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and ka(4g) are disjoint. This is a contradiction. Clearly % is onto B(1)/@
and % is a homeomorphism on IntC. To show % is a homeomorphism it
suffices to show h is continuous at each point of 8. Suppose p is in §,
{b:} is a sequence of points in C, and {b;} converges to p. If T is an open
set in B(1)/G that contains % (p), then there exists a positive integer & such
that hx(Ayr) is contained in U. Since {b;} converges to p, all but finitely
many of the b,’s belong to 4,;. Therefore all but finitely many of the h;(b;)’s
belong to h;(Ap:). By the way the hy’s are constructed, if j > ¢ and &,(b;)
€ hy(Ap;), then hy(bi) € hi(4y), and hence all but finitely many of the
h(b;)’s belong to U. Therefore % is continuous at p and % is a homeo-
morphism.
=) o0
If p is an element in Ul a; then Ulhz(flm) is & one point set and
o= r=
hence the projection from B(1) to C takes no non-degenerate element

of ¢ to a point in Dla,d.

It follows that there exists a pseudo-isotopy H from R® onto R?
such that

(1) H: B*xI >R,

(2) for each t eI, H(R®x{t}) is R?,

(3) if # ¢ R® then H(w, 0) = m,

(4) i 0<?<<1 then H|R*X {#} is a homeomorphism,

(5) H(»,1)= H(y, 1) if and only if # and y are in the same element
of @ or z=y,

(6) H(B(1),1) = C.
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On subdirect embeddings in categories

by
R. Wiegandt (Budapest)

§ 1. In his paper [4] Sulifiski considers categories satisfying certain
natural, although strong, additional conditions, and asks whether every
object of such a category could be subdirectly embedded in a direct
product of subdirectly irreducible objects. Such a theorem for universal
algebras was proved by Birkhoff [1]. In the proof of this theorem it is
implicitly assumed that the lattice of all congruence-relations of any
universal algebra is a so-called algebraic lattice (1). However, the notion
of congruence-relation cannot be formulated inm a category-theoretical
manner; it is possible to consider factor-objects instead of congruence-
-relations. Among the factor-objects one can define a partial ordering.
Thus the condition that the congruence-relations form an algebraic lattice
means that the factor-objects form a lattice and its dual lattice is
algebraic. .

After the preliminaries we consider a category satisfying weaker
conditions than those of [4]. We assume, that every epimorphism is
normal, but we do not suppose that every map has a kernel. (Related
investigations are made in [5], where every map has a kernel, but an
epimorphism need not be normal. There the possibility of dualization is
also discussed.)

In § 3 we prove that an object of such a category can be subdirectly
embedded in a direct product of subdirectly irreducible objects if the
dual lattice of that of all factor-objects is algebraic. In § 4 we show that
this condition is independent of all the conditions assumed by Su-
lirigki [4]; moreover, in the category #*, which is dual to the category
of all abelian groups #, there are objects which cannot be subdirectly
embedded in a direct produet of subdirectly irreducible objeects.

§ 2. Let C be a category whose objects and maps will be denoted
by small Latin and Greek letters, respectively. By definition, the following
axioms hold:

(*) Algebrajc lattices are sometimes called compactly generated lattices.


GUEST


8 R. Wiegandt

(Cy) If a: a—>b and f: b—>c are maps, then there is o uniquely defined
map af: a—c which is colled the product of the maps o and p. ‘
(Co) If az a—>b, f: b~>c, y: c—>d are maps, then (aB)y = a(By) holds.

(Cs) For each object w € C there is & map eu: a—>a such that for any
a: b—>a and B: a-—>c we have ae, = a, &4ff = f.

In this paper we adopt the notions and notations of Kuro¥—Liviits—
Bulgeifer-Tsalenko [3], and Sulifiski [4], but we shortly recall the
fundamental concepts, which will be necessary later. Moreover, we shall
require the validity of some additional axioms for the category C. So we
agsume that

(Cy) C possesses zero objects. .

. An epimorphism v i3 called normal if, for any map o satisfying the
condition that for every map y with y» = o also ya= o holds, there
exists a map o' such that a = va’. We suppose that

(Cs) -Bwery epimorphism of G is normal.

According to (Cs;) we shall say Dbriefly “epimorphism’’ instead of
“normal epimorphism”. Let us remark that in the category of groups
every epimorphism is normal. .

If the map a: a—b can be represented in the form a = wu, where
v: 6~ i3 an epimorphism and g: I —b is a monomorphism, then the sub-
object (I, u) of b will be called the amage of a with the epimorphism v. We
assume that

(Cy) Bvery map has an image (2).

Let ai; ¢ € I be a family of objects of C: An object g € C is said to be
& direct product of the objects @y eI if there are such maps z;: g—a;
that for each object % ¢C and for any system a;: h->aq, ¢ eI, of maps
there is 2 unique map y: h—g, the so-called canonical map, such that
¥% = a; for all ¢ e I. This product will be denoted by g = [] ai(m). We
suppose that ) e

(C.) Bvery family of objects has a direct product.

Consider all pairs (8, b) where f: a->b is an epimorphism. We ghall
say that (1, b;) < (B,, by) if there is such an epimorphism ' that 8,8’ = f,.
The pairs (f,b;) and (B2 ba) are said to be equivalent if both of
(Bey b1) < (Bay By) and (B, by) < (15 by) hold. The equivalence classes are
called the factor-objects of the object a and the factor-object determined
by the pair (8, 5) will dlso he denoted by (8,b). We assume that

(*) Instead of (C;) and (Cs) it would bs sufficient to suppose the existence of

normal images (cf. [3] § 10) and that the product of two normal epimorphisms is
again a normal one,

icm®
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(Cs) The class of all factor-objects of an object is a set; moreover, it forms
a complete lattice.

An object @ € C is said to be subdirectly embedded in a direct product
g= H ay(m;) if there is such a monomorphism ¥: a->g that all maps
o _—.1;;Im-: a-+as, 1€l are epimorphisms. An object aeC is said to be
subdirectly trreductble if the union of all its proper factor-objects (i.e.
# (24, @) is again a proper factor-object. The Lemms of § 3 will give
reasons for the definition of subdirect irreducibility.

In the theory of lattices a well-known concept is that of algebraic
lattice. (The lattice of all congruence-relations of a universal algebra is
algebraic, and any algebraic lattice is isomorphic to the lattice of
the congruence-relations of a suitable universal algebra. Cf. Gritzer-
-Sehmidt [2].) In this paper we shall need the dual concept. An element
k of a complete lattice L is co-compact if & > ﬂl l; implies % > ﬂF I; for

1€ je.
some finite subset F'C I. The lattice L is said to be co-algebradc it L
is complete and every element of L is an intersection of co-compact
elements.

Sometimes we shall refer to the following condition.

(A) The lattice Ly of all factor-objects of the object is a co-algebraie.

In § 4 we shall show that (A) is independent of all the axioms assumed
in paper [4] of Sulinski. In [4] it is assumed in addition to (C,)—(Cs) that

(Cy) Bwery family of objects has a free product.

(Cro) Bvery map has a kernel.

(Cu) An image of an ideal by an epimorphism is always an ideol.

We remark that in [4] instead of (Cs) we use another, but.equivalent.
axiom Dby considering ideals instead of (normal) factor-objects.

§3. First of all we prove the following auxiliary:

LeMMA. If an object a € C can be subdirectly embedded in a direct product
g= I_!r ai(ng), then the union of the factor-objects (a;, a;) = (ymi, a;) tel

i€
18 (£ay @). Conversely, if there are factor-objects (i, as), i € I of an object @ € G
satisfying | (ai, as) = (ea, @), then a can be subdirecily embedded in a direct.

iel

product ¢ = 1?1 ai(7s).
i€
Proof. Let a be embedded in a direct product g = ]; £ ai(7;) by the

monomorphism y, and denote U_r(ym’ a;) by (g, ap). Sinece (ay, a) is
1€

the union of all (a;, as) (a; = ym), there are epimorphisms Bi: ag—>a; VYlth

0 fs = as, 4 € I, and therefore there exists a canonical map &: a,—¢ into

the direct product g = [] ai(m). Moreover, by the uniqueness of » and &
el
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we have y = a,4. Since p is 4 monomorphism, the first factor o is also
& monomorphism. Thus a, iy a monomorphism and a (normal) epi-
morphism, whence it is an equivalence.

Conversely, assume that there exists a family (a4, a4), ¢ e I, of factor-
.objects of @ such that “Uf(aw ;) = (ea, @), and consider a direct product

g = ] aym;). By definition, there exists a canonical map y: a-g with
el

vm; = a; for each ieI. We have to prove that y is a monomorphism.'

Since every epimorphism is normal, it is sufficient to show (*) Kery = (0, o).
For this aim, let us consider a map é: d->a with dy = w and the image
(@, a’) of y with the epimorphism «, (i.e. gga’ = yp).

%y
y’
@
d—>a——>g

N |m
a,\
ag

Taking info account y = aqpa’, we have daya’ = dymy = ®, and
since o’ is a monomorphism, da; = » follows.

On the other hand, a; = ym = oy(a'm) is valid where both a; and ay
are epimorphisms. Therefore o'm; iy also an epimorphism for all ¢ eI.
Thus (g, @) > H,(a“ @) = (&ay @). Hence a, Iy an equivalence, and so

€

day= o implies § = w, and Kery = (0, ») is proved.

Now we are going to prove our main regult.

TreoREM 1. If the object a e C fulfils condition (A), then a cam be sub-
directly embedded in a direct product of subdirectly irreducible objects.

Proof. Let (%, k) # (eq, a) be a co-compact element of the lattice L,
of all factor-objects of 4. Consider the set §(k) = {(A4,19)|5 € J} of -all
© factor-objects (1, 1;) of a for which (x,%) v (i, ly) > (%, k) holds. Let
(A, 1) > (A, ) > ... be a descending chain of factor-objects chosen
from §(k), and denote@ (Any la) DY (A, k). We show (%, k) v (A, )

> (#, k). Otherwise there would be (x, k) > (4, l) = M (da, ) and
. v

since (», k) is a co-compact element, for a finite index ¥ a relation (2, k)
2 (v, lv) would hold, which contradicts the choice of & (k). Making use
of the dual sfatement of Zoxn’s lemma, we obtain the existence of a minimal
-element (4,1) of 8(k).

To any co-compact element (%, k;), i eI of Lq, consider a minimal

element (a;, as) of §(k;). Now we shall show U (a4, a5) = (24, a). Suppose
i€l

(%) "CE. footnote (2).
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the contrary case, ie. | (a,a) = (¢, @) # (ca, @). Since Ly is co-
algebraic, (a’,a’) is an intersectiont(} (st k) of co-compact elements
€

(ot o) # (ea, @), Te I. A minimal element (as, as) belonging to (#, k)
occurs in the wunion-representation (o', a’) = () (as, a;). Thus we get
iel

(%5, ko) = (a5 &) = (o, 1)
from which
(5 Boe) < (e, ) = (e, k)

follows, contradicting the choice of (a, a:). Thus | (ai, a5) = (&, a)
iel

helds, and according to the Lemma, a can be subdirectly embedded in
a direct product g = [] aym;).

el
Finally, we have to prove that each object a; is subdirectly irreducible,
ie. for any objeet a;, ¢ ¢ I, the union of all proper factor-objects (ys, cs)
of a; differs from (eg, a;). Any factor-object (ys, ¢s) of a; is also a factor-
object (1) (Js, ¢;) of a, by ds = aiys. Thus (ds, ¢s) < (ai, aq) implies (s, cs) v
U (#1y ke) = (%1, k), 1.e. (s, 6s) < (Kuy ). Hence, for the union of all
proper factor-objects Lé(éa, ¢s) = (g, o) We have (8, ¢) < (%4, #;); therefore
8€ '

(8o, Co) < (@i, @) holds, and 8o (yo, G), which is just the wunion of all
proper factor-objects, is again a proper factor-object of a;. Thus a; is
subdirectly irreducible for each ¢ eI, and the theorem is proved.

§ 4. In this section we prove

THEOREM 2. There is a category satisfying conditions (Cy)—(Cyy) in which
not every element can be subdirectly embedded in a divect product of sub-
directly irreducible objects. Hence awioms (Cy)~(Cy) do not imply the validity
of condition (A). .

Proof. Congider the category #* dual to that of abelian groups .
Obviously A* satisfies conditions (Cy)-(Cy); moreover, in A" every mono-
morphism is a normal one. A factor-object of an object a belonging
to A* i3 just a subgroup of a regarded as an object of . Consider the
infinite cyclic group C(oc). The lattice L of all subgroups fails to
be co-algebraic. Any proper subgroups of €(oo) is an infinite eyclic group
generated by an integer m. Let p a prime number with (n,p)=1.
Now n0(o0) > 0 = (1) p"C(co), but for any finite index knC (o) 2 2*0(o0).
Hence the fsubgrou];;c nC(o0) is not a co-compact element of L for all n.
Thus L is not co-algebraice.

A subdirect embedding of an object a of 4% means that there is
a monomorphism y: a— I; aisy) such that ym = a; is a (normal) epi-

1€

() Of. footnote (*).
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morphism for every ¢eI. Bquivalently, this can be expressed in £ ag
follows: there is an epimorphism »* mapping ¢ into a free product
g = ZI’ ai(mi) such that z7y* = af is a (normal) monomorphism for
i€

each ¢ € I. In this case the object @ is called a transfree image of the objects
ai, ¢ eI. (This concept is introduced and discussed in [5].) The object a;
is said to be tramsfreely irreducible if the union of all its proper ideals is
again a proper one. The notion of transfree irreducibility is dual to that
of subdirect irreducibility.

In particular, if O(oo)e s is a transfree image of objects a;, then
every a; can be regarded as a subgroup of ((c0), and so each a; is iso-
morphic to C(oc). Since the union of all proper subgroups of ((oo) ig
0(co) itseltf, the components a; cannot be transfreely irreducible. Dualizing,
we find that 0(co), as an object of A%, cannot be subdirectly embedded
in a direct product of subdirectly irreducible objects, and the theorem
is proved.
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Generalized connected functions

by
Rudolph Hrycay (Edmonton, Alberta)

1. Introduction. A function f: §-T is said to be conmected if it
maps every connected set in § onto a connected set in 7. Every continu-
ous function is connected and the question as to when a connected
function is continuous has been studied by many authors; for example,
[2]-[5]. In this article § will denote a regular topological T,-space with
a base B for the open sets such.that every U B is connected. The
generalized connected function studied here will be a function f taking 8
to a T,-space T such that f( U) is connected in T for every U e B. Such
functions will be called functions connected with respect to B or, simply,
connected (B) functions. These functions have been studied in [1] for
a domain restricted to euclidean space and for a range which is sepa-
rable metric.

In thiy article some theorems on conditions implying continuity of
connected (B) functions are presented as well as a sufficient condition
as to when a connected (B) function iy a connected function. In Section 3
it is shown that Theorem 2.1 is a generalization of the well known result
in functional analysis (a linear functional f is continuous if and only if
the null space of fis closed). It is shown that a linear functional is continu-
ous if and only if it is connected. Finally, in Theorem 4.1, a condition
is given as to when a certain type of function is a homeomorphism.

It is clear that a connected function on § is & connected (B) funetion
and if f is a connected (B) function on §, then it can be easily shown
that f takes all connected, open sets onto connected sets. In particular,
it follows that £(U) is connected for each U ¢ B. An example of a function
which is connected (B) with respect to a certain base (B), but which
is not connected, is provided in [1]. Another interesting example is given
in Section 3 below.

2. Continuity of connected (%) functions. The following theorem
gives a necessary and sufficient condition under which a connected (B)
function is continuous. This is a generalization of Theorem 3 of [1] and
of Theorem € of [3]. In particular, if f is real valued, then fis continuous
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