

Thus the topology of the metric d^* on G/H and the quotient topology of G/H coincide. This completes the proof of Theorem 2.

The proof of Theorem 3 below illustrates the use of Theorem 1. Theorem 3 can be proved alternatively by introducing a non-archimedian metric in the set of Cauchy sequences in G (cf. [6], p. 485).

THEOREM 3. If G is a two sided invariant non-archimedian metric group, then there exists a non-archimedian complete metric group \hat{G} such that G is a dense subgroup of \hat{G} .

Proof. G being a two sided invariant non-archimedian metric group (consequently a metric group, in the usual sense), it can be imbedded as a dense subgroup of a complete metric group \hat{G} ([6], p. 485, (1.4)). Since the non-archimedian metric on G is two sided invariant, there exists a countable base of neighbourhoods of normal subgroups at the identity e of G (see Remark following Theorem 1). The closures in \hat{G} of these subgroups, which are also normal in \hat{G} ([3], p. 46, 5.37 (c)), constitute a base of neighbourhoods ([2], p. 30, Proposition 7) (1) at e for \hat{G} . Hence, by Theorem 1, \hat{G} is also non-archimedian metrizable. Further \hat{G} is complete with respect to this non-archimedian metric (see [5], p. 212, Exercise Q(d)). The proof of Theorem 3 is now complete.

References

- [1] G. Birkhoff, A note on topological groups, Compositio Math. 3 (1936), pp. 427-430.
- [2] N. Bourbaki, Topologie générale, Chapter 3, Actualités Sci. Ind., No. 916-1143, Paris 1951.
- [3] E. Hewitt and K. A. Ross, Abstract harmonic analysis, Vol. I, Berlin 1963.
- [4] S. Kakutani, Über die Metrization der topologischen Gruppen, Proc. Imp. Acad. Japan 12 (1936), pp. 82-84.
- [5] J. L. Kelley, General topology, New York 1955.
- [6] V. L. Klee, Invariant metrics in groups, Proc. Amer. Math. Soc. 3 (1952), pp. 484-487.
- [7] A. F. Monna, Remarques sur les metriques non-archimediennes I, Nederl. Akad. Wetensch. Proc., ser A, 53 (1950), pp. 470-481.
- [8] D. Montgomery and L. Zippin, Topological transformation groups, New York 1955.

THE RAMANUJAN INSTITUTE UNIVERSITY OF MADRAS Madras, India

Reçu par la Rédaction le 9.4.1969

A three-dimensional spheroidal space which is not a sphere

b

Steve Armentrout (Iowa City, Ia.)

1. Introduction. In [1], we described an upper semicontinuous decomposition of E^3 into straight arcs and singletons such that the associated decomposition space E^3/G is topologically distinct from E^3 . In this note, we study local properties of the decomposition space.

We shall show that E^3/G is locally peripherally spherical, i.e., each point of E^3/G has arbitrarily small neighborhoods bounded by 2-spheres. In fact, each point of E^3/G has arbitrarily small closed neighborhoods which are compact absolute retracts and have 2-spheres as their topological boundaries. In particular, each point of the space has arbitrarily small

compact simply connected neighborhoods.

We shall also use the decomposition of [1] to settle a question of Borsuk's concerning spheroidal spaces. A metric space X is a spheroidal space if and only if for each point p of X and each neighborhood U of p, there is a neighborhood V of p such that $V \subset U$ and X-V is a compact absolute retract. It is known that each spheroidal space of dimensions 0, 1, and 2 is a sphere [3]. In [3], Borsuk describes an example (due to Ganea) of a spheroidal space of dimension 4 not a sphere. Borsuk [3] raises the following question: Does there exist a 3-dimensional spheroidal space which is not a sphere? We give an affirmative answer to this question. Regard S^3 as the one-point compactification $E^3 \cup \{\infty\}$ of E^3 . Let G^* denote the upper semicontinuous decomposition of S^3 consisting of all the elements of G, together with $\{\infty\}$. Then associated decomposition space, S3/G*, is a 3-dimensional spheroidal space which is not a sphere. In fact, S3/G* has the following property: Each point of S3 has arbitrarily small open neighborhoods V such that the closure of V is a compact absolute retract, the complement of V is a compact absolute retract, and the boundary of V is a 2-sphere.

Throughout this note, we retain the notation of [1]. G denotes the decomposition of E^3 described in [1], E^3/G denotes the associated

⁽¹⁾ It is sufficient to take a base at e for G, instead of all neighbourhoods at e, for the validity of the proposition referred to.

decomposition space, and Pr denotes the projection map from E^3 onto E^3/G . A and B are horizontal planes in E^3 as described in section 4 of [1].

2. Local properties of E^3/G .

Theorem 1. Each point of E^3/G has arbitrarily small (closed) neighborhoods which are compact absolute retracts and have a 2-sphere as their topological boundary in E^3/G .

Proof. Suppose $g \in E^3/G$ and W is an open set in E^3/G containing g. Suppose g is a non-degenerate element of G. There is an index α such that $g \subset \operatorname{Int} T_{\alpha}$ and $T_{\alpha} \subset \operatorname{Pr}^{-1}[W]$.

We may assume the construction of G carried out so that each component of $(A \cup B) \cap T_a$ is a disc and each such disc intersects Γ_a . Suppose m is the integer such that a is a stage m index. If j=1,2,..., or n_{m-1} , let D_{a1j} denote the component of $T_a \cap A$ intersecting $\langle p_{a1}q_{aj}\rangle$, and let E_{a1j} denote the component of $T_a \cap B$ intersecting $\langle p_{a1}q_{aj}\rangle$. If j=1,2,..., or n_{m-1} , let D_{a2j} and E_{a2j} denote the components of $T_a \cap A$ and $T_a \cap B$, respectively, intersecting $\langle p_{a2}q_{aj}\rangle$.

Now there exist integers k and l such that g intersects both D_{akl} and E_{akl} , but no other D or E. Let L_a denote the closure of the component of $T_a - \bigcup \{D_{aij} \cup E_{aij} \colon i = 1 \text{ or } 2, \ j = 1, 2, ..., \text{ or } n_{m-1}, \text{ and } (i,j) \neq (k,l)\}$ containing g. Let Σ_a denote the boundary of L_a . Then L_a is a polyhedral 3-cell and Σ_a is a polyhedral 2-sphere. Note that if i = 1 or 2, and j = 1, 2, ..., or n_{m-1} , then (1) $D_{aij} \subset \Sigma_a$ if and only if both i = k and $j \neq l$, and (2) $E_{aij} \subset \Sigma_a$ if and only if both $i \neq k$ and j = l. Clearly, g does not intersect Σ_a .

It is easily seen that if $g' \in G$, then (1) $g' \cap L_a$, if non-empty, is an arc, and (2) g' does not intersect Σ_a in more than one point. Hence $\Pr[\Sigma_a]$ is a 2-sphere, and it follows from [3], p. 131 that $\Pr[L_a]$ is a compact absolute retract. (Since each point of E^a/G has arbitrarily small neighborhoods bounded by 2-spheres, E^3/G is finite-dimensional. Thus $\Pr[L_a]$ is finite-dimensional.)

Let Σ_a^* denote $\bigcup \{g' \colon g' \in G \text{ and } g' \text{ intersects } \Sigma_a\}$. Since G is upper semicontinuous and Σ_a is closed, Σ_a^* is closed; clearly, $\Pr[\Sigma_a^*] = \Pr[\Sigma_a]$. Now g is disjoint from Σ_a^* , and $(\operatorname{Int}\Sigma_a) - \Sigma_a^*$ is an open set V such that $g \subset V$, $V \subset \operatorname{Int}\Sigma_a$, and V is a union of elements of G. The boundary, in E^3 of V is contained in Σ_a^* , and in fact, if g' is an element of G lying in Σ_a^* , g' contains a limit point of V. Thus $\Pr[V]$ is open in E^3/G , $g \in \Pr[V]$, and $\operatorname{ClPr}[V] \subset W$. It is easily seen that the topological boundary, in E^3/G , of $\Pr[L_a]$ is $\Pr[\Sigma_a^*]$, or $\Pr[\Sigma_a]$. Hence $\Pr[L_a]$ is a compact absolute retract which is a closed neighborhood of g in E^3/G lying in W and bounded by a 2-sphere.

If g is a singleton, then since H_G is closed, g has a neighborhood V in E^3 such that $\operatorname{Cl} V$ is a 3-cell missing H_G and lying in $\operatorname{Pr}^{-1}[W]$. It follows that $\operatorname{Pr}[\operatorname{Cl} V]$ is a compact absolute retract which is a closed neighborhood of g in E^3/G lying in W and bounded by a 2-sphere. This establishes Theorem 1.

Corollary 1. E^3/G is locally peripherally spherical.

COROLLARY 2. Each point of $E^3|G$ has arbitrarily small compact, connected, locally connected, and simply connected neighborhoods.

A space X is strongly locally simply connected if and only if each point of X has arbitrarily small simply connected open neighborhoods. We conjecture that E^3/G is not strongly locally simply connected.

It is not difficult to show that the following holds: Suppose $g \in G$ and W is an open set in E^3 containing g. Then there is a 3-cell C such that $g \subset \operatorname{Int} C$, $C \subset W$, and C is an union of elements of G.

3. Spheroidal spaces. Let $E^3 \cup \{\infty\}$ be the one-point compactification of E^3 ; $E^3 \cup \{\infty\}$ is homeomorphic to the 3-sphere S^3 , and we shall identify the two spaces. Let G^* denote the decomposition of S^3 consisting of all the elements of G, together with $\{\infty\}$. Then G^* is an upper semicontinuous decomposition of S^3 into arcs and singletons. Let S^3/G^* denote the associated decomposition space, and let \Pr^* denote the projection map from S^3 onto S^3/G^* .

Theorem 2. S^3/G^* is a 3-dimensional spheroidal space which is not a sphere.

Proof. By a simple modification of the argument given in the proof of Theorem 1, we may establish the following: If $g \in G^*$ and U is a neighborhood of g, there is a 2-sphere Σ in U missing g and such that if V is the component of $S^3 - \Sigma$ containing g, then (1) $V \subset U$ and (2) $\Pr[S^* - V]$ is a compact absolute retract. Hence S^3/G^* is a spheroidal space. In fact, Σ may be selected in the argument above so that $\Pr[\Sigma \cup V]$ is a compact absolute retract and that $\Pr[\Sigma]$ is the topological boundary, in S^3/G^* , of both $\Pr[\Sigma \cup V]$ and $\Pr[S^3 - V]$.

Since each point of S^3/G^* has arbitrarily small neighborhoods bounded by 2-spheres, S^3/G^* has dimension at most 3. Since S^3/G^* contains a 3-cell (about ∞), S^3/G^* has dimension 3.

If S^3/G^* were homeomorphic to S^3 , it would follow that E^3/G is homeomorphic to E^3 . This would contradict the results of [1]. Thus S^3/G^* is not a sphere.

In fact, S^3/G is not a 3-manifold. If it were a 3-manifold, then by Corollary 1 of [2], S^3/G would be homeomorphic to S^3 .

186

S. Armentrout

References

[1] S. Armentrout, A decomposition of E3 into straight arcs and singletons, to appear.

[2] — Decompositions of E^s with a compact 0-dimensional set of nondegenerate elements, Trans. Amer. Math. Soc. 123 (1966), pp. 165-177.

[3] K. Borsuk, Theory of Retracts, Warszawa 1967.

UNIVERSITY OF IOWA

Reçu par la Rédaction le 24, 4, 1969

Lattice modules over semi-local Noether lattices

by

E. W. Johnson (Iowa City, Ia.) and J. A. Johnson (Houston, Tex.)

§ 1. Introduction. For Noetherian lattice modules, the concept of the a-adic pseudometric has been introduced and studied in [2] and [3]. Recently the natural completion of a local Noether lattice was related to the completeness of a local ring in its natural topology ([1]). The purpose of this paper is to establish some properties of Noetherian lattice modules over semi-local Noether lattices and their completions.

The basic concepts are introduced in § 2, and some preliminary results are obtained. Let L be a multiplicative lattice and let M be a Noetherian L-module. In § 3 an interesting property concerning certain sequences in M is established (Theorem 3.2). If L is a Noether lattice and m is the Jacobson radical of L, then it is shown (Corollary 3.4) that the m-adic pseudometric on M is a metric ([2], § 3). § 4 contains some results on dimensions. If L is semilocal, it is shown in § 5 that [mA, A] is finite dimensional, for all A in M (Theorem 5.1), L^* is a Noether lattice, and M^* is a Noetherian L^* -module (Theorem 5.9), where L^* and M^* are the m-adic completions of L and M, respectively ([2], § 6). In § 6 it is established that L^* is a semi-local Noether lattice whose maximal elements are extensions ([2], § 5) of the maximal elements of L.

(iv) 0A = 0; for all a, a_{α} , b in L and for all A, B_{β} in M.