolvent
of T, if y= Ty(R;y) for arbitrary y of X. The real number 1 is called
an eigenvalue if there exists a vector z of X such thab

(28) @ = F(z)+1L(w) .

The vector # is called the eigenvector corresponding to the eigen-
value 1.

TEHEOREM 9. Suppose that the mappings B and L satisfy conditions
(10}~{11) and let A satisfy the condition

(29) Al <eE*.

Then the resolvent R, ewisis and satisfies the relations
(30) 1Bzy: —Biyol| < (e—[21K) "y~ g3,
(81) 1By —B3yll < la— Bl(e—| BIE) L (RLy)

where a and 8 are subject to restriction (29). Moreover, for any A satisfying
relation (29) there exists a unique eigenvector x corresponding to the eigen-
velue A, ie. A and o satisfy relation (28).

Proof. Replacing in Theorem 4 the mapping L by AL and condition
{12) by (29), we infer that T,is a homeomorphism of X onto itgelf. Thus,
the resolvent B; exists and satisfies relation (30) in virtue of assertion (o)
of Theorem 4. Hence, we have o — Riy if y =0, is the unique eigen-

vector @nesponding to the eigenvalue A for each 1 satisfying inequality (29).
It remains to prove relation (31).
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For o and f satisfying inequality (29) we have
9 = To(Ruy) = Riy—F(R.y)—oL(Ryy)
¥ = Tp(Bpy) = By —F(Rpy) — oL (Rsy) .
Hence, it follows that
Roy—F(Boy)— [Rpy—F (B3y)] = (a— ) L(Ray) + BIL(Bey) —L(Rpy)]
and, by (10) and (11), we obtain the inequality
(e—|BIE)IRay —Rpyll < la— Bl (Ray)ll

which proves relation (31).
Thus, we see that the resolvent R, is continuously dependent on
the parameter o in the sense that Rjy converges toward R.y if f->a.

Remark. If F is a dilating mapping, i.e. relation (4) holds, then
Theorem 9 is valid with ¢= o 2—1 if K < a~1—1.

(C) We shall now consider a family of continuous mappings depending
on two real parameters u and A. Put

Y= Tu@) = po—F@)—L(), @,yeX.

The teal numbers x and A form a regular value pair if the mapping 7,
is a homeomorphism of X onto itself. The mapping R,; is called the re-
solvent of T, of y = T,(R,y) for arbitrary y of X. The real numbers u
and A form an eigenvalue pair if there exists a vector # of X such that

(32) px = F(5)+AL(2) - ,

The vector z is then called the eigenvector corresponding to the
eigenvalue pair (u, 1) . -

TuEoREM 10. Suppose that the mappings F and L satisfy conditions
(10)—(12). Let us assume that u and A satisfy the econdition .
(33) 0> [L—pl|+[1E .

Then the resolvent R, exists and satisfies the relations
(34) IR a9y — Ryl < (6— 11— pl—E) "y —9ill»
(85)  |Buy—Ruyl < (e— 1 —pul—AE) " [lp—all Byl +1A— A L (Ezy)l
where (u, 3) and (i, A) are subject to resiriction (33?. .MoTeo'uew, for every
pair (u, A) satisfying relation (33) there exisis a fl.mzque eigenvector x cor-
responding to the eigenvalue pair (u, 1), i.e. relation (32) holds.

Proof. Let us write

y = T,u(0) = po—F (@) —iL(w) = o—F(2)~[(1—p)a+ L]
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Then reéplacing in Theorem 4 L(2) by (1—u)#-AL(x) and the Lipschitz
constant K by |1—pu|4]A K, we infer from (33) that 7' is a homeo-
morphism of X onto itgelf. Thus, the resolvent B, exists and satisfie
relation (34) in virtue of assertion (c) of Theorem 4. Hence, it follows
that » = R,y if y =0, is the unique eigenvector corresponding to the
eigenvalue pair (u,4) for each u and 2 satisfying inequality (33). It
remains to prove relation (35). For the pairs (x, 1) and (ﬁ,i) satisfying
relation (33) we have

Y= Tu(Buy) = Buy—F (Buy)—[(1— p) Buy+ AL(Buy)],

y = Ti(Ry) = Bay—F (Bay)—[(1—5) By + AL(Rizy)] .
Hence, it follows that

By —F (Buy)—[Ray —F (Rizy)]
= (1—u)(Buy —B3y)+ (5— p) Bpy +
+ ALL(Byuy) —L(Bizy) 4 (A—7) L(Bzzy) .
Hence, we obtain the following relation in virtue of (10), (11) and (33):
(6= —al—AE)|Buy—Rayl < [a— pll| Ryl + 12— A | L (Ba)|l ,
which proves inequality (35).
Thus, we gee that the resolvent R, iy continuously dependent on

the two paramebers 4 and 1 in the sense that R, y converges toward
Bgy it p—>p and A4 ‘

Remark. If F is a dilating mapping, i.e. relation (4) holds, then
‘Theorem 10 is valid, where ¢ = o~1—1 and X is subject to restriction (23).

‘We shall now give two simple examples in order to illustrate the
above theorems.

Let s consider the following system of non-linear scalar equations:
{a) Tol@)) =Ly, @y ooy @n) = 94, 4= 1,.,n,
where the real functions f; (i = 1,..yn) of the real variables ®; have
the same slope, i.e. there exists a positive number ¢ such that
(b) eloi— | < |fil@i) — folzs)|

for 1arbitra,ry values #; and %;. The function fi(#;) is continuous for
t=1,..,0

T-h'e tunctions Zy(®,, ..., #) are Lipschitz continuous, i.e. there exists
& positive constant K, such that

n

() (@1, oy @) ~Ta(E, ooy T)| < Ko D) i34
. ) i=1

for i=1,...,% and arbitrary @, %;.
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Put L(z) = (Ly(®), ..., Ln(2)), where & = (&, ..., &) and |[jo]] = (an P
Then we obtain from (e) i=1

(@) (@) —L@) < Elo—3 ,

where K = nK,.

For &= (@, ..., #») put f(») = (fl(ml): n-;fn(wn)).
Then condition (b) yields

e ollw—2| < [If(=)—f@)

for arbitrary @ = (®y, ..., @x) and T == (Z, ..., Tn).

Let us suppose that K < ¢. Then the hypotheses of Theorem 4 are
satisfied, and we can claim that the system (a) has a unique solution
for arbitrary ¥ = (¥4, -.-, ¥s). If ® and % are solutions of (a) corresponding
to y and ¥, respectively, then we have in virtue of assertion (¢) of Theo-
rem 4. the relation

llz— 2 < (e—E) "y —7ll -

Another simple example is given by considering the system

{(ay) By —F (@) —Ly(Byy ooy Tn) = Y4, = i, vy By

where the real continuous functions Fy(:) satisfy the condition
s — ;| < alF () —F (F)|

for some positive constant ¢ < 1 and arbitrary @i, T ¢ =1, ..., %.
" The assumptions concerning I; are the same as in system (a).
Putting
File) = w—Fe(w:)

one can reduce system (a;) to system (a), where we shall have ¢ = a™'—1.
One can also consider systems (2) and (a,) introducing the para-
meter x4 or A or both of them.
The corresponding theorems for resolvents can also be formulated in

this case.

The non-linear form for non-linear mappings as a genera]ization. of the
quadratic form for linear mappings. Let A be a non-linear .contmuous
mapping of the Euclidean n-space X into itself. The expression

(u=2, du—4v)

v, w,veX
o B M0

?
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will be called the non-linear form of 4. Let us suppose that

(u—v, Au—Av)

A4) = pup —7F—

U= e

is finite. We shall show that if 0 < a(4) < %, then the mapping #— A4z = ¥
is a homeomorphism of X onto itself. Indeed, we have

—20(A)|lu—1lp < —2(u—2v, Au—Av).
Putting ¢ =1—2a(4), we obtain ¢—1 = —2a(4) and
lu—2iP < lu—v[P—2(u—v, Au—A4Av)
< lw—olP—2(u—v, Au—Av) || Adu—Av|.
“Hence follows the inequality
ellu—off < Ju—o—(Adu—Ao)|?.

The last inequality implies that the mapping f(#) = #—Az is an
&-mapping in the narrow sense. Thus, it follows that fis a homeomorphism
of X onto itself.

It is obvious that if 1 is a positive number, then a(Ad) = la(4).

- Thus, we conclude that the mapping v—Aidz = ¥ is a homeomorphism
of X onto itself if 0 <1< (2a(4))7".

It follows that the non-linear form may be considered as a generali-
zation of the quadratic form of a linear mapping.

Now let us consider the following case. Suppose that A satisfies the
relation

(46—, Au—Av) < | Au—Ao|2

for arbitrary u,v of X. We shall show that f@)=o—Ax iy a homeo-

morphism of X onto itself. Indeed, we have
0<—2(u—v, Au—~Av)+||Adu—Ao|p.
“ Hence, we obtain
‘Ilu—vﬂz Slu—vf—2(u—v, du—Av)+||du—Ao|p
and, 6onsequei1t1y, we have
o= < lu—v— (Adu—Aw)Jp.

This inequality shows that f is an e-mapping in the narrow sense
and, consequently, we obtain our assertion.

Suppose now that b(4) is the smallest number g satisfying the
relation

(u—0, du—4) < of du— Ao

icm°
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for arbitrary u, v of X. It is clear that if b(4) exists, then b{id)= Zb(A}

for positive A. Thus, we conclude that z— 142 = y is a homeomorphism
b(4)

1. .
of X onto itself if - < 5 Le. if 1> 2b(4).

Txtensions to Banach spaces of some of these results will be given
elsewhere, including some additional results.
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