But if there were $r \in M - (L_x \cup \overline{H'_{v_0}} \cup L_y \cup \overline{H'_{w_0}})$, then we could apply Claim 2, Claim 3 in reference to H_r , and the fact that v_0 and $w_0 \notin H_r$ to arrive at a contradiction to M being C.C. This then completes the sufficiency part of this theorem.

To establish the necessity half of this theorem, we will assume that M is not C.C. but it does satisfy Condition 2 and deduce that it is of the form expressed in 2.

Lemma 6 shows that Condition 2 implies (2) of Theorem 1, and so assuming M is not C.C. means that there exists x and $y \in M$ such that $L_x \cap L_y = \emptyset$ and yet $\{x\} \cup \{y\}$ cut no two points of $M - (L_x \cup L_y)$.

Since $L_x \cap L_y = \emptyset$ we know that there exist two continua H and K which are irreducible between L_x and L_y and $M = L_x \cup H \cup L_y \cup K$. Letting $t \in \text{Int}(H)$ and $z \in \text{Int}(K)$ we see by the above comments that there exist a continuum C such that $t, z \in C$ and $x, y \notin C$. So by Lemma 8, $L_r = H$ for each $r \in \text{Int}(H)$, therefore using the fact that $\overline{\text{Int}(H)} = H$ (Result 3), we see that H is indecomposable. Analogous comments hold for K. Also we know from Lemma 8 that $H \cap K \neq \emptyset$.

Now $L_r=H$ for each $r\in \mathrm{Int}(H)$ implies by Lemma 5 that $x\in \mathrm{Int}(L_x)$ and $y\in \mathrm{Int}(L_y)$. It is not difficult to see that $\overline{\mathrm{Int}(L_x)}=L_x$ and $\overline{\mathrm{Int}(L_y)}=L_y$. So to finish the proof we only need show that for each $r\in \mathrm{Int}(L_x)$, $L_r=L_x$. Clearly $L_r\subseteq L_x$. Therefore, $L_r\cap L_y=\emptyset$. Let H' and K' be the continual associated with L_r and L_y mentioned in the statement of Condition 2. Clearly we can take $K\subseteq K'$ and $H\subseteq H'$. Letting $t\in \mathrm{Int}(K)$ and $v\in \mathrm{Int}(H)$ we know that $L_t\cap L_v\neq\emptyset$, by Lemma 5 r and $y\notin L_t\cap L_v$, and so by Lemma 8

$$H' = L_v = H$$
 and $K' = L_t = K$

But $M = H \cup L_r \cup K \cup L_z$ and so $\operatorname{Int}(L_x) \subseteq L_r$ which implies $L_x \subseteq L_r$. This then completes the proof of the theorem.

Acknowledgment. I wish to express my gratitude to F. Burton Jones for having introduced me to topology and encouraged my pursuit of this problem.

References

- R. H. Bing, Some characterizations of arcs and simple closed curves, Amer. J. Math. 70 (1948), pp. 497-506.
- [2] F. B. Jones, Concerning non-aposyndetic continua, Amer. J. Math. 70 (1948), pp. 403-413.
- [3] R. L. Moore, Foundations of point set theory, Colloq. Pub., No. 13.
- [4] E. S. Thomas, Jr., Monotone decomposition of irreducible continua, Rozprawy Mat. 50, Warszawa 1966.

Reçu par la Rédaction le 27. 9. 1968

Dilating mappings, implicit functions and fixed point theorems in finite-dimensional spaces

by

M. Altman (Warszawa)

It is the purpose of this paper to investigate some properties of non-linear mappings of a finite-dimensional Euclidean spaces into itself. The argument presented here consists in a combination of two facts: Borsuk's theorem on ε -mappings in the narrow sense and Banach's contraction principle. By means of this method several theorems concerning non-linear mappings of finite-dimensional Banach spaces into themselves are obtained. In particular, an implicit function theorem for dilating mappings, a generalization of the contraction principle and some results concerning the non-linear eigenvalue problem are included.

Let f be a continuous transformation of a finite-dimensional Euclidean space X into itself. The transformation f is called an ε -mapping in the narrow sense if it has the following property:

(B) there exist two positive numbers η and ϵ such that the condition

 $||f(x') - f(x'')|| < \eta, \quad x', x'' \in X$

implies

$$||x'-x''||<\varepsilon$$
.

In paper [1] K. Borsuk proved the following

THEOREM. If f(x) has property (B), then f is a mapping onto, i.e. f(X) = X.

Implicit functions. In order to make use of Borsuk's theorem let us observe that if the mapping f possesses the following property: there exists a positive number e such that

$$c||x_1-x_2|| \leqslant ||f(x_1)-f(x_2)||$$

for arbitrary x_1 , x_2 of X, then f is an ε -mapping in the narrow sense and, consequently, f(X) = X. Moreover, f is a homeomorphism of X onto itself.

After this remark we shall prove the following implicit function theorem.

Theorem 1. Let f be a continuous mapping defined on the product space $X \times Y$ with values in X.

Suppose that the following conditions are satisfied. There exists a positive number c such that

(1)
$$c\|x_1 - x_2\| \leqslant \|f(x_1, y) - f(x_2, y)\|$$

for arbitrary y of Y and x_1 , x_2 of X.

There exists a positive number K such that

(2)
$$||f(x, y_1) - f(x, y_2)|| \leq K||y_1 - y_2||$$

for arbitrary x of X and y_1, y_2 of an arbitrary metric space Y. Then there exists a unique continuous function x = g(y) satisfying the equation

$$f(g(y), y) = 0, \quad y \in Y.$$

Proof. It follows from (1) and from the above remark that for arbitrary fixed y of Y the mapping f(x, y) is an ε -mapping in the narrow sense. Hence, there exists a unique element x = g(y) satisfying relation (3). Conditions (1), (2) yield

$$|e||x_1-x_2|| \leq ||f(x_1,y_1)-f(x_2,y_1)|| = ||f(x_2,y_1)-f(x_2,y_2)|| \leq K||y_1-y_2||,$$

where $x_1 = g(y_1), \ x_2 = g(y_2)$ and $f(x_1, y_1) = f(x_2, y_2) = 0$.

Thus, we have

$$||g(y_1) - g(y_2)|| \leq Kc^{-1}||y_1 - y_2||$$

which completes the proof.

Let us remark that Y can be replaced by an arbitrary metric space and the variable y can be restricted to an arbitrary subset of Y.

Suppose that the mapping F of X into itself is strictly contractive, i.e. there exists a positive number $\alpha < 1$ such that

$$||F(x_1) - F(x_2)|| \leqslant a||x_1 - x_2||$$

for arbitrary x_1, x_2 of X. It is easily seen that the mapping f(x) = x - F(x) satisfies the relation

$$(1-a)||x_1-x_2|| \leqslant ||f(x_1)-f(x_2)||$$

for arbitrary x_1 , x_2 of X. Hence, it follows that f(x) is an ε -mapping in the narrow sense and by Borsuk's theorem it is a mapping onto X.

Thus, the mapping f is a homeomorphism of X onto itself and, in particular, there exists a unique element x^* of X such that $f(x^*) = 0$, i.e. $x^* = F(x^*)$ and, consequently, x^* is the unique fixed point of F.

A mapping F of X into itself is said to be a dilating mapping if there exists a positive number a < 1 such that

$$||x_1 - x_2|| \leqslant \alpha ||F(x_1) - F(x_2)||$$

for arbitrary x_1, x_2 of X. Consider the mapping f(x) = x - F(x).

We have

(5)
$$||f(x_1) - f(x_2)|| \ge (\alpha^{-1} - 1)||x_1 - x_2||.$$

Thus, it follows that f is an ε -mapping in the narrow sense Theorem 1 implies the following

THEOREM 2. Suppose that the mapping F with values in X is defined on the product space $X \times Y$. Let us assume that the following conditions are satisfied. There exist two positive numbers K and $\alpha < 1$ such that

(6)
$$||x_1 - x_2|| \leqslant \alpha ||F(x_1, y) - F(x_2, y)||$$

for arbitrary x_1, x_2 of X and y of Y, and

(7)
$$||F(x, y_1) - F(x, y_2)|| \leqslant K||y_1 - y_2||$$

for arbitrary x of X and y_1, y_2 of Y.

Then there exists a unique continuous function x = g(y) satisfying the relation

(8)
$$g(y) = F(g(y), y), \quad y \in Y.$$

Proof. The mapping f(x, y) = x - F(x, y) satisfies relation (1), with $c = a^{-1} - 1$.

Further, we obtain by assumptions (6), (7)

$$\begin{split} \|x_1 - x_2\| &\leqslant a \|F(x_1, y_1) - F(x_2, y_1)\| \\ &\leqslant a \left(\|F(x_1, y_1) - F(x_2, y_2)\| + \|F(x_2, y_2) - F(x_2, y_1)\| \right) \\ &\leqslant a \|x_1 - x_2\| + aK\|y_1 - y_2\| \,, \end{split}$$

where $x_1 = g(y_1)$ and $x_2 = g(y_2)$ satisfy relation (8). Hence, we obtain

$$(9) (1-\alpha)||g(y_1)-g(y_2)|| \leqslant \alpha K ||y_1-y_2||$$

The last inequality yields the continuity of g(y).

The remark concerning the variable y in Theorem 1 is also valid in this case.

Theorem 3. Suppose that Y = X. If, in addition to the hypotheses of Theorem 2, the numbers a and K are subject to the restriction K < a-1, then there exists a unique fixed point y^* such that

$$g(y^*) = y^*, \quad i.e. \quad y^* = F(y^*, y^*)$$
.

Proof. In virtue of (9) we have

$$||g(y_1) - g(y_2)|| \leq \alpha K (1 - \alpha)^{-1} ||y_1 - y_2||.$$

Hence, it follows that the mapping g is contractive and the assertion of the theorem results from the contraction principle.

A generalization of the contraction principle. Let F(x) and L(x) be two continuous mappings of X into itself and put f(x) = x - F(x). The following theorem is a generalization of the well-known contraction principle.

THEOREM 4. Suppose that F(x) and L(x) satisfy the following conditions: There exist two positive numbers c and K such that

$$(10) c||x_1 - x_2|| \leq ||f(x_1) - f(x_2)||$$

for arbitrary x_1, x_2 of X,

$$||L(x_1) - L(x_2)|| \leqslant K||x_1 - x_2||$$

for arbitrary x1, x2 of X and

$$(12) K < c.$$

Then

(a) the mapping
$$F(x)+L(x)$$
 has a unique fixed point, i.e. there is a unique element x^* of X such that $x^*=F(x^*)+L(x^*)$.

(b) the mapping y=f(x)-L(x)=x-F(x)-L(x) is a homeomorphism of X onto itself and

(c) the inverse mapping x=x(y) is Lipschitz continuous with the constant $(c-K)^{-1}$, i.e. $||x(y_1)-x(y_2)|| \leqslant (c-K)^{-1}||y_1-y_2||$.

Proof. Condition (10) implies that the mapping f is a homeomorphism of X onto itself. Let x be a fixed element of X. Then for L(x) there exists a unique element Rx of X such that

$$(13) f(Rx) = L(x).$$

Consider now the mapping $x \to Rx$.

In virtue of (10), (13) and (11) we obtain

$$c\|Rx_1-Rx_2\|\leqslant \|f(Rx_1)-f(Rx_2)\|=\|L(x_1)-L(x_2)\|\leqslant K\|x_1-x_2\|\;.$$

Hence we have

$$||Rx_1 - Rx_2|| \leqslant Kc^{-1}||x_1 - x_2||$$

for arbitrary $x_1, x_2 \in X$. Thus, we see that the mapping R is a contractive mapping, by (12). It follows that there exists a unique element x^* of X such that $Rx^* = x^*$. Hence, we obtain $f(x^*) = L(x^*)$, by (13), which completes the proof of assertion (a), since the uniqueness of x^* follows from relations (14), (12) by putting $Rx_1^* = x_1^*$, $Rx_2^* = x_2^*$. The proof of assertion (b) follows by means of the same argument by replacing L(x) in (13) by L(x) + y for fixed y of X. Thus we obtain

$$(15) f(Rx) = L(x) + y$$

instead of (13). Relations (11), (14) remain unchanged while we replace the mapping L(x) by the mapping L(x)+y in assertion (a), provided that y is an arbitrary but fixed element of X. Consequently, we infer by means of the contraction principle for Rx that for arbitrary y of X there is a unique element x of X such that

$$(16) x-F(x)-L(x)=y.$$

Hence, it follows from (10) that

$$c||x_1-x_2|| \leqslant ||f(x_1)-f(x_2)|| \leqslant ||L(x_1)-L(x_2)|| + ||y_1-y_2||$$
.

Thus, we obtain

$$(c-K)||x_1-x_2|| \leqslant ||y_1-y_2||$$

in virtue of (11), where $x_1 = x(y_1)$, $x_2 = x(y_2)$ are solutions of equation (16) for y_1, y_2 , respectively. Since condition (12) is satisfied by assumption, the last inequality proves assertion (c).

Remark. Putting F(x) = 0 in Theorem 4, we obtain c = 1 and K < 1, i.e. L is a contractive mapping. Thus, Theorem 4 generalizes the well-known contraction principle.

Let us observe that the proof of Theorem 4 can be reduced directly to the contraction principle by considering the contractive mapping $f^{-1}L(x)$, where f^{-1} denotes the inverse mapping. It follows from (10) that the inverse exists and is Lipschitz continuous with the constant e^{-1} .

Now suppose that F(x) is a dilating mapping, i.e. that relation (4) is satisfied. Then Theorem 4 assumes the following formulation

THEOREM 5. Let F be a dilating mapping and L a Lipschitz continuous mapping satisfying relation (11) with the Lipschitz constant K subject to the restriction $K < \alpha^{-1} - 1$. Then assertions (a), (b) and (c) of Theorem 4 hold, where $c = \alpha^{-1} - 1$.

Proof. It follows from (5) that relation (10) is satisfied with $c = a^{-1}-1$. Since by assumption we have $K < a^{-1}-1 = c$, we conclude that all hypotheses of Theorem 4 are fulfilled.

On the basis of Theorem 4 we obtain the following implicit function theorem.

THEOREM 6. Let F, L be two continuous mappings defined on the product space $X \times Y$ with values in X. Let us assume that F(x, y), L(x, y) satisfy the following conditions. There exist two positive numbers c and K such that

(17)
$$c\|x_1 - x_2\| \leqslant \|f(x_1, y) - f(x_2, y)\|$$

for arbitrary x_1, x_2 of X and y of Y, where f(x, y) = x - F(x, y).

$$||L(x_1, y) - L(x_2, y)|| \leqslant K||x_1 - x_2||$$

for arbitrary x_1, x_2 of X and y of Y.

$$(19) K < c.$$

In addition, there exists a positive number a such that

(20)
$$||F(x, y_1) - F(x, y_2) + L(x, y_1) - L(x, y_2)|| \le a||y_1 - y_2||$$

for arbitrary x of X and y_1, y_2 of Y.

Then there exists a unique continuous function x = g(y) satisfying the equation

(21)
$$g(y) = F(g(y), y) + L(g(y), y).$$

Proof. In virtue of Theorem 4, it follows from conditions (17)-(19) that for arbitrary fixed y of Y there exists a unique element x = g(y) satisfying equation (21). We have, by (21),

$$\begin{split} g(y_1) - g(y_2) - & F\big(g(y_1), y_1\big) + F\big(g(y_2), y_1\big) \\ &= \big[F\big(g(y_2), y_1\big) - F\big(g(y_2), y_2\big) + L\big(g(y_2), y_1\big) - L\big(g(y_2), y_2\big) \big] + \\ &\quad + \big[L\big(g(y_1), y_1\big) - L\big(g(y_2), y_1\big) \big] \,. \end{split}$$

Hence, it follows, by (17), (20) and (18),

$$c||g(y_1)-g(y_2)|| \leq a||y_1-y_2||+K||g(y_1)-g(y_2)||.$$

Thus, we obtain, by (19), the inequality

$$||g(y_1)-g(y_2)|| \leq a(c-K)^{-1}||y_1-y_2||,$$

which proves the Lipschitz continuity of g(y).

Assuming that F is a dilating mapping with respect to x but uniformly in y, we obtain the following

THEOREM 7. If in addition to relations (18) and (20) there exists a positive number a < 1 such that

$$||x_1 - x_2|| \geqslant \alpha ||F(x_1, y) - F(x_2, y)||$$

for arbitrary x1, x2 of X and y of Y and

$$(23) K < \alpha^{-1} - 1,$$

then there exists a unique continuous function g(y) satisfying equation (21).

Proof. It is easily seen that conditions (17) and (19) follow from conditions (22) and (23) with $c=a^{-1}-1$. Thus, all the hypotheses of Theorem 6 are fulfilled.

Let us remark that in Theorems 6, 7 Y can be an arbitrary metric space and the variable y can be restricted to an arbitrary subset of Y.

Resolvents. (A) On the basis of Theorem 4 it is possible to investigate some families of continuous mappings depending on a real parameter.

Put
$$y = T_{\mu}(x) = \mu x - F(x) - L(x), x, y \in X.$$

The real number μ is called a regular value if the mapping T_{μ} is a homeomorphism of X onto itself. The mapping R_{μ} is called the resolvent of T_{μ} if $y = T_{\mu}(R_{\mu}y)$ for arbitrary y of X. The real number μ is called an eigenvalue of the mapping F(x) + L(x) if there exists a vector x of X such that

$$\mu x = F(x) + L(x).$$

The vector x is called the eigenvector corresponding to the eigenvalue μ . If F and L are both linear mappings, the vector x=0 is always an eigenvector. Thus, in the linear case the trivial zero eigenvector is excluded.

THEOREM 8. Suppose that the mappings F and L satisfy conditions (10)-(12).

Let us assume that μ satisfies the condition

$$|1-\mu| < c-K.$$

Then the resolvent R_{μ} exists and satisfies the relations

$$||R_{\mu}y_{1}-R_{\mu}y_{2}|| \leq (c-K-|1-\mu|)^{-1}||y_{1}-y_{2}||,$$

(27)
$$||R_{\alpha}y - R_{\beta}y|| \leq |\beta - \alpha| (c - K - |1 - \alpha|)^{-1} ||R_{\beta}y||,$$

where a and β are subject to restriction (25).

Moreover, for every μ satisfying relation (25) there exists a unique eigenvector x corresponding to the eigenvalue μ , i.e. μ and x satisfy relation (24).

Proof. Let us write

$$y = T_{\nu}(x) = \mu x - F(x) - L(x) = x - F(x) - [(1 - \mu)x + L(x)].$$

Then, replacing in Theorem 4 L(x) by $(1-\mu)x+L(x)$ and the Lipschitz constant K by $K+|1-\mu|$, we infer that T_{μ} is a homeomorphism of X onto itself. Thus, the resolvent R_{μ} exists and satisfies relation (26) in virtue of assertion (c) of Theorem 4. Hence, it results that $x=R_{\mu}y$ for y=0 is the unique eigenvector corresponding to the eigenvalue μ for each μ satisfying inequality (25). It remains to prove relation (27). For α and β satisfying inequality (25) we have

$$y \doteq T_{a}(R_{a}y) = R_{a}y - F(R_{a}y) - [(1-a)R_{a}y + L(R_{a}y)],$$

 $y = T_{\beta}(R_{\beta}y) = R_{\beta}y - F(R_{\beta}y) - [(1-\beta)R_{\beta}y + L(R_{\beta}y)].$

Hence, it follows that

$$\begin{split} R_{a}y - & F(R_{a}y) - [R_{\beta}y - F(R_{\beta}y)] \\ &= (1 - a)R_{a}y - (1 - \beta)R_{\beta}y - [L(R_{a}y) - L(R_{\beta}y)] \,, \end{split}$$

and by (10) and (11) we obtain

$$\begin{split} (c-K)\|R_\alpha y - R_\beta y\| &\leqslant \|(1-\alpha)R_\alpha y - (1-\beta)R_\beta y\| \\ &= \|(1-\alpha)(R_\alpha y - R_\beta y) + (\beta-\alpha)R_\beta y\|\,. \end{split}$$

Since α and β satisfy relation (25), we conclude from the last inequality that the relation

$$(c-K-|1-\alpha|)\|R_{\alpha}y-R_{\beta}y\|\leqslant |\beta-\alpha|\|R_{\beta}y\|$$

holds, which proves inequality (27).

Thus, we see that the resolvent R_{μ} is continuously dependent on the parameter μ in the sense that $R_{\mu}y$ converges toward $R_{\beta}y$ if $\alpha \rightarrow \beta$.

Remark. If F is a dilating mapping, i.e. relation (4) holds, then Theorem 8 is valid, where $c = a^{-1} - 1$ and K is subject to restriction (23).

(B) Another family of continuous mappings depending on a real parameter can be introduced as follows. Put

$$y = T_{\lambda}(x) = x - F(x) - \lambda L(x), \quad x, y \in X.$$

The real number λ is called a *regular value* if the mapping T_{λ} is a homeomorphism of X onto itself. The mapping R'_{λ} is called the *resolvent* of T_{λ} if $y = T_{\lambda}(R'_{\lambda}y)$ for arbitrary y of X. The real number λ is called an *eigenvalue* if there exists a vector x of X such that

(28)
$$x = F(x) + \lambda L(x).$$

The vector x is called the eigenvector corresponding to the eigenvalue λ .

THEOREM 9. Suppose that the mappings F and L satisfy conditions (10)-(11) and let λ satisfy the condition

$$|\lambda| < cK^{-1}$$

Then the resolvent R' exists and satisfies the relations

(30)
$$||R'_{\lambda}y_{1} - R'_{\lambda}y_{2}|| \leq (c - |\lambda|K)^{-1}||y_{1} - y_{2}||,$$

(31)
$$||R'_{\alpha}y - R'_{\beta}y|| \leq |\alpha - \beta|(c - |\beta|K)^{-1}||L(R'_{\alpha}y)||,$$

where a and β are subject to restriction (29). Moreover, for any λ satisfying relation (29) there exists a unique eigenvector x corresponding to the eigenvalue λ , i.e. λ and x satisfy relation (28).

Proof. Replacing in Theorem 4 the mapping L by λL and condition (12) by (29), we infer that T_{λ} is a homeomorphism of X onto itself. Thus, the resolvent R'_{λ} exists and satisfies relation (30) in virtue of assertion (c) of Theorem 4. Hence, we have $x = R'_{\lambda}y$ if y = 0, is the unique eigenvector corresponding to the eigenvalue λ for each λ satisfying inequality (29). It remains to prove relation (31).

For α and β satisfying inequality (29) we have

$$y = T_a(R'_a y) = R'_a y - F(R'_a y) - aL(R'_a y),$$

 $y = T_\beta(R'_\beta y) = R'_\beta y - F(R'_\beta y) - aL(R'_a y).$

Hence, it follows that

$$R'_{\alpha}y - F(R'_{\alpha}y) - [R'_{\beta}y - F(R'_{\beta}y)] = (\alpha - \beta)L(R'_{\alpha}y) + \beta[L(R'_{\alpha}y) - L(R'_{\beta}y)]$$
 and, by (10) and (11), we obtain the inequality

$$(c-|eta|K)\|R_lpha'y-R_eta'y\|\leqslant |lpha-eta|\|L(R_lpha'y)\|$$
 ,

which proves relation (31).

Thus, we see that the resolvent R'_a is continuously dependent on the parameter a in the sense that $R'_{\beta}y$ converges toward R'_ay if $\beta \to a$.

Remark. If F is a dilating mapping, i.e. relation (4) holds, then Theorem 9 is valid with $c=a^{-1}-1$ if $K<a^{-1}-1$.

(C) We shall now consider a family of continuous mappings depending on two real parameters μ and λ . Put

$$y = T_{\mu\lambda}(x) = \mu x - F(x) - \lambda L(x), \quad x, y \in X.$$

The real numbers μ and λ form a regular value pair if the mapping $T_{\mu\lambda}$ is a homeomorphism of X onto itself. The mapping $R_{\mu\lambda}$ is called the resolvent of $T_{\mu\lambda}$ of $y=T_{\mu\lambda}(R_{\mu\lambda}y)$ for arbitrary y of X. The real numbers μ and λ form an eigenvalue pair if there exists a vector x of X such that

(32)
$$\mu x = F(x) + \lambda L(x).$$

The vector x is then called the eigenvector corresponding to the eigenvalue pair (μ, λ)

THEOREM 10. Suppose that the mappings F and L satisfy conditions (10)–(12). Let us assume that μ and λ satisfy the condition

$$(33) c > |1-\mu| + |\lambda|K.$$

Then the resolvent $R_{\mu\lambda}$ exists and satisfies the relations

$$||R_{\mu\lambda}y_1 - R_{\mu\lambda}y_2|| \leq (c - |1 - \mu| - |\lambda|K)^{-1}||y_1 - y_2||,$$

$$||R_{\mu\lambda}y - R_{\bar{\mu}\bar{\lambda}}y|| \leq (c - |1 - \mu| - |\lambda|K)^{-1} [|\mu - \bar{\mu}|| |R_{\bar{\mu}\bar{\lambda}}y|| + |\lambda - \bar{\lambda}|| |L(R_{\bar{\mu}\bar{\lambda}}y)||],$$

where (μ, λ) and $(\overline{\mu}, \overline{\lambda})$ are subject to restriction (33). Moreover, for every pair (μ, λ) satisfying relation (33) there exists a unique eigenvector x corresponding to the eigenvalue pair (μ, λ) , i.e. relation (32) holds.

Proof. Let us write

$$y = T_{\mu\lambda}(x) = \mu x - F(x) - \lambda L(x) = x - F(x) - [(1 - \mu)x + \lambda L(x)].$$

Then replacing in Theorem 4 L(x) by $(1-\mu)x+\lambda L(x)$ and the Lipschitz constant K by $|1-\mu|+|\lambda|K$, we infer from (33) that $T_{\mu\lambda}$ is a homeomorphism of X onto itself. Thus, the resolvent $R_{\mu\lambda}$ exists and satisfies relation (34) in virtue of assertion (c) of Theorem 4. Hence, it follows that $x=R_{\mu\lambda}y$ if y=0, is the unique eigenvector corresponding to the eigenvalue pair (μ,λ) for each μ and λ satisfying inequality (33). It

$$y = T_{\mu\lambda}(R_{\mu\lambda}y) = R_{\mu\lambda}y - F(R_{\mu\lambda}y) - [(1-\mu)R_{\mu\lambda}y + \lambda L(R_{\mu\lambda}y)],$$

 $y = T_{\mu\lambda}(R_{\mu\lambda}y) = R_{\mu\lambda}y - F(R_{\mu\lambda}y) - [(1-\overline{\mu})R_{\mu\lambda}y + \overline{\lambda}L(R_{\mu\lambda}y)].$

remains to prove relation (35). For the pairs (μ, λ) and $(\overline{\mu}, \overline{\lambda})$ satisfying

Hence, it follows that

relation (33) we have

$$\begin{split} R_{\mu\lambda}y - & F(R_{\mu\lambda}y) - [R_{\overline{\mu}\overline{\lambda}}y - F(R_{\overline{\mu}\overline{\lambda}}y)] \\ &= (1 - \mu)(R_{\mu\lambda}y - R_{\overline{\mu}\overline{\lambda}}y) + (\overline{\mu} - \mu)R_{\overline{\mu}\overline{\lambda}}y + \\ &\quad + \lambda[L(R_{\mu\lambda}y) - L(R_{\overline{\mu}\overline{\lambda}}y)] + (\lambda - \overline{\lambda})L(R_{\overline{\mu}\overline{\lambda}}y) \;. \end{split}$$

Hence, we obtain the following relation in virtue of (10), (11) and (33):

$$(c-|1-\mu|-|\lambda|K)||R_{\mu\lambda}y-R_{\overline{\mu}\overline{\lambda}}y||\leqslant |\overline{\mu}-\mu|\,||R_{\overline{\mu}\overline{\lambda}}y||+|\lambda-\overline{\lambda}|\,||L(R_{\overline{\mu}\overline{\lambda}}y)||\;,$$

which proves inequality (35).

Thus, we see that the resolvent $R_{\mu\lambda}$ is continuously dependent on the two parameters μ and λ in the sense that $R_{\mu\lambda}$ y converges toward $R_{\overline{\mu}\overline{\lambda}}y$ if $\mu \to \overline{\mu}$ and $\lambda \to \overline{\lambda}$.

Remark. If F is a dilating mapping, i.e. relation (4) holds, then Theorem 10 is valid, where $c = \alpha^{-1} - 1$ and K is subject to restriction (23).

We shall now give two simple examples in order to illustrate the above theorems.

Let us consider the following system of non-linear scalar equations:

(a)
$$f_i(x_i)-L_i(x_1, x_2, ..., x_n)=y_i, \quad i=1,...,n$$

where the real functions f_i (i = 1, ..., n) of the real variables x_i have the same slope, i.e. there exists a positive number c such that

(b)
$$c|x_i - \overline{x}_i| \leqslant |f_i(x_i) - f_i(\overline{x}_i)|$$

for arbitrary values x_i and \bar{x}_i . The function $f_i(x_i)$ is continuous for i = 1, ..., n.

The functions $L_i(x_1, ..., x_n)$ are Lipschitz continuous, i.e. there exists a positive constant K_0 such that

(c)
$$|L_i(x_1,\ldots,x_n)-L_i(\overline{x}_1,\ldots,\overline{x}_n)|\leqslant K_0\sum_{i=1}^n|x_i-\overline{x}_i|$$
 for $i=1,\ldots,n$ and arbitrary x_i,\overline{x}_i .

Put $L(x) = (L_1(x), ..., L_n(x))$, where $x = (x_1, ..., x_n)$ and $||x|| = (\sum_{i=1}^n |x_i|^2)^{1/2}$. Then we obtain from (c)

$$||L(x)-L(\overline{x})|| \leqslant K||x-\overline{x}||,$$

where $K = nK_0$.

For $x = (x_1, ..., x_n)$ put $f(x) = (f_1(x_1), ..., f_n(x_n))$. Then condition (b) yields

(e)
$$c||x-\overline{x}|| \leqslant ||f(x)-f(\overline{x})||$$

for arbitrary $x = (x_1, ..., x_n)$ and $\overline{x} = (\overline{x}_1, ..., \overline{x}_n)$.

Let us suppose that K < c. Then the hypotheses of Theorem 4 are satisfied, and we can claim that the system (a) has a unique solution for arbitrary $y = (y_1, ..., y_n)$. If x and \overline{x} are solutions of (a) corresponding to y and \overline{y} , respectively, then we have in virtue of assertion (c) of Theorem 4 the relation

$$||x-\overline{x}|| \leqslant (c-K)^{-1}||y-\overline{y}||.$$

Another simple example is given by considering the system

$$(a_1) x_i - F_i(x_i) - L_i(x_1, ..., x_n) = y_i, i = 1, ..., n,$$

where the real continuous functions $F_i(x_i)$ satisfy the condition

$$|x_i - \overline{x}_i| \leqslant \alpha |F(x_i) - F(\overline{x}_i)|$$

for some positive constant a < 1 and arbitrary x_i , \bar{x}_i i = 1, ..., n. The assumptions concerning L_i are the same as in system (a). Putting

$$f_i(x_i) = x_i - F_i(x_i)$$

one can reduce system (a₁) to system (a), where we shall have $c = a^{-1} - 1$.

One can also consider systems (a) and (a₁) introducing the parameter μ or λ or both of them.

The corresponding theorems for resolvents can also be formulated in this case.

The non-linear form for non-linear mappings as a generalization of the quadratic form for linear mappings. Let A be a non-linear continuous mapping of the Euclidean n-space X into itself. The expression

$$\frac{(u-v,Au-Av)}{||u-v||^2}, \quad u\neq v, \ u,v\in X$$

Dilating mappings, implicit functions and fixed point theorems

will be called the non-linear form of A. Let us suppose that

$$a(A) = \sup_{u \neq v} \frac{(u - v, Au - Av)}{\|u - v\|^2}$$

is finite. We shall show that if $0 < a(A) < \frac{1}{2}$, then the mapping x - Ax = yis a homeomorphism of X onto itself. Indeed, we have

$$-2a(A)||u-v||^2 \leqslant -2(u-v, Au-Av).$$

Putting c = 1 - 2a(A), we obtain c - 1 = -2a(A) and

$$c||u-v||^2 \le ||u-v||^2 - 2(u-v, Au - Av)$$

$$\le ||u-v||^2 - 2(u-v, Au - Av) + ||Au - Av||^2,$$

Hence follows the inequality

$$c||u-v||^2 \leqslant ||u-v-(Au-Av)||^2$$
.

The last inequality implies that the mapping f(x) = x - Ax is an ε -mapping in the narrow sense. Thus, it follows that f is a homeomorphism of X onto itself.

It is obvious that if λ is a positive number, then $a(\lambda A) = \lambda a(A)$. Thus, we conclude that the mapping $x-\lambda Ax=y$ is a homeomorphism of X onto itself if $0 < \lambda < (2a(A))^{-1}$.

It follows that the non-linear form may be considered as a generalization of the quadratic form of a linear mapping.

Now let us consider the following case. Suppose that A satisfies the relation

$$(u-v, Au-Av) \leqslant \frac{1}{2}||Au-Av||^2$$

for arbitrary u, v of X. We shall show that f(x) = x - Ax is a homeomorphism of X onto itself. Indeed, we have

$$0 \leq -2(u-v, Au-Av) + ||Au-Av||^2$$

Hence, we obtain

$$||u-v||^2 \le ||u-v||^2 - 2(u-v, Au-Av) + ||Au-Av||^2$$

and, consequently, we have

$$||u-v||^2 \leqslant ||u-v-(Au-Av)||^2$$

This inequality shows that f is an ε -mapping in the narrow sense and, consequently, we obtain our assertion.

Suppose now that b(A) is the smallest number α satisfying the relation

$$(u-v, Au-Av) \leqslant \alpha ||Au-Av||^2$$

for arbitrary u, v of X. It is clear that if b(A) exists, then $b(\lambda A) = \frac{1}{2}b(A)$ for positive λ . Thus, we conclude that $x - \lambda Ax = y$ is a homeomorphism of X onto itself if $\frac{b(A)}{\lambda} \leqslant \frac{1}{2}$, i.e. if $\lambda \geqslant 2b(A)$.

Extensions to Banach spaces of some of these results will be given elsewhere, including some additional results.

References

K. Borsuk, Über stetige Abbildungen der euklidischen Räume, Fund. Math. 21 (1933), pp. 236-243.

INSTITUTE OF MATHEMATICS POLISH ACADEMY OF SCIENCES (INSTYTUT MATEMATYCZNY PAN)

Recu par la Rédaction le 24. 1. 1969