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The homotopy equivalence f: QF —+QB x OF is a fiber map but the
homotopy inverse g is not. Define ¥: 2B xI 0B and @: 2B X I >0QB by

N #{ﬁ(2m~ws), O<m<%,
N )@ =501 _sram, 1<o<i;
=+ Us, 0<s<4,
W= {ysroen), eset,
Define y: 2B x QF x I >Q2FE by
p(B,0,8) = ( (8, 0),Q(8, ))
Then v, ~yp,~¢g 8o that , is also a homotopy inverse for f. If (8, o)
e QB X QF,
(B, 0) =Q(8,1)= = q(B, o)
80 v, is a fiber map. Note also that
qfe(f, o) = Q(p‘l’l(ﬁy o), g1yl By 0')) = Q(ﬁa P18,y U)) =p,

80 that fip; is fiber homotopic to the identity map on 2B x QF. A straight-
forward computation shows that u,f is fiber homotopic to the identity
map on QH.

Now consider the fiber structures (Q"E, p", 2"B) and ("B xQ"F,
¢", 9"B) where p" is the natural map induced by = and ¢" is the projection
on the first factor.

ComroLLARY. If (B, =,B) is a weak Hurewicz fibration with cross
section, then (Q"E,p", 2"B) and (2"B xQ"F, ", Q"B) are f@ber homotopy
equivalent for n > 1 and H-isomorphic for n > 2.

Proof. Since (B, =, B) i§ a weak Hurewicz fibration, (Q"E, p", 3"B)
is also. Since the homotopy equivalence y, of the preceding theorem is
an H-homomorphism if QF is homotopy abelian, it follows that the
given fiber structures are H-isomorphic for n > 2.
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On nil semirings with ascending chain conditions

by
Erol Barbut (Moscow, Id.)

1. A set R, together with two operations + and - is said to be a semi-
ring if (R, +) and (R, -) are semigroups, (B, +) being a commutative
gemigroup with 0, with the distributive laws holding between addition
and multiplication. Furthermore, we require that z-0=0-z=0 for
each z in R. If R is a semiring and I C R, then I is a right ideal of R if I is
closed under addition, and for every aeR, bel we have ba e I. Left
and two-sided ideals are defined similarly, analogous to ring theory.
If R is a semiring and § is a non-empty subset of R, then

= {z e B| Sz= 0}. If I is a right ideal of R and I = §; for some 8 C R,
then I is called a right annihilator ideal. Similarly 8; = {z ¢ E| 2§ = 0}
and we define left annihilator ideals. Finally, a left (right) ideal of R is
called a left (right) %-ideal [1] if # -y eI and y €I implies that weI
for each z and ¥ in R.

In this paper after defining the Levitzki radical £(R) of a semiring R,
we show that every nil subsemiring of a semiring with the ascending

‘chain condition on left and right annihilator ideals is nilpotent, provided

that L(R) is a k-ideal.

2. If I is a two-sided ideal of a semiring R, then it is well known
that R/I also becomes a semiring if we define a congruence relation = as
follows: '

a=1b iff for 4, d,el.

a+i =b+1,

Lemma 1. If I is a k-ideal, then o = 0mod I if mel.

Proof. If = 0 mod I, then @-+y eI for some yel. Bub then
zel since I is a k-ideal. Conversely if w I, then clearly » = 0 mod I.

DErFINITION. A function ¢ from a semiring B to a semiring § is
a homomorphism it

po+1) = p@)+0), ply) =p@py) and p0)=0.

9 is a semi-isomorphism. if @ is onto and Kere = 0.
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LaMMA 2. If B and 8 are semirings and @ is & homomorphism from R
onto 8, then R[Kerp is semi-isomorphic to S. .

Proof. We map 7 ¢ R{Kerg to ¢(r) ¢ S. Then this map v is a homo-
morphism onto A. Let 7 e Kery. Then ¢(r) = 0, that is, » ¢ Kerp. Hence
r=0 and v is a semi-isomorphism. )

DEFINITION. A. semiring R ig locally wilpotent if every finite subset I
of R generates a nilpotent subsemiring. This is equivalent to the following
condition: There exists an integer N (F) such that every product
Biy o By = 0 for z; in F.

LeumA 3. If A and B are locally nilpotent ideals, then A B is a locally
nilpotent ideal.

Proof. Let F.= {,,..,2,} be a finite subset of .4 --B. Then
%y = ag+b; where a;e 4, by B, for i=1,..,n.

Let 6 = {ay, ..., an}y, H = {by, e, bn}, K= {t, ... aghy| j =1, ..., n},
where a;, ... as; are all products from & with &k < N, where ¢™* = 0.
L={bs...byay] j=1,...,m} where b; ...b; are all products from H
with I < ¥, where H"* = 0,

Now Kw.LCA~ B since 4 and B are assumed to be two-sided
ideals. Suppose that Ny has been determined so that (¢ v L™ = 0. Also
let N, be determined so that TH v K)V = 0. Now let ¥ = 2max(Ng, N,).
In any monomial oceurring in the product, (as+bs,)... (@iy+bsy) the
number of a;’s plus the number of b;’s must equal N.

Hence, |a|+|b| = ¥ where |a| denotes the number of a;’s occurring
in a monomial and likewise for |b].

Thus |a| > §N = max(¥,, N,), or |b] >1N.

If |a] > max(N;, N,) > N,, then the monomial is zero by the choice
of N,. Similarly if |b| > max(¥,, N,) > ¥,, then the monomial is again
zero and thus F” = 0. Hence A+ B i3 locally nilpotent.

The proofs for the following lemmas are similar to those in ring
theory and are omitted.

Lvaa 4 ([3), p. 26). The sum £(R) of all locally wilpotent ideals of
a semiring B is o locally nilpotent ideal of R.

Lewwa 5 ([2], p. 26). If 4 is o locally nilpotent k-ideal and RA s
locally wilpotent, them. R is locally nilpotent.
Lmvwa 6 ((8], p. 27). If L(R) is a k-ideal, then L{R/L(R)) = 0.

Lemwma 7 ([2], p. 81). Let R be a semiring satisfying the ascending
chain condition on left annihilutors. If R 4s nil, them every mon-zero homo-
morphic image of R contains a non-zero nilpotent ideal.

e CorOLLARY (2], p. 83). If R is a nil semiring satisfying the ascending
chain condition on left annihilators, then R is locally nilpotent.
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TEMMA 8 ([2], p. 83). Let R be a nil semiring satisfying the ascending
chain condition on left annihilators. Then there ewists an element xz, # 0
in B such that Rwy=0.

TEmmA 9 ([2], p. 69). If R satisfies the ascending chain condit.io'n on
left anwikilators and if A is a two-sided ideal whzch is a left anm.}nlator
in R, then R[A satisfies the ascending chain condition on left annihilators.

TEMMA 10 ([8], . 27). If L locally nilpotent left (right) ideal, then
LCL(R). . I

- LEMMA 11. Suppose that B is a nﬁ'l semiring such that £(R) is_u k-ideal.
et T = {w e B| aR"= 0}. Then L(R) is also a k-ideal fwhirf R = R|T,.

Proof. Let o+y ¢ L(R) and y e £(R). We claim that =R, is a locally
nilpotent right ideal where xR, is the right ideal generated by the set
ZR v {n&| m ¢ N}, where N is the set oflna,ptggal numbers. Suppose ﬁhi{t
F(F M), ey T (Pmt1m)} is a figite set in wR,, where 7 eR and_ nye N.

Since #+7 € £(R) and 7 € L(R), (z+7) B, and yR, are locﬁllyz nilpotent
right ideals. Hence there is some number M such thft_(ia‘—)— P (Fiy 4+ 24) oo
. (E+?) (ﬂ'M‘l' '”"i_M) =0 and K with ?7('7‘51‘1‘%1'1) y(rix+nix) =0, for
all iy and ix. .

Hence X
(@+9) (5 14y) oo (@) o+ 0ip) B" =0
and ‘ .
?/(7'1'1"}—%‘[1) "'y(qniK—l-/n"':K)R =0.
Thus
(m'l‘y) (’r’i1+”i1> (.’L’—]—flj) (TiM+n+nfM+n) =0
and

y(7f1+wi1) o Y (Fign+ Migin) = 0

and hence (z-+y)R, and yR, are locally nilpotent rig].lt ideguls of R.
Therefore z+7 ¢ L(R) and y ¢ L(R). Since L(R) is assumed to be
a k-ideal of R, x ¢ £(R), and we have (P + i) oo x(riN:[—_mN) =0 for
all products of weight IV, for some N. Hence E(ﬂ-“—k Togy) - Vf("izv_'*‘ Aiy) =0
in 7R, and we have shown that ok, is 2 loeally'mlpotent_ right ideal of R,
50 that & ¢ £(R). This shows that L(E) is.a k-ideal of R. .
TemorEM ([2], D. 84). If R is a semiring which s.atisﬁes the ascendm.g
chain condition on left amd right amwihilators and is such that L(R) is
a k-ideal, then any nil subsemiring of B is nilpotent. .
Proof. Since the ascending chain conditions on left and rlgh-t an-
nihilators are inherited by subsemirings, we may gssume that_R is n_}l.
Let Ty = {x ¢ K| xR = 0}. Since 7, C T; C ... is an ascending chavnl.
of left annihilators, there is an n such that Tp= Tni1= ... ‘
Tt T, = R then K" =0 and the proof is eompl.eted. It Tn# K,
“then R= R|T, # 0 since T, is a k-ideal. By the previous lemma £(R)
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is a k-ideal and by Lemma 9 R satisfies the ascending chain condition
on rig_lit_ annihilators, and so by Lemma 8 there exists an Z == 0 in § sueh
that 2R = 0.

Therefore 2R C R4 and sRR" = 2R™" = 0. By our choice of n, 5 ¢ T,
50 that = 0. This contradiction proves that R= 0 and R— T,.
Hence R™™ = 0. .

CoroLLARY. If B is @ semiring satisfying the ascending chain condition,
on left and right k-ideals and such that L(R) is a k-ideal, then any nil sub-
semiring o]: R is milpotent. -

Proof. Since every right or left annihilator ideal is a right or left
k-ideal, the corollary follows from the theorem. ‘

Note. This paper is part of the author’s Ph. D. dissertation prepared
under Professor Lawrence P. Belluce at the University of California,
Riverside. ’
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A proof of deRham’s theorem

by
M. L. Curtis and J. Dugundji (Houston, Tex.)*

It is the purpose of this note to give a short proof of deRham’s
theorem using a modification of Dugundji’s cohomology comparison
theorem [1] and a gimple convexity lemma. We include a proof of this
well-known lemma since we have been unable to find it in the literature.

LeMMA 1. Let f: U~V be a homeomorphism, where U and V are open
sets in R™. Assume (*) that f is C* and that g = f* is C*. Then for each e U
there exists an () > O such that the image f(B(x, 7)) of every ball B(w, r) of
radius r < r(x) about x 1is conves. :

Proof. We can assume # = 0 and that U,V are small enough so that
there exist real numbers K > 0, M> 0 satisfying

(1) Ifyisa curve obtained by restricting f to any line segment in U,
then

vl < K
(where 1 is arc length on the segment and prime denotes differentiation).

(2) If o is a curve obtained by restricting ¢ to any line segment in ¥,

then
lle" (0l < M .

Note that we also have |jo(t)] > 1/K . Pick 1 > 0 so small that

(3) 2M2 < 1/K?
and,choose s > 0 so that

(4) gB(f(0),s) C B(0, 4).

We are now going to show that

(3) For each ball B(0,r) C gB(f(0),s), the image fB(0,r) is convex.

In fact, given v, 4, « fB(0,7), let d=/yo—nl, let J be the closed

interval [0,d], and let o: J—V be the line segment joining 1, t'o Yy
We have ¢(J)C B( £(0) ,‘s) , since the latter is a convex set containing Yo

* Partially supported by NSF Grants.
(*) Although the given hypotheses imply that f itself is also (%, we make 10 use
of additional fact.
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