214 R. Balbes
References

[1] G.Birkhoif, Lattice theory, 3rd ed., Amer, Math. Soc. Collog. Publ. 25, Providence

R. I, 1967.
(2] E. Marczewski, Concerning independence in lattices, Collog. Méth. 10 (1963
pp. 21-23. »
[3] — Independ and h 'phisms in abstract algebras Fund.. Math
o il 3 . Math. 50 (1961),

[4] J. Plonka, On distributive quasi-lattices, Fund. Math. 60 (1967), pp. 191-200

[5] M. H. Stone, Topological representati of distributive latti
) e, 1 g attices and B i
logics, Casapis Pést. Mat. Fiz. 67 (1937), pp. 1-25. roerian

UNIVERSITY OF MISSOURI
St, Louis, Missouri

Regu par la Rédaction le 24. 6. 1969

Characterizing the 3-cell by its metric

by
Dale Rolfsen* (Princeton, N. J.)

The purpose of this article is to prove that cerfain elementary prop-
erties enjoyed by the Fuclidean metric on the unit cube or ball in 3-space
yield some rather simple characterizations of the topological 3-cell.

ntroduction. In a metric space (X, d), m is a midpoint of # and ¥y
provided d(w, m) = d(m,y) = td(z,y). We say that a space (or its
metric) is conves if each pair of points has at least one midpoint, strongly
conven (SC) if each pair has exactly one midpoint, and without ramifica-
tions (WR) if no midpoint of 2 and ¥ is also & midpoint of #” an ¥, unless
z— o', A metric gpace which is simultaneously 8C and WR will be called
SC-WR.

Following are the paper’s main results (these have already been
announced in [10] without detailed proofs).

TurorEM A. Bach 3-dimensional compact SC-WER metric space S
homeomorphic fo the 3-cell.

TrmorEM B. Hach compact 3-manifold (with boundary) having o SC
melric is homeomorphic to the 3-cell. i :

TEEOREM C. Any crumpled cube having o SC metric is homeomorphic
to the 3-cell. (A crumpled cube is defined fo be the dosure of the bounded
complementary domain of some 2-sphere in ES.)

Theorem A generalizes the analogous result in 2-dimensions proved
by Lelek and Nitka [6]. The content of Theorem B is that if “fake cubes™
(i.e. homotopy 3-cells which are not real cells) exist, then they fail to
have a metric with unique midpoints. Although the higher dimensional
versions of these theorems seem at present to be unanswered, the following
related result is true at leagt for > 5: Bach compact n-manifold having
a SC-WR metric is topologically an n-cell [see 10]. Section I recalls some
general properties of convex metric spaces, Section IT contains the proof
of Theorem A, while Theorems B and C are proved simultaneously in
Section IIL . .

* Supported in part by National Jeience Foundation grant GP-7952X, and hased
on the author’s doctoral dissertation written under Joseph Martin at the University
of Wisconsin.
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216 D. Rolfsen

L Segments. and deformations. In a complete convex metric Space
each pair of points %,y determines at least one arc (called a segmcm;
between ?an 4 which is isometric with a cloged real line interval [8]
If the metric is Sp, this segment is uniquely determined ard for each t.
g(gtfl, there is a unique point z sueh that d(z,2)=t-d(w,y) ané

2,9)= (1—1)-d(x,y). We denote 2z by P(w,y,1 i

At y P(x,y,t), and the interval

) (1) If X is a compact SC metric space, the function P defined above
18 a continuous function mapping XX Xx T onto X.

Proof. Only the continuity is in question. Suppose @ —>m, g
and #i—%, where @y, ,yi, y ¢ X and t;, t ¢ I. By compactness of,Xyi thz
sequence p; = f’(wh Yi, %) has a subsequence {p,} which conve’rges
Zag to) ji'_ gflut smce.d (.mni, Pu;) = oy A (Dng, Yny), We let i—>oo and see thm;
at )= (2, ¥). Snn{la;ﬂy ad(p,y) = (1—t)d(z, ), s0 p i, by definition

e ppmt }J(m, 4, 1). Since every convergent subsequence must conver é
to this point, we ]lmve P(wiy yi, t) >P (2, v, t), proving (1). m g
o XT?;lst(;r 12: ti:lxed @ eX, 'Ht(w).= P(w, Dy, 1) defines a homotopy
; el at (i) H,= identity, (ii) Hy(X) = x, and (i) Hjx)
les on the segment from # to x,. We shall say that H “shrinks” X (or
any subset of X) along segments toward %,. It may readily be seen that
:,wiompa.ct convex metric space is 8C-WR if and only if the union of any
e segments wh.leh meet in at least two points is an are. Thus in the
C-WR case H; is a homeomorphism for ¢ < 1.

st (bzz) Eac%b cqmpaot 80 .me.tm'c space X is contractible and locally con-
ible (so. if dimX < oo it is an absolute retract). If X s also WR, then
the dimension of each open set is dim X, ’

abovfe’rztl)f. Choosing any @, ¢ X, we may shrink X to , ag described
ab fa,e.t Sis;)@:,?krl subset At of X may be shrunk in X to any point of A
fact, e segments are defined by the metri is
shrinking of A takes place i i o, 80 ¥ s 1ooills
ontnn of Pblace in a set of diameter < 2-diam 4, so X is locally
Shlmkn?lg v;iréf is SC:WR fmd U is an open set we choose @, e U and
Bivea imaag; 1;:;113;1 ﬁﬂ; image o}f X is ingide U but before it becomes
. eomorphic copy of X, go Aim U = di

By compactness each se, i ’ cgment which 1

- : gment in X ich i
maximal (with respect to inclusion). Fiena 10 & sogment which i
(3) If € is an endpoint

of a ¥ j X
space X, thon % f @ maxzimal segment i the compact SC meiric

—e 18 a contractible space.

P.roof. Let %, be the other en.
Then in shrinking X to s,
lies in X —¢. =

dpoint of such a maximal segment.
along segments, the image of X —¢ always
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1. Proof of Theorem A. In order to begin the construction proving
Theorem A, it is necessary to locate “interior” points to the space.
This is the purpose of the following lemma.

TImvma A. If X is a compact SC-WR metric space and 0 < dimX < oo,
then there exists an open subset U of X such that X —a fails to be contractible
(im itself) whenever » e U. Further, we can find such an open set U which
is dense in X.

Proof. We use the notion of Vietoris homology cycles with compact
carriers and adopt the definitions, notation, and propositions outlined
in [2]. The key to the proof is Alexandroff’s theorem [1] that the dimension
of a compact metric space is > k& if and only if some k- dimensional essential
infinite cycle is homologous to 0 in the space. So if dim X = m, there is
an n—1 dimensional infinite cycle y in X and a compact subset B of X
which earries y such that y ~0 in X, but y~0 in B. Then one may con-
struct a ,,membrane” A for y spanned on B, i.e. A is compact, BCACX,
and y~0 on A but y+~0 on .A—a when a is any point of 4—B. Now
we choose any point @ ¢ A—B and a number ¢ > 0 such that d(a, B) > 2¢,
and let U De the e-neighborhood in X of the point a.

¢ # ¢ U we show that X —.is not contractible by assuming other-
wise. Let V be the e-neighborhood of @, so V intersects 4 but not B. It
follows from the general theory that D= bd(V)~ 4 contains an n—1
dimensional infinite cycle ' such that y'~+0 in D. However, since X is
2 SO-WR metric space, the set ¢ obtained by taking the union of all
segments from D to w, is homeomorphic to the cone on D with vertex
at #. S0 9’ ~0 in O but y’+~0 in 0—z. Now if X —a were contractible,
there would be a compact set B C X —x such that »'~0 in ZE. But since.
¢’ ~0 in each of € and B, but y'~+0 in. 0 nF (because 0 ~n B C (0 —ua),
the Phragmen—Brouwer theorem guarantees the existence of an n - di-
mensional infinite ¢ycle in ¢ v E which is not homologous to 0 inCuH,
hence essential. But X is contractible, so this n-cycle is homologous
to 0 in X. By Alexandroff’s theorem, we obtain the contradiction that
dim X > n.

To verify the lagt part of the lemma, note that all the above con-
struction of A4, B, and U could have been confined to stay inside any
preassigned open set, since the dimension of any open set is also n. Then
we just take the union of the U’s so obtained. m

We assume in the rest of Section 1L that (X, d) is a metric space satisfying
the hypothesis of Theorem A (i.e. compact, 3-dimensional and SC-WR).
By Lemma A there exist p e X and e> 0 such that the set ¥ = {w ¢ X:
d(x,p) < €} containg mo points with contractible complements. Thus
by (3), no maximal segment ends in N. If @, 9 « X and # # v, let xy and
xy> denote, respectively, the (unique) segment from # to 4 and the (unigue
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by the WR property) largest; segment which contains ¥ and ends at s,
Let 8 = {# e X: d(z,p) = &}, and let B the set of endpoints (other than p)
of segments paz), 2 ¢ X—p. Observe that each point of B is an endpoint
of a maximal segment. The plan is to prove first that § is a 2-sphere,
then that B is compact and (hence) also a 2-sphere. Then we may con-
clude that X is a 3-cell.

(4) 8 is compact and 2-dimensional and N is homeomorphic to ¢ (8),
the cone on S, with vertew at p and segments as cone elemenis.

Proof. Sisa closed subset of the compact space X, and any segment
from 8§ to p hits S just once, 80 we can embed the cone on 8 into N via
segments running from § to p. Since no maximal segment ends in N,
every point of N lies on some gegment from § to p. Hence the embedding
is surjective. Since dim(N)= 3 by (2), we see also that dimS=2. m

(8) There ewists a retraction r of X —p onto S such that for each » in
X—p, r(w) e po).

Proof. We shrink X—p toward p along segments until the image
lies in N —p and then push the cone-less-vertex N —p along segments
to the base S. m

It follows from (5) and the fact that X —p is an absolute neighborhood
retract (ANR) that:

(6) S is an ANR and a 1-1 continuous image of B.

() If s € 8, then 8—s is contractible (in itself).

Proof. Note first that the segment sp) intersects § in exactly one
other point s". Now, if » e §—s, the segment s’ cannot meet ps), for
if it did the metric would not be WR. So we may shrink §—s along
segments toward s’ in X —ps> by the map Hyz)= P(x,s’,1),-wc S—s,
tel. Then rH;: 8—s—>8—s iy a contraction. ® ‘

(8) There is a homeomorphism of 8 omto itself without fimed points
and having period 2.

Proof. We just use the correspondence s—s’ described in the proof
of (7). Note that s’ is the only point on § having distance 2& from s. For
if s were another, then p would be a midpoint of s and s as well as s
and &', contradicting the WR property. Now if s, converges in § to s,
then d(sn, sn) = 2¢ and any limit point ! of s, must satisfy d(s,l) = 2e

and le S, so 1= ¢s'. This establigshes continuity, and bijectiveness and
periodicity are obvious. m

(9) 8 is conmected and not separated by any finite set.

Proof. Let A= {s,, ..., sn} be a finite subset of § and choose any
%,y € 8—A. We shall connect & and y by a path in §— A. First choose
6> 0 small enough to insure that if M is the closed d-neighborhood
of y, then any point of M may be connected to ¥ by a segment missing
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every segment psi>. Now, for ¢ <n, let M; be the set of all m e M such
that ma intersects psiy. If not empty, My is compact and since ma ~ pssd
can only be one point, there is a continuous function f: M;—ps:> defined
by -f(m) = mm ~ psed>. Now if 2 e ps), f(#) is a subset of me), hence at
most one-dimensional. Since the range of f, and each point’s preimage
have dimension at most 1, a standard dimension theorem [4] shows that
TUm M; < 2. Thus dim(J M) <2, while dim M =3 by (2), so there
is a point ¢ € M — U M. This means the segment.qm migses eaf:h of the
psiy, as does the segment gy. Now if r: X—p—8 is the retraction of (5)
we find that 7(gw v qy) misses 4 and is a path from » to y. B

(10) S 18 a 2-sphere. ’

To prove this we appeal to the following algebraie eha.ra,'ete?iza,tlon
due to McCord [7] and based on the Kline sphere characterization:

A Hausdorff space Y is a 2-sphere if Hy(Y) 70 but Hy(Y —y) =.0
for i=0,1,2 and each y < Y. (Here H, is reduced singular homology with
integral coefficients.) : .

The condition Hi(S—s)=0 for se8 and i=0,1,2 is certainly
true by (7). We get-at Hy(8) by looking at other dimgnsions. Hy8)=10
since S is connected and H(S) =10 for {> 2 since dims = 2. Further,
we see H,(8)=0 by examining the following portion of the Ma,y.er—
Vietoris sequence of the triad (8, §—=, §—y), where # and y are distinet
points of 8; it is exact because S—u and 8 —y are open:

e Hy(S —2)@ Hy(8 —y) —Hy(8) > Ho(8 —{m, y}) >

The groups on the left are trivial by (7) and the group on Jﬁh‘? right
is trivial by (9), so H,(S) must be trivial. It H,(S) were also -tylwa,l, we
could conclude by a theorem of Lefschetz [5] that thfs acyclie gompact
ANR space 8 had the - fixed-point property. Since this contradicts -(8),

ivi i -sphere. B
H,(8) must be nontrivial and hence S is a 2-8p ! ' .
’ Since 8 is a 1-1 continuous image of B, we will estabhgh that B is
a 2-sphere as soon we prove it is compact. N is a 3-cell, bemg the cone
on §, and by shrinking X toward p until it Les in N, we obtain an em-
bedding of X in E. ‘

(11) Under any embedding of X in B?, B is its boundary and is therefore
compact. ' . .

Proof. Suppose @ ¢ B. Then, by (3), X —g is contractible, an ]:v«;
conclude that » ig & boundary point of X. Conversely, Suppose NOW t 1
% ¢B. Let ¢ be the endpoint (other than p) of pw), so that # is mter(lior
to the segment pg. It is now possible to shrink X along segments towgll" q
far enough to obtain an embedding h: X »X such that k(p) = saf nmc:
pCN, we have xeh(NV)CX. Since R(N) is an open 3-cell, it follow
that @ is interior to X, and (11) iz proved. ®
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The proof of Theorem A is concluded by observing that X is homeo-
morphic to the cone on the 2-sphere B.

1L Proof of Theorems B and C. In the remainder of the paper
(M, d) will denote a compact SC (but not neqessariby WR) metric space
satisfying the hypothesis of either Theorem B or C. Thus M ambiguously
denotes either a 3-manifold (hence by (2) a homotopy cell) or a crumpled
cube. We wish to show that M is a 3-cell. Certain properties of M are
apparent under either assumption: Bd (M) is a 2-sphere and by an argu-
ment a8 in (11) any maximal segment ends in the boundary. The abhbre-
viagtions “Bd” and “Int” will have the usual meanings of boundary and
interior for manifolds. For a crumpled cube they will be used with re-
ference to some (hence any) embedding in 3-space.

Levma B. Suppose that (i) K is either a crumpled cube or homotopy
celly (i) J is a simple closed curve in BA(K), and (i) a is an are in K —dJ
whose endpoinis a and b are in different components of BA(K)—J. Then J
s not contractible in M —a. ’

Proof. Suppose first that K is a crumpled cube K C E®. There is
an arc # from a to b with Int(8) C B*— K. Since a U B'is a simple closed
curve which pierces once a disk (part of Bd(K)) bounded by J, the
curves J and a v B are linked in E®. Thus J is not contractible in K —q
CE—(avp). .

Now suppose that K is a homotopy cell, which we may assume to
be triangulated. It is sufficient to agssume that o is polygonal and a ~ Bd(K)
= {a, b}, and prove that J represents a nontrivial element of the singular

homology group H,(K—a). Letting T be a tubular neighborhood of o
in K, there is an exact sequence:

o> Hy(E —a, T'—a)—+H,(T —a) —H(K—a)>H(E—a, T—a)—>...
By excision and contractibility of X and T we have:
HE—a,T—a) ~ Hy(K,T) ~ 0.

Thus the map H(T —a)>H (K —a) induced by inclusion is an
isomorphism. Since J separates a from b in BA(K) and the infinite cyclic
group H (T —a) is generated by a small eycle around « in Bd(K), we
see that J is homologous in K—a to a generator of H,(T —a). Therefore J
represents a generator of Hy(K —a) and the lemms is proved.

A construstion. Tt iy convenient to enlarge the original space M
to give it a constant “radius”. Choose & fixed point * e Int (M) and a fixed
7> sup{d(, b) :b e BA(M)}. Let A C Bd (M) X [0, oo) be the set of all pairs
(b,%) such that 0 <t<r—d(,b). The map (b, ) (b, t(r—d (s, 5)7)
shows that actually A ~ Bd(M)x I o & x 1. Although M v A has no
obvious segment structure, we may eagily define a “radial” structure.

& ©
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(By M v A we mean digjoint union with each b ¢ Bd(M) identified with
(5, 0) ¢ A.) For a point @ ¢ M v A, define the ray sz as follows: if w.eM,
« is just the segment from « to ; if wed (say = (b, 1), *o i the
gnion of the segment b in M and the arc bx[0,%] in A. The I?atu.rall
pa,rametrizations of segments and intervq.ls [0, t] induce a para_metljlzatlon
of rays, and rays clearly vary continnously with thei? endpoints so
deformations may be defined as with segments. The nqtlt?n of segment
length extends to rays: the length of xw, x = (b, ) € A, is just d(=, b)+1.
All rays extend to maximal rays and maximal rays all have length ¢ a.,nd
end in Q@ = {(b, %) e A: t = r—d(x,b)}, which is a 2-sphere. We may thm.k
of M u A as a metric space, although it is not required that this metric
rrespond to length on rays.

* FIi)naﬂy define a map fi (M v A)—*—(0,r] by f(x)= the length
of the ray 2. That is:

d(*, ),
d(x, b)+1,

Let us show that fis really a fibration over (0, 7] with 2-spheres as fibres.

(12) For each t < (0, 7], f(t) is a 2-sphere.

Proof. The set f () consists of those # such that *0 has lgngth i.
Thus for fimed ¢, there iy a continuous funct.ion g Q@->f .(t) deﬁ:ned' by
gi(g) = *q f7(%). Since rays extend to maxlliaa.l r.ays, g is a sur]ectu').]%.
We now show that if o ef (), then (i) g7 () is connected, and (ii)
Q—gi (@) is connected. Clearly gi () is just the set of qe@ such that
# e xg, thus (i) and (ii) hold when ¢ 4. So assume @ eI'nt(M). Supgose
for (i) that gi'(z) is not connected. Tlhen there feXlst points a,Ab €g; I(Jmt)j
and a simple closed curve J e @—gi (%) separating a from b m.Q. &
o', b, J’ be the respective projections of a, b-, J onto Bd (M), via rays.
Since e’ and b’ meet at z, and J’ contracts in M along rays’mlssmg @,
there is an arcaC xa’ w xb' C M from o' to b’ such that J” contracts
in M —a. This contradicts Temma B, so gi '(#) must 1_)e c?nnected. To
prove (i) suppose gi () separates @; say ¥ aa'ad # are in tzlifferent co(in-
ponents of Q—g;  (»). Let &,y’,2" be the.: projections of g (mi, y and #
onto BA(M). Now xy’ and x#' miss # while G epntracts to » along 1‘alysj
all of which must miss »y’ w 2. By continuity of. g: and local con
tractibility, we see that some neighborhood U of ¢ in Bd(ll’.{) a}iso eon(;
tracts to » migsing *y’ v #2’. Then U contains a' sm:tple‘c o]s:‘e em-vB
separating ¢’ from 2’ and we proceed as before to contradict Lemma g
and establish that g () cannot separate S In summary, we _have a s:rd v
jective map g @ —f'(¢) such that the preimage of each point is com;e(;3 eee !
and fails to separate Q. Since @ = &%, a theorem of Moore [9] guaran
that f7(1) =~ S m

wsM,

f(”)z{ o= (b,8)ed.
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(18) f is o O-regular map.

Proof. In other words we must show that (i) f is an open map,
and (i) if £e(0,7], v € f7(t) and &> 0 are given, then there exists 8 >0
guch that whenever se(0,7], f7(s) ~ Nsz) lies in one component of
F(8) ~ N(w). (N, = e-neighorhood.) Part (i) is clear; to prove (ii) assume
such ¢, @, ¢ are given. Choose VC fU(t) to be a closed, connected neigh-
borhood of # in the sphere f~'(t) and such that ¥ C N(z). Let T be the
union of all rays which mterseet V. Now there exists a neighborhood W
of t in (0,r] such that f (W) ~ T C N,(z). Note that # ¢ V Cf (W) ~ T,
and continuity of rays implies that f*(W) ~ T is a neighborhood of
in X. So ‘we choose 8> 0 such that Na®)Cf (W)~ T. To gee that o
iy properly chosen, suppose f'(s) » Nyz) # @ for some s € (0, #]. Then
s e W and we have:

F7H8) ~ Nofa) Cf7(s) n T CF7(s) ~ Nefw)

But 7(s) ~ T is identical with gsgi Y(¥), which is connected sinee V
is connected and g; is a monotone map. Thus f~(s) ~ Ny(x) lies in a single
component of 17(s) ~ Ny(w), proving that f is 0-regular. m :

‘We now appeal to Theorem 7 of Dyer and Hamstrom [3] to conclude
from (12) and (13) that f is a fiber map. In fact, there is a homeomorphism
B (M o A)—%—(0,7]x 8 such that the following diagram commutes,
where 7 i3 projection onto the firgt coordinate:

(Mo A)— %L (0, 7] x &

A

(0,7]

Taking the one-point compactifications, this provides a homeomor-
phism H: M v A —B,, where B, is the closed ball in B® of radius 7, such
that f(#) = ||H(x)|, where ||-|| is the Buclidean norm. Since M is therefore

homeomorphic to a starlike neighborhood of 0 ¢ B? bounded by a sphere,
M is a 3-cell.
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