The homotopy equivalence $f \colon \Omega E \to \Omega B \times \Omega F$ is a fiber map but the homotopy inverse g is not. Define $N \colon \Omega B \times I \to \Omega B$ and $Q \colon \Omega B \times I \to \Omega B$ by

$$N(eta,s)(x) = egin{cases} eta(2x-xs) \ eta(1-s+xs), & 0 \leqslant x \leqslant rac{1}{2}, \ eta(1-s+xs), & rac{1}{2} \leqslant x \leqslant 1; \ Q(eta,s) = egin{cases} eta * C_B, & 0 \leqslant s \leqslant rac{1}{2}, \ N(eta,2s-1), & rac{1}{2} \leqslant s \leqslant 1. \end{cases}$$

Define $\psi: \Omega B \times \Omega F \times I \rightarrow \Omega E$ by

$$\psi(\beta, \sigma, t) = \lambda(g(\beta, \sigma), Q(\beta, \cdot))(t).$$

Then $\psi_1 \sim \psi_0 \sim g$ so that ψ_1 is also a homotopy inverse for f. If $(\beta, \sigma) \in \Omega B \times \Omega F$,

$$p\psi_1(\beta, \sigma) = Q(\beta, 1) = \beta = q(\beta, \sigma)$$

so ψ_1 is a fiber map. Note also that

$$qf\psi_1(\beta, \sigma) = q(p\psi_1(\beta, \sigma), \varphi_1\psi_1(\beta, \sigma)) = q(\beta, \varphi_1\psi_1(\beta, \sigma)) = \beta,$$

so that f_{ψ_1} is fiber homotopic to the identity map on $\Omega B \times \Omega F$. A straightforward computation shows that $\psi_1 f$ is fiber homotopic to the identity map on ΩE .

Now consider the fiber structures $(\Omega^n E, p^n, \Omega^n B)$ and $(\Omega^n B \times \Omega^n F, q^n, \Omega^n B)$ where p^n is the natural map induced by π and q^n is the projection on the first factor.

COROLLARY. If (E, π, B) is a weak Hurewicz fibration with cross section, then $(\Omega^n E, p^n, \Omega^n B)$ and $(\Omega^n B \times \Omega^n F, q^n, \Omega^n B)$ are fiber homotopy equivalent for $n \ge 1$ and H-isomorphic for $n \ge 2$.

Proof. Since (E, π, B) is a weak Hurewicz fibration, $(\Omega^n E, p^n, \Omega^n B)$ is also. Since the homotopy equivalence ψ_1 of the preceding theorem is an H-homomorphism if ΩE is homotopy abelian, it follows that the given fiber structures are H-isomorphic for $n \ge 2$.

References

- M. L. Curtis, The covering homotopy theorem, Proc. Amer. Math. Soc. 7 (1956), pp. 682-684.
- [2] E. Fadell, On fiber spaces, Trans. Amer. Math. Soc. 90 (1961), pp. 1-14.
- [3] S. T. Hu, Homotopy Theory, New York, 1959.
- [4] W. Hurewicz, On the concept of fiber space, Proc. Nat. Acad. Sci. U.S.A. 41 (1955), pp. 956-961.

UNIVERSITY OF KENTUCKY

Reçu par la Rédaction le 20. 5. 1968

On nil semirings with ascending chain conditions

by

Erol Barbut (Moscow, Id.)

1. A set R, together with two operations + and \cdot is said to be a semiring if (R, +) and (R, \cdot) are semigroups, (R, +) being a commutative semigroup with 0, with the distributive laws holding between addition and multiplication. Furthermore, we require that $x \cdot 0 = 0 \cdot x = 0$ for each x in R. If R is a semiring and $I \subseteq R$, then I is a right ideal of R if I is closed under addition, and for every $a \in R$, $b \in I$ we have $ba \in I$. Left and two-sided ideals are defined similarly, analogous to ring theory. If R is a semiring and S is a non-empty subset of R, then $S_r = \{x \in R \mid Sx = 0\}$. If I is a right ideal of R and $I = S_r$ for some $S \subseteq R$, then I is called a right annihilator ideal. Similarly $S_I = \{x \in R \mid xS = 0\}$ and we define left annihilator ideals. Finally, a left (right) ideal of R is called a left (right) k-ideal [1] if $x + y \in I$ and $y \in I$ implies that $x \in I$ for each x and y in R.

In this paper after defining the Levitzki radical $\mathfrak{L}(R)$ of a semiring R, we show that every nil subsemiring of a semiring with the ascending chain condition on left and right annihilator ideals is nilpotent, provided that $\mathfrak{L}(R)$ is a k-ideal.

2. If I is a two-sided ideal of a semiring R, then it is well known that R/I also becomes a semiring if we define a congruence relation \equiv as follows:

$$a \equiv b$$
 iff $a+i_1=b+i_2$ for $i_1, i_2 \in I$.

LEMMA 1. If I is a k-ideal, then $x \equiv 0 \mod I$ if $x \in I$.

Proof. If $x \equiv 0 \mod I$, then $x+y \in I$ for some $y \in I$. But then $x \in I$ since I is a k-ideal. Conversely if $x \in I$, then clearly $x \equiv 0 \mod I$.

DEFINITION. A function φ from a semiring R to a semiring S is a homomorphism if

$$\varphi(x+y) = \varphi(x) + \varphi(y)$$
, $\varphi(xy) = \varphi(x)\varphi(y)$ and $\varphi(0) = 0$.

 φ is a semi-isomorphism if φ is onto and $\operatorname{Ker} \varphi = 0$.

Lemma 2. If R and S are semirings and φ is a homomorphism from R onto S, then $R/\mathrm{Ker}\varphi$ is semi-isomorphic to S.

Proof. We map $\bar{r} \in R/\mathrm{Ker} \varphi$ to $\varphi(r) \in S$. Then this map ψ is a homomorphism onto A. Let $\bar{r} \in \mathrm{Ker} \psi$. Then $\varphi(r) = 0$, that is, $r \in \mathrm{Ker} \varphi$. Hence $\bar{r} = 0$ and ψ is a semi-isomorphism.

DEFINITION. A semiring R is locally nilpotent if every finite subset F of R generates a nilpotent subsemiring. This is equivalent to the following condition: There exists an integer N(F) such that every product $x_i \dots x_{i_N} = 0$ for x_{i_j} in F.

Lemma 3. If A and B are locally nilpotent ideals, then A+B is a locally nilpotent ideal.

Proof. Let $F = \{x_1, \ldots, x_n\}$ be a finite subset of A+B. Then $x_i = a_i + b_i$ where $a_i \in A$, $b_i \in B$, for $i = 1, \ldots, n$.

Let $G = \{a_1, ..., a_n\}$, $H = \{b_1, ..., b_n\}$, $K = \{a_{i_1} ... a_{i_k}b_{j} | j = 1, ..., n\}$, where $a_{i_1} ... a_{i_k}$ are all products from G with $k \leq N_1$ where $G^{N_1} = 0$. $L = \{b_{i_1} ... b_{i_l}a_{j} | j = 1, ..., m\}$ where $b_{i_1} ... b_{i_l}$ are all products from H with $l \leq N_2$ where $H^{N_2} = 0$.

Now $K \cup L \subseteq A \cap B$ since A and B are assumed to be two-sided ideals. Suppose that N_3 has been determined so that $(G \cup L)^{N_3} = 0$. Also let N_4 be determined so that $(H \cup K)^{N_4} = 0$. Now let $N = 2 \max(N_3, N_4)$. In any monomial occurring in the product, $(a_{i_1} + b_{i_1}) \dots (a_{i_N} + b_{i_N})$ the number of a_{i_1} 's plus the number of b_{i_k} 's must equal N.

Hence, |a|+|b|=N where |a| denotes the number of a_{ij} 's occurring in a monomial and likewise for |b|.

Thus $|a| > \frac{1}{2}N = \max(N_3, N_4)$, or $|b| > \frac{1}{2}N$.

If $|a| > \max(N_3, N_4) > N_3$, then the monomial is zero by the choice of N_3 . Similarly if $|b| > \max(N_3, N_4) > N_4$, then the monomial is again zero and thus $F^N = 0$. Hence A + B is locally nilpotent.

The proofs for the following lemmas are similar to those in ring theory and are omitted.

Lemma 4 ([3], p. 26). The sum $\mathfrak{L}(R)$ of all locally nilpotent ideals of a semiring R is a locally nilpotent ideal of R.

LEMMA 5 ([2], p. 26). If A is a locally nilpotent k-ideal and R/A is locally nilpotent, then R is locally nilpotent.

LEMMA 6 ([3], p. 27). If $\mathfrak{L}(R)$ is a k-ideal, then $\mathfrak{L}(R/\mathfrak{L}(R)) = 0$.

Lemma 7 ([2], p. 81). Let R be a semiring satisfying the ascending chain condition on left annihilators. If R is nil, then every non-zero homomorphic image of R contains a non-zero nilpotent ideal.

COROLLARY ([2], p. 83). If R is a nil semiring satisfying the ascending chain condition on left annihilators, then R is locally nilpotent.

LEMMA 8 ([2], p. 83). Let R be a nil semiring satisfying the ascending chain condition on left annihilators. Then there exists an element $x_0 \neq 0$ in R such that $Rx_0 = 0$.

 $_{LEMMA}$ 9 ([2], p. 69). If R satisfies the ascending chain condition on left annihilators and if A is a two-sided ideal which is a left annihilator in R, then R/A satisfies the ascending chain condition on left annihilators.

Lemma 10 ([3], p. 27). If L locally nilpotent left (right) ideal, then $L \subset \mathfrak{L}(R)$.

Lemma 11. Suppose that R is a nil semiring such that L(R) is a k-ideal. Let $T_n = \{x \in R | xR^n = 0\}$. Then $L(\overline{R})$ is also a k-ideal where $\overline{R} = R/T_n$.

Proof. Let $x+y \in \Gamma(\overline{R})$ and $y \in \Gamma(\overline{R})$. We claim that $\overline{xR_1}$ is a locally nilpotent right ideal where $\overline{xR_1}$ is the right ideal generated by the set $\overline{xR} \cup \{n\overline{x} \mid n \in N\}$, where N is the set of natural numbers. Suppose that $\{\overline{x}(\overline{r}_1+n_1), \dots, \overline{x}(\overline{r}_m+n_m)\}$ is a finite set in $\overline{xR_1}$, where $r_i \in R$ and $n_i \in N$.

Since $\overline{x} + \overline{y} \in \Gamma(\overline{R})$ and $\overline{y} \in \Gamma(\overline{R})$, $(\overline{x} + \overline{y}) \overline{R_1}$ and $\overline{y} \overline{R_1}$ are locally nilpotent right ideals. Hence there is some number M such that $(\overline{x} + \overline{y})(\overline{r}_{i_1} + n_{i_1}) \dots (\overline{x} + \overline{y})(\overline{r}_{i_M} + n_{i_M}) = 0$ and K with $\overline{y}(\overline{r}_{i_1} + n_{i_1}) \dots \overline{y}(\overline{r}_{i_K} + n_{i_K}) = 0$, for all i_M and i_K .

Hence

$$(x+y)(r_{i_1}+n_{i_1})\dots(x+y)(r_{i_M}+n_{i_M})R^n=0$$

and

$$y(r_{i_1}+n_{i_1})...y(r_{i_K}+n_{i_K})R^n=0$$
.

Thus

$$(x+y)(r_{i_1}+n_{i_1})\dots(x+y)(r_{i_{M+n}}+n_{i_{M+n}})=0$$

and

$$y(r_{i_1} + n_{i_1}) \dots y(r_{i_{K+n}} + n_{i_{K+n}}) = 0$$

and hence $(x+y)R_1$ and yR_1 are locally nilpotent right ideals of R.

Therefore $x+y\in \mathfrak{L}(R)$ and $y\in \mathfrak{L}(R)$. Since $\mathfrak{L}(R)$ is assumed to be a k-ideal of R, $x\in \mathfrak{L}(R)$, and we have $x(r_{i_1}+n_{i_1})\dots x(r_{i_N}+n_{i_N})=0$ for all products of weight N, for some N. Hence $\overline{x}(\overline{r}_{i_1}+n_{i_1})\dots \overline{x}(\overline{r}_{i_N}+n_{i_N})=0$ in \overline{xR}_1 and we have shown that \overline{xR}_1 is a locally nilpotent right ideal of \overline{R} , so that $\overline{x}\in \mathfrak{L}(\overline{R})$. This shows that $\mathfrak{L}(\overline{R})$ is a k-ideal of \overline{R} .

THEOREM ([2], p. 84). If R is a semiring which satisfies the ascending chain condition on left and right annihilators and is such that $\mathfrak{L}(R)$ is a k-ideal, then any nil subsemiring of R is nilpotent.

Proof. Since the ascending chain conditions on left and right annihilators are inherited by subsemirings, we may assume that R is nil.

Let $T_k = \{x \in R | xR^k = 0\}$. Since $T_1 \subseteq T_2 \subseteq ...$ is an ascending chain of left annihilators, there is an n such that $T_n = T_{n+1} = ...$

If $T_n = R$ then $R^{n+1} = 0$ and the proof is completed. If $T_n \neq R$, then $\overline{R} = R/T_n \neq 0$ since T_n is a k-ideal. By the previous lemma $\mathfrak{L}(\overline{R})$

264

is a k-ideal and by Lemma 9 \overline{R} satisfies the ascending chain condition on right annihilators, and so by Lemma 8 there exists an $\overline{x} \neq 0$ in \overline{R} such that $\overline{xR} = 0$.

Therefore $xR \subseteq R_n$ and $xRR^n = xR^{n+1} = 0$. By our choice of $n, x \in T_n$ so that $\bar{x} = 0$. This contradiction proves that $\bar{R} = 0$ and $R = T_n$. Hence $R^{n+1} = 0$.

COROLLARY. If R is a semiring satisfying the ascending chain condition on left and right k-ideals and such that $\mathfrak{L}(R)$ is a k-ideal, then any nil subsemiring of R is nilpotent.

Proof. Since every right or left annihilator ideal is a right or left k-ideal, the corollary follows from the theorem.

Note. This paper is part of the author's Ph. D. dissertation prepared under Professor Lawrence P. Belluce at the University of California, Riverside.

References

- D. R. LaTorre, On h-ideals and k-ideals in semirings, Depr. Hungary Publ. Math. 12 (1965), p. 219.
- [2] I. N. Herstein, Topics in ring theory, Univ. Chicago Math. Lecture Notes (1965), pp. 75-102.
- [3] Theory of rings, Univ. Chicago Math. Lecture Notes (1961), pp. 25-28.

Reçu par la Rédaction le 25. 6. 1968

A proof of deRham's theorem

b

M. L. Curtis and J. Dugundji (Houston, Tex.)*

It is the purpose of this note to give a short proof of deRham's theorem using a modification of Dugundji's cohomology comparison theorem [1] and a simple convexity lemma. We include a proof of this well-known lemma since we have been unable to find it in the literature.

LEMMA 1. Let $f: U \to V$ be a homeomorphism, where U and V are open sets in \mathbb{R}^n . Assume (1) that f is C^1 and that $g = f^{-1}$ is C^2 . Then for each $x \in U$ there exists an r(x) > 0 such that the image f(B(x, r)) of every ball B(x, r) of radius $r \leq r(x)$ about x is convex.

Proof. We can assume x=0 and that U, V are small enough so that there exist real numbers K>0, M>0 satisfying

(1) If γ is a curve obtained by restricting f to any line segment in U, then

$$\|\gamma'(t)\| \leqslant K$$

(where t is are length on the segment and prime denotes differentiation).

(2) If ϱ is a curve obtained by restricting g to any line segment in V, then

$$\|\varrho^{\prime\prime}(t)\|\leqslant M$$
.

Note that we also have $\|\varrho'(t)\| \geqslant 1/K$. Pick $\lambda > 0$ so small that

(3) $2M\lambda \leqslant 1/K^2$

and choose s > 0 so that

(4) $gB(f(0), s) \subset B(0, \lambda)$.

We are now going to show that

(5) For each ball $B(0,r) \subset gB(f(0),s)$, the image fB(0,r) is convex.

In fact, given y_0 , $y_1 \in fB(0,r)$, let $d = ||y_0 - y_1||$, let J be the closed interval [0,d], and let $\sigma: J \to V$ be the line segment joining y_0 to y_1 . We have $\sigma(J) \subset B(f(0),s)$, since the latter is a convex set containing y_0

^{*} Partially supported by NSF Grants.

⁽¹⁾ Although the given hypotheses imply that f itself is also \mathcal{O}^2 , we make no use of additional fact.