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Thus the topology of the metric d* on G/H and the quotient topology
of G/H coincide. This completes the proof of Theorem 2.

The proof of Theorem 3 below illustrates the use of Theorem 1.
Theorem 3 can be proved alternatively by introducing a non-archimedian
metric in the set of Cauchy sequences in. & (cf. [6], p. 485).

TrrorEM 3. If @ is a two sided invarient non-archimedian metric
group, then there emists a nom-archimedian complete metric group & such
that @ is a_dense subgroup of G. .

Proof. & being a two sided invariant non-archimedian metric group
(consequently a metric group, in the usual sense), it can be imbedded as
a dense subgroup of a complete metric group @ ([6], p. 485, (1.4)). Since
the non-archimedian metric on & is two sided invariant, there exists
a countable base of neighbourhoods of normal subgroups at the identity ¢
of @ (see Remark following Theorem 1). The closures in & of these sub-
groups, which are also normal in a ([3), p- 46, 5.37 (c)),, constitute a base
of neighbom'l}oods ([2], p- 30, Proposition 7)(*) at ¢ for G. Hence, by
Theorem 1, ¢ is also non-archimedian metrizable. Further G is complete
with respect to this non-archimedian metric (see [5], p. 212, Exercise @ (d)).
The proof of Theorem 3 is now complete.

(%) It is sufficient to take a base at e for @, instead of all neighbourhoods at e, for
the validity of the proposition referred to.
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A three-dimensional spheroidal space
which is not a sphere

by
Steve Armentrout (lowa City, Ta.)

1. Introduction. In [1], we described an upper semicontinuous
decomposition of E® into straight ares and singletons such that
the agsociated decomposition space E°J@ is topologically distinet
from E° In this note, we study local properties of the decomposi-
tion space. )

We shall show that E%G is locally peripherally spherical, i.e., each
point of E%/G has arbitrarily small neighborhoods bounded by 2-spheres.
In fact, each point of E°/@ has arbitrarily small closed neighborhoods
which are compact absolute retracts and have 2-spheres as their topological
boundaries. In particular, each point of the space has arbitrarily small
compact simply connected neighborhoods.

We shall also use the decomposition of [1] to settle a question of
Borsuk’s concerning spheroidal spaces. A metric space X is a spheroidal
space if and only if for each point p of X and each neighborhood U of p,
there is a neighborhood V of p such that ¥ C U and XV is a compach
absolute retract. It is known that each spheroidal space of dimensions
0, 1, and 2 is a sphere [3]. In [3], Borsuk describes an example (due to
Ganea) of a spheroidal space of dimension 4 not a sphere. Borsuk [3]
raises the following question: Does there exist a 3-dimensional spheroidal
space which 4s not a sphere? We give an affirmative answer to this question.
Regard §° as the one-point compactification E* o {oo} of F°. Let G* de-
note the upper semicontinuous decomposition of §* consisting of all the
elements of @, together with {co}. Then associated decomposition space,
§°G%, is a 3-dimensional spheroidal space which is not a sphere. In fact,
§/G* has the following property: Each point of §° has arbitrarily small
open neighborhoods V such that the closure of V is a compact absolute
retract, the complement of V ‘is a compact absolute retract, and the
boundary of V is a 2-sphere. . )

Throughout this note, we retain the notation of [1]. @ denotes. the
decomposition of E® described in [1], E*G denotes the associated

' 12%


GUEST


184 8. Armentrout

decomposition space, and Pr denotes the projection map from p®
onto B*G. A and B are horizontal planes in B’ as described in sec-
tion 4 of [1].

2. Local properties of E*/G. )

TeEOREM 1. Bach point of B°|G has arbitrarily small (closed) neighbor-
hoods which are compact absolute retracts and have a 2-sphere as theiy
topological boundary in B|G.

Proot. Suppose g ¢ B¥/G and W is an open set in B%/G containing g.
Suppose ¢ is a non-degenerate element of G. There is an index a such
that g C Int7T, and T.CPr-{W].

‘We majy assume the construction of G carried out so that each com-
ponent of (4 v B) ~n T, iy a disc and each such disc intersects I, Sup-
pose m is the integer such that « is a stage m index. If j = 1, 2, ..., or 5, s
let Dyy; denote the component of T, ~ A infersecting <(pug.>, and
let E; denote the component of T, ~ B intersecting (pu gu). Ifj =1, 2y,
O N1, let Dy; and Ees; denote the components of T, ~ A and T, ~ B,
respectively, intersecting {pu2gu;>.

Now there exist integers k and I such that ¢ intersects both D,y
and Fu, but no other D or B. Let L, denote the closure of the component
of To— (J{Dass v Bujz i=1 or 2, j=1,2,..., o Npmy, ond (4,9)
# (k, 1)} containing g. Let X, denote the boundary of IL,. Then I, is
a polyhedral 3-cell and Z, is a polyhedral 2-sphere. Note that if 4 =1
or2,andj=1,2, ..., OT iy, then (1) D,;; C X, if and only if both i =k
and j #1, and (2) Eu; C Z, if and only if both i # & and j=1. Clearly,
g does not intersect X,.

It is easily seen that if ¢’ ¢ @, then (1) ¢" ~ L, if non-empty, is an
arc, and (2) ¢" does not intersect X, in more than one point. Hence Pr[X,]
is a 2-sphere, and it follows from [3], p. 131 that Pr[L,] is a compact
absolute retract. (Since each point of %@ has arbitrarily small neighbor-
hoods bounded by 2-spheres, E*/& is finite-dimensional. Thus Pr[L,] is
finite-dimensional,)

Let 2% denote |J{g": ¢’ « @ and ¢ intersects 2.}, Since G is upper
semicontinuous and Z; is closed, X* is closed; clearly, Pr[X¥] = Pr[X,].
Now g is disjoint from X%, and (Int Z,)—Z¢ is an open set V such that
gCV,VCInt X, and ¥ is a union of elements of @. The boundary, in E*
of ¥ is confained in X%, and in fact, if g’ is an element of @ lying in 2¥,

-¢’ confaing a limit point of V. Thus Pr[V]is open in E¥@, g « Pr[V], and
-CIPr[V]C W. It is easily seen that the topological boundary, in E°/G,
of Pr{L.] is Pr[Z}], or Pr[Z,]. Hence Pr[L

. L <] is a compact absolute retract
which is & closed neighborhood of g in FF[@ lying in W and bounded by
a 2-sphere.
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If g is a singleton, then since Hg is closed, g has a neighborhood V'
in B® such that C1V is a 3-cell missing Hg and lying in Pr-1[W]. It follows
that Pr[C1V] is a compact absolute retract which is a closed neighborhood
of g in F*|G lying in W and bounded by a 2-sphere. This establishes
Theorem 1.

COROLLARY 1. BP|G is locally peripherally spherical.

CoROLLARY 2. Bach point of E*|@ has arbitrarily small compact, con-
nected, locally comnected, and simply connected neighborhoods.

A space X iy strongly locally simply commected if and only if each
point of X has arbitrarily small simply connected open neighborhoods.
We conjecture that E°/@ is not strongly locally simply connected.

It is not difficult to show that the following holds: Suppose g« G
and W is an open set in E® containing g. Then there is a 3-cell € such
that g CInt 0, C C W, and C is an union of elements of @.

3. Spheroidal spaces. Let E®u {co} Dbe the one-point compac-
tifieation of E°; E® U {co} is homeomorphic to the 3-sphere 8%, and
we shall identify the two spaces. Let G* denote the decomposition of 8*
consisting of all the elements of &, together with {eo}. Then.G* is an
upper‘ semicontinuous decomposition of §° into arcs and singletons.
Let §%/G* denote the associated decomposition space, and let Pr* denote
the projection map from §° onto §%/G*.

THEOREM 2. S§%/G* is a 3-dimensional spheroidal space which is not
a sphere.

Proof. By a simple modification of the argnment given. in thg proof
of Theorem 1, we may establish the following: If g € G* and Uis & nelg}lbor-
hood of g, there is a 2-sphere X in U missing g and such that*lf Vis th.e
component of §°— X containing g, then (1) VC U a,nfi (2) Pr*[§*—V] is
a compach absolute retract. Hence S°/G* is a spheroidal space. In fact,
Z may be selected in the argument above so that Pre[Z U V]is a’compa,(it
absolute retract and that Pr*[Z] is the topological boundary, in S%/G*,
of both Pr*[X v V] and Pr*[§*—V]. .

Since each point of §°/G* has arbitrarily small nelghborhoo@s bounded
Dby 2-spheres, §°/G* has dimension at most 3. Since 8%/G* contains a 3-cell
(about oo), 8°/G* has dimension 3. )

It S”/é* were homeomorphie to &7, it would follow that FPQ is home9~
morphic to FE°. This would contradict the results of [1]. Thus S%G* is
not a gphere. ) )

In fact, 8@ is not a 3-manifold. If it were a 3-1311a,n1f01d, then by
Corollary 1 of [2], §%/@ would be homeomorphic to &
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Lattice modules over semi-local Noether lattices
by .
E. W. Johnson (Iowa City, Is.) and J. A. Johnson (Houston, Tex.)

§ 1. Introduction. For Noetherian lattice modules, the concept of the
a-adic pseudometric has been introduced and studied in [2] and [3].
Recently the natural completion of a local Noether lattice was related
o the completeness of a local ring in its natural topology ([1]). The purpose
of this paper is to establish some properties of Noetherian lattice modules
over semi-local Noether lattices and their completions.

The basic concepts are introduced in § 2, and some preliminary
results are obtained. Let L be a multiplicative lattice and let M be
a Noetherian L-module. In § 3 an interesting property concerning certain
sequences in M is established (Theorem 3.2). If L is a Noether lattice
and m is the Jacobson radical of L, then it is shown (Corollary 3.4) that
the m-adic pseudometric on M is a metric ([2], § 3). § 4 contains some
results on dimengions. If L is semilocal, it is shown in § 5 that [md, A]
i finite dimensional, for all 4 in M (Theorem 5.1), L* is a Noether lattice,
and M* is a Noetherian L*-module (Theorem 5.9), where L* and M* are
the m-adic completions of L and M, respectively ([2], § 6). In § 6 it is
established that L* is a semi-local Noether lattice whose maximal elements
are extensions ([2], § 5) of the maximal elements of L.

§2. Preliminary remarks. By a multiplicative lattice we shall mean
a complete lattice on which there is defined a commutative, as-
sociative, join distributive multiplication such that the unit element of
the lattice is an identity for the multiplication. Let L be a multiplicative
lattice and let M be'a complete lattice. We shall denote elements of L
by a,b, ¢, ... with the exception that the null element and unit element
of I will be denoted by 0 and I, respectively. We shall denote elements
of M by A,B, 0, ..., with the exception that the null element and unib
element of M will be denoted by Oy and M, respectively. When no con-
fusion i possible, 0 will also be used in place of 0jr. Recall that M is an
L-module ([2], Definition 2.2) in case there is a multiplication between
elements of L and M, denoted by a4 for ain L and 4 in M, which satisfies:
(i) (ab)4d = a(b4), (ii) (V @a)( >/Bﬁ) = \{3 @,Bp; (i) I4d=4; and

(iv) 04 = 0; for all a, a4, b in L and for all 4, Bgin M.
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