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Nondegenerately continuous
decompositions of 3-manifolds *

by
William Voxman (Iowa City)

The principal result of this paper states essentially that if a count-
able number of 0-dimensional upper semicontinuous decompositions of
a 3-manifold, B, “fit together” properly, and if each decomposition
yields M, then the sum of the decompositions will also yield M. We apply
this result to certain decompositions of E® where the nondegenerate
elements of the decompositions lie in various planes.

Let M be a metric space, and suppose K is a collection of mutually
disjoint subsets of M. If g e K, then K is said to be continuous at ¢ in
case for each ¢ > 0, there exists an open set, V, in M such that (1) gCV
and (2) if ¢ e K and g’ ~V # @, then g C 8(¢’, £) and g’ C 8(g, ). A de-
composition, @, of a metric space is said to be a nondegenerately continuous
decomposition in case Hg (the collection of nondegenerate elements) is
continuous at ¢ for each geHg. In general terms this means that if
a sequence of nondegenerate elements converges to a nondegenerate
element, g, then the “size” of the elements of the sequence approaches
the “size” of g. Although placing obvious limitations on the nature of
the decomposition space, the continuity restriction is not so severe as
to eliminate such interesting spaces as Bing’s dogbone space, which is,
in fact a nondegenerately continuous decomposition.

Bing has shown the existence of a point-like decomposition of B
with only countably many nondegenerate elements, such that E°[G is
not homeomorphic to E° [4]. In addition, these nondegenerate elements
may be made to lie in the union of two perpendicular planes. The following
theorems and corollaries indicate among other things that similar situations
can not exist if the decompositions in question are nondegenerately
continuous.

Notation and Definitions. Let ¢ be an upper semicontinuous de-
composition (henceforth, referred to simply as a decomposition) of

* These results form a part of the author’s doctoral dissertation at the University
of Towa, prepared under the supervision of Professor S. Armentrout.
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a space X. Then .the decomposition space associated with & will be de-
noted by X/G, the natural projection mapping from X onto X/@ by P,
and He will denote the collection of nondegenerate elements of G. An
open set, U, in X will be said to be saturated with respect to G (or simply
saturated whenever the context is clear) in case U= P‘l[P[U]].

A 3-manifold is a separable metric space with'the property that
each point has a neighbourhood which is a 3-cell. Tf M is a 3-manifold,
a point p of M is an interior point of M if and only if p has an open
neighbourhood in M which is an open 3-cell. The interior of M is the
set of all interior points and the boundary of M is M — interior M. It
should perhaps be noted that a 3-manifold as defined in this paper is
referred to as a 3-raanifold with boundary in the papers of Bing and
Armentrout.

Suppose that M is a 3-manifold. G is said to be a monotone de-
composition of M in case each element of G is compact and connected.
Furthermore, we require that each nondegenerate element of & lie in
the -interior of M. A subset K of M is said to be cellular in case there
exists a sequence €, Oy, ... of 3-cells in M such that Oy C interior C;

and ﬁo Oy= K. Cellular subsets of a manifold must then lie in the

inter{cnl' of the manifold. A decomposition of a 3-manifold is said to be
cellular in case each nondegenerdte element is cellular.

If X and Y are topological spaces; then a homotopy from X to Y is
a map H: X x[a, b]->Y. We denote the restriction of H to X x {8} by H,
for a <t <b. If H; is a homeomorphism for a <# < b, then H i3 called
a pseudo-isotopy, and if H; iy a homeomorphism for a <t < b then H is
called an isotopy.

If ¢ is a collection of subsets of a topological space, then C* will
denote | {¢: ¢ ¢ 0}. If M is a set, C1 M denotes the closure of M, Int M
denotes the topological interior of M, and Bd M denotes the topological
boundary of M. If ¢ is a positive number and 4 is a subset of a metric
space, then S(4,¢) denotes the e-neighbourhood of A. & denotes the
empty set.

o-weakly continuous decompositions. Suppose Gy, G;, ... is 2 sequence
of decompositions of a 3-manifold, M, such that if ge Hg, ¢ ¢Hegy,

and g~ g' # @, then g=g. Define 3 Gi= | ) Hou (M— | J Ha) to
i=1 =1 de=1

o
be the sum of decompositions G4. Then G = Y G4 is said to be a o-weakly
continuous decomposition of. M in case i

(1) & is a decomposition of M,

(2) for each positive integer, %, if g ¢ Hg,, then | J {Hg: ¢k} U {9}
is continuous at g.

- iom®

Nondegenerately continuous decompositions of 3-manifold 309.

Let G be a decomposition of a metric space, M. Then G is said to

" be weakly shrinkable in case for each positive number, ¢ and each open

set, U, containing HY, there exists a homeomorphism, k, from M onto M
such that

(1) for each ge Hg, diam g<e

(2) if e M—TU, then h(z)= z.,

A proof for Theorem 1 when M iy a 3-manifold may be found in [8]
and when M = E® in [2].

. TueorEM 1. Let G be a cellular decomposition of a 3-manifold, M, such
that P[HE] is 0-dimensional. Then M|G is homeomorphic to M <f and only
if @ is weakly shrinkable. s

The proof of the first four conclusions of .the following theorem
may be found in [2]. Part (5) is established in [8].

THEOREM 2. Suppose G is a monotone decomposition of an n-manifold,
M, such that P[HE] is 0-dimensional and W is a cover in M of HE by
saturated open sets. Then there ewists an open covering, U, in M of HE
such that

(1) the sets of VU are mutually disjoint; -

(2) each set of U lies in some set of U;

(8) if VeV, then (BAV) nHe= 0; -

(4) if for each V U, fvr is a homeomorphism from M onto M such
that for @ e M—V, fy(z) =@, then the funetion, f, defined as follows is
a homeomorphism )

(a) if @<V, then f(a)=fr(x),
(b) of ¢ W{V: V €U}, then f(x)=w;
(8) if h is a homeomorphism from M onto M with the property that

if Ve and z e BAV, then h(z) =z, thenrfor each WeU,h[W]=W."

We now consider the prineipal theorem of the paper. It represents
a generalization of a result of Lamoreaux [7]. .

THEOREM 3. Let Gy, Gy, ... be cellular decompositions of a 3-manifold,
M, such that for each i, M|Gy is homicomorphic to M. If G = > Gy s
i=1
a o-weakly continuous decomposition of M such that P[HE] is 0 - dimensional,
then M|G s homeomorphic to M.

Proof. During the proof we shall always assume that all open sets-
are saturated with respect to @. We shall show that G is weakly shrinkable.
Suppose that H¥ is contained in an open set, U, and let & be a positive
number. Henceforth, we assume that all open sets are contained
in U, .
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Step 1. We consider two cases.
A. Suppose ¢ € Hg,.
(i) diam ¢ >¢. Choose an open set, U;, such that:
(1) gC Uz C8(g,1),
(2) if ¢CU;, and g ¢ Hg,, then diam ¢’ > /2 (this possible
since @ is o-weakly continuous);
(ii) diam g < e. Choose U, guch that:
1ygC UaCS(y,
(2) if ¢'C U; and g ¢ Hg, then diam ¢’ <e.
B. Suppose g e He, g ¢ He,.
Choose Uj such that:
(1) gC Tz C8(g,1),
(2) Uy~ HE = @ (possible since & is o-weakly continuous).

Let Wy, = {Uj: g € Hg}. Let U, be a refinement of Uy satisfying the
eonclugions of Theorem 2. Let W; = {V'e?V;: there exists a ¢ C V* such
that g € Hg,}. Then WY is an open set containing HE,. But since M/@, is
homeomorphic to M, we have by Theorem 1 that @, is weakly shrinkable,
Therefore, there exists a homeomorphism, &, from M onto M such that:

(1) if g e He,, diamin[g] < e,
(2) if e MW}, hyz) = .

Let U, = {V' ¢ V;: for each g CV?, diamg < ¢}. We define a homeo-

morphism, h,, from M onto M as follows.
(1) (@) = x, if me"Ul,
(2) Myim) = hl( ), otherwise.
Step 2. In this step we shrink elements of Hg, without disturbing
elements of Hg,.
A. Suppose geHg,.
We choose an open set; Uz, such that
(1) gC T;C 8(g,1/2) ~ Viy, where Vi, is' the unique open set
in U, containing g,
(2) if ¢'C T;, then diamhy(g'] < e Recall that diamhg] <e.
B. Suppose g e Hg,, g ¢ He,.
(i) diama,[g] > e. Choose U2 such that:

(1) gC UzC8(g,1/2) n Vi), where Vi, is the unique open set
in U, contammg g.
(2) UaﬁHal 9,
(8) it ¢'C U; and ¢’ ¢HGH, then diamh,[g'] > /2.
(i) diambh,g] < e. Chaose U; such that:
(1) same as B. (i) (1
(2) same as B. (1) (2),
(8) it ¢ C U;, ¢ € Hg, then diamh,[g'] < e.

e )
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C. Suppose that g e He, g¢ He, v Hag,.
Choose Ujp such that:
(1) same as B. (i) (1),
(2) Us ~ (A, © HE,) = 0.

Let Wy = {Us: g € Hg}. Let VU, be a refinement of U, satisfying all
the conclusions of Theorem 2. Let W, = {V? ¢ V,: there exists an element
g < Hg, such that g CV*}.

Hence, W is an open set containing H, . Therefore, by Theorem 1
and ([2], Theorem 1) there exists a homeomorphlsm, by, from M onto M
such that:

(1) if g e Heg,, dmmhz[g] <&
(2) if 2 e M—WE, hyz) = hy(2).

Let Uy = {V?eVy: it gCV? then diamh,[g] < ). Define a homeo-

morphism, he, from M onto M by:
1) hz(:v)-—hl( ), if 2 e M— ‘Uz,
(2) ho() = hg( x), otherwise. .

We assume that hx, Wk, Uk, Wi, and <% have been defined for
k= 1, Ly ey — —1.

S‘oep n. At this stage all elements of Hg,, Ha,, ..., Hg,., have been
shrunk to a diameter of less than ¢ by h,—_:, and now we proceed to shrink
the elements of Hg, without disturbing the nondegenerate sets of the
first n—1 decompositions.

A. Suppose ge Hg, v Hg, v ... v Hg, .. )
Then diamhy,—1[g] < &. We choose an open set, Uy, such that:
(1) gC UFC 8(g,1/n) ~ Vi, where V" is the unique open set
in W,_, containing g.
(2) iftg’ C Uy, then diam h,—y[g'] < e.

B. Suppose ge Hg,, ¢ He, v Hgy v ... v Hg,,.
(i) diamh,-,[g] > e. Choose U such that:
(1) gCUPC S(g, 1/n) " Vi, where V" is the unique open set
in Wy-; containing g,
(2) Uy~ (HE, w Hey v ... v HE, ) = 0,
(3) if ¢’ C Uy and ¢’ ¢ Hg,, then diamh,[g'] > /2.
(ii) diamh,_y[g'] < e. Choose Uy such that
(1) same as B. (i) (1)
(2) same ag B. (i) (2)
(3) if ¢’ C Uy and ¢’ ¢ He, then diamha.-i[g'] <e.
C. Suppose ge He, ¢ ¢ Hoy v Hop v ... v Hg,.
Choose Uy such that:
(1) same as B. (i) (1), . .
(2) U} ~ (HE, v Hby v ... v HE) = 0.
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Let Wy = {Uy: g < He}. Let Uy be a refinement of W, satistying all
the conclusions of Theorem 2. Lot Wy = {V" ¢ Vy: there exists an element
g e Hg, such that ¢ C V"}. ‘ .

Hence, W;, is an open set containing H,. Therefore, as before, there
exists a homeomorphism, ks, from M onto M such that:

(1) Tn(@) = hna(®), if @ ¢ U—WS,

(2) if geHg,, diamhy[g] < e.
Liet Uy = (V™ e Un: it ¢C V", g e He, then diamh,_s[g] < ).
Define a,'home'omdrphkism,' hn, from M onto M by

(1) ha(@) = hna(®), if @ e U,

(2) () = ha(x), otherwise.

Let.-h = Limith,. We shall now show that  is a homeomorphism from M
onto itself.

CraM: For each x e M, there ewists an open neighbourhood, Us, of &
and a positive integer, N, such that if n > N, then ha|v, = hy|v,.

Proof. Let w ¢« M, and first suppose that # e Hg. Let s be the firss
integer such that « ¢ Hg,, and, say # ¢ gs. Now diamhs[gs] < e. Suppose g;
is contained in 7*™ ¢ V,,. By Step s-+1 we have that for each ¢’ C V**,
diamhyfg'] < e. Therefore, V**' ¢ Vysy. Thus, if we let Uy = V*** and
N = s+1, the claim will be satisfied.

Now suppose that w ¢ M—HE. Since ¢ is a decomposition of M,
U {g: 9 « Heand diamg > ¢/4} is a closed set. Let U, be an open neighbour-
hood of z such that Uz ~ (lJ{g: g « He and diamg > ¢/4}) = @. Choose N
large' enough such that if'n > N, then whenever a set V"¢ U, contains
an element g ¢ Hg and diam g > ¢/2, 7" will not intersect U,. Suppose
that a set V" e Uy is such that V~ ~ U, + @. Hence, if g « He and ¢ C ¥,
it must be the case that diamg'< /2. We wish. to show that for all n > N,
halpd = hylp. C . ‘

e In.or(%?r to do this we need -only show that for each ¢ < He such
that g C V", diamhx{g] < e. This would imply that if V" € V.., and,
V CV", then el (UN+1, ﬂ:nd, h‘ence, ‘hN-{—llVN*l = thvNﬂ, or in
general, if yFEC V¥, then by wlvd e = hylpasn, ‘

Let g CVY. Let s be the first positive integer such that ¢ Hg,-
If s =1, then diama[¢] < &, and since g will not be moved by succeeding
h.omeomorphisms, diamhalg) < e. Suppose sz 1. If yCV*eW,, then
Since diamg < ¢/2, V* must belong to U, (recall Step 1, A.). Therefore,

RAVIES g If ¢ ~ W= 0, then, of course, we also have that h,[g]=g.
Thu.s, ¢ is not affected by k,. A similar argument may be used to show that
fori=1,2,..,s~1, higl = ¢g. But in Step s, diamh,[g] < ¢, and, further-

8 aa®
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more, for p =1, 2, ..., hs1p g = hsg]. Hence, it is clear that diamng] < e.
Since

U™ VY A Up 20} D 7747 794 A 1, 2 0}

it follows that for n > N, huv,= hylv,, and the claim is established.

1 is then clearly well defined and one to one. % i3 continuous since
if a sequence, {zy}, converges to a point, 2, then eventually the sequence
lies in Uz, and for a suitably large positive integer, N, hnlv, = hlu,.

To see that % is onto, we observe the following. Suppose z ¢ M.
It © e M—UY, then h(w) = x. Therefore, let us assume that 2 belongs to
some set V' of U;. Since for each positive integer, n, h[V']= T, we
have that for each n, hy'(z)(= Ya) lies in V. Let v be a cluster point of
the sequence, {ya}. We claim that h(y) = x. There exists a positive in-
teger, N, and an open neighborhood, Uy, of y such that for each # > N,
a|ly, = hwlu,. Using subsequences if necessary, we can find an integer,
N’ >N, such that if n > N', then yne Uy. Then for n >N, h(ya)
= I(yn) = @. Since I is continuous, and the sequence {y,} (or possibly
a subsequence of {y,}) converges to v, h(y) = z.

That %~ is continuous follows easily from the fact that % is onto
and that for each w, there exists an open neighborhood of 2, Us, and
a positive integer, N, such that h|w, = hyly,. '

The function, h, then is a homeomorphism from M onto itself which *
shrinks elements of Hg to diameter less than ¢, and is the identity on the
complement of the given open set, U, containing H%. Therefore, ‘@ is
weakly shrinkable, and by Theorem 1, M/& is homeomorphic to M.

CoRroLLARY 3.1. Let G be a cellular countable non-degenerately continu-
ous decomposition of a 3-manifold, M. Then M|G is homeomorphic to M.

Proof. Let g1,7 ¢2, ... be the nondegenerate elements of & For
i=1,2, .., let G be the decomposition of M whose only nondegenerate
element is ¢;. Then for each i, M/G; is homeomorphic to M (see, for
example, Bing [5]). The collection {G:+ = 1, 2, ...} satisfies the hypoth-
eses of Theorem 3, and Corollary 3.1 follows.

CoROLLARY 3.2. Suppose @ is a cellular nondegeneraiely continuous
decomposition of B such that P[H&] is 0-dimensional. Let Q;, @y, ... be
o sequence of plames in E° such that for each g € He, g is contained in at
least one of these planes. Then FP|G is homeomorphic to EP.

Proof. We first prove the following assertion.

CrAmM. Suppose A is a cellular subset of B® which lies in a plane, Q.
Then A 1s cellular in Q. .

Suppose not. Then by well known theorems on the plane, 4 sepa-
rates Q. Let & and y be points in different components of @ —4. Let C be
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a circle perpendicular to @ and piercing @ in precisely the two points
2 and y. Let ¢, and ¢, be points of ¢ which lie in different com'ponenfs’
of 0—@. Since 4 is cellular in 7°) we may define .a mapping, f. fi‘om thj
standard disk, D, into B® such that fgap is a homeomorphism oﬁto C an§
fID]~ 4 = @. f”l[Q ~ f[D]] separates f~'[¢,] and F e in D, and, h,ence
by unicoherence some component, H, of f”l[Q ~ f[D]] must algo sepa-,
rate f'[¢,] and f'[¢,] in' D. Clearly £ '[x] and J7[y] belong to H. There
foret, f([iH]t is connected, lies in @), misses A, and contains z and y', whicI;
contradicts our assumpti iha P slaim. i
contradiets ption that 4 separated » and y. The claim is then
For i =1,2,..,1et &= {geG: ¢CQ;. From o b of
strom-Dyer [6], B*/G is homeomorlfhicQtjo BB, Sincer est;g cojlleljgﬁ;

{Gi: i=1,2,..) satisfies the hypotheses of Th é
. [heorem 3
Corollary 3.2 is complete. , the I)ITOOf o

Bgf(.)re Proceeding to Theorem 4, we shall state a number of general
])rop(.)smons concerning the relationship between. decompositions and
certain continuous functions. It is rather difficult to find actual I'(;Ofs
of these propositions in the literature, but these results are regzurdid a8

being well known and they have found a i
] 1 9 secure pl ;
decomposition spaces. place in fhe theory of

If X and Y are topological s i i
X ] paces and f is & funetion from X onto ¥
;orllm; j} is clo.s(;dt 1fba,nd only if for each closed set, M, in X, f[M] is closed’
- J 18 said to be compact in case £ i -
b o it | p ase for each compact set, K, in ¥, f[K]
We shall, henceforth, assume that X and ¥ are metric spaces.

o _PRgPosITION 1. -Suppose Jis a closed mapping from X onto Y. Then
= Tyl ye ¥} is an upper semi-continuous decomposition of X. @ is
referred to as the decomposition of X induced by f.

Suppose as in Proposition 1, G is the decomposition induced by

‘in(;lgse; I(J;a,lg)mg, fs Iirom X ox}to Y. Let P be the projection map from X
/G. There exists a third function which we shall now describe.

X1y
A
PN
X4
Let y be the function from X, /G 1 i
- nto ¥ defined as follows:
then y(#) is that element, ¥, of Y such that {y} = fl?‘(ll[oacvjrS e

Pri i )
OPOSITION 2. The function, v, is a homeomorphism from X/G onto Y.

It i
should be noted that upper semicontinuous decompositions may

be i 1 i
; %uzii Iinbsome cases.,by mappings which are not cloged. The funetipn,
A e well defined, onto, one to one, and continuous.

e ©
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Since a compact map, f, from X onto Y is closed (X and ¥ are metric
spaces), we have the following proposition.

PROPOSITION 3. If f s a compact mapping from X onto X, then vy is
a homeomorphism. -
The next proposition is often quite useful.

PROPOSITION 4. Let X be a metric space, and suppose G is a collection
of mutually disjoint compact subseis of X such that G*=X. Then @ is an
upper semicontinuous decomposition of X if and only if for each sequence,
{14}, %4 € s € G, which converges to a point @ € g < G, and for any sequence,
{ys}, Ys € gi, there exists a subsequence, {yn}, of {y:} which converges to
a point Y €. ' : ’

We are now in a position to prove the following lemma.

LEMMA 4.1. Suppose G is a decomposition of a metric space, X, into
compact sets. Let h be a compact mapping from X onto X such that if g
and g, are distinct elements of G, then h[g,] ~ h[g,] = O. Let @' = {h[gl: g « G}.

Then G is a decomposition of X, and X|G' is homeomorphic to X|G.

Proof. A fairly direct proof utilizing Proposition 4 and the fact
that k is compact may be used to show that G is a decomposition of X.
Let P be the projection map from X onto X/G and P’ the projection
map from X onto X/@. Let f= P' o h o P Since the projection mappings
and h are compact, it follows that P’ o h is & compact map from X onto
X/&'. Therefore, by Proposition 3, f is a homeomorphism from X/@
onto X/G' and the proof of Lemma 4.1 is concluded.

A decomposition, @, of a metric space, M, is said to be shrinkable
in case for each. covering ‘U of H¥% by saturated open sets of M, for each
¢>0, and for an arbitrary homeomorphism, h, from M onto M, there
exists a homeomorphism, f, from M onto itself such that

(1) it e M—°U* then f(»)= h(z)
(2) for each g« @: (a) diamf[g] <& and (b) there exists D eU
such that A[D]D hlg] v flg).

The following result is proved in [8].

LemMA 4.2, Suppose @ is a cellular decomposition of a 3 -manifold, M.
Then M|G is homeomorphic to M if ‘and only if G is shrinkable.

We now establish a pseudo-isotopy lemma, which will also be used
in the proof of Theorem 5.

LEMMA 4.3. Let G be a monotone decomposition of E* such that. each
nondegenerate element of @ lies on a line, L, formed by the intersection of

two planes, @, and Q,.
Then there ewisls o pseudo-isolopy from I° omio B which shrinks

© distinct elements of G to distinct points, i.c., there exists o pseudo-isotopy

H:B*x [0, 1]->E°® such that
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(1) Hyz)= m, for each x < BF,

(2) if g <@, then Hylg] is a point in E°,

(8) if g, 9" e@ and g+ g', then H,[g] + H,[g'].

Furthermore, we may assume that H leaves the: planes, Q, and Qzy and
the line, L, set-wise fized.

Proof. We shall use the following notation. If F is a bounded line
segment lying in L, then m(F) will denote the length of F, #(#) and LT
will denote the right and left endpoints, respectively, of 7. We may as-
sume that @, = {(z,y,2): 2= 0} and @, = {(@,y,2): y=0}. Therefore,
L is the z-axis, and, hence, when the context is clear, we shall identify
*(F) and I(F) with the x-coordinates of r(F) and 1(F), respectively.
During the course of the proof we shall construct a number of boxes
(cubes) containing selected nondegenerate elements of the decomposition.
It will always be assumed that the ends of each box are perpendicular
to L, and the sides are parallel either to @, or Q.. If B is such a box, then
#(B) will denote the right end of B and 1(B) the left end.

We let gy, g5, ... be the elements of He. We shall construet the pseudo-
isotopy, H: E'x{0,1]+E° “piece by piece”, ie., first by defining it
on [0, 1/2], then on [0, 3/4], then on [0, 7/8), ete.

Step 1. In this step we shrink all nondegenerate elements of the
decomposition to a length less than or equal to 1/2. Let

A= {g e Ha: m(g) > 12} o {g,}.

We cover the sets of 4, with a sequence {B}} of mutually digjoint boxes
with the following properties .

(11) For each i, B} contains DPrecisely one element, g, of 4, and
h= G K :

(2) gin 1(BY) = U(gh).
(3) r(BY) ~ H:= 0.

(4) BiC 8(g%,1). , .

For each 4, let p} be the point lying in gi such that d(p?, Uga) = 1/2.
If m(g) < 1/2, then the isotopy we-construct will be the idehtity on Bi,

and p1 is not defined. Tn each box, Bi, (with the possible exception of Bi)
we construct a hisequence i

vl Gongry oy leng, Gy, a4, Gyy Apy oo
with the following properties
(1) Oy = pi’: and F = 7(91)7
(2) the bisequence is monotone increasing,
(8) Limit ay =L ~7(BY) (n a positive integer),
(4) Limit a_, = {(B}) ~ L, -

- ©
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(5) . @{ax, ar+1) < 1/2, for each. integer %, -

(6) itg e He, g C B3, and ¢ = g3, then there exists a positive integer, k,
guch that g C [, ar4al. _ | |

Let H: B°x[0,1/2]—T" be the isotopy which slides points in each
box to the left such that for each integer, &, Hip(ax) = ar—n,. H: E* X
x[0,1/2]->E° is constructed then to satisfy the following

(1) if @ ¢ U Bi, then Hys) = a, for 0 <t <12,

(2) if weL, and 0 <1, <1, <1/2, then H;(z) > Hy(w),

(8) if g e« He, then m(Hylg]) <1/2, )

(4) for 0 <t < 1/2, H{L]= L, and for i =1,2 H{Q] = ¢.

Step 2. Nondegenerate elements will now be shrunk to a diameter
less than or equal to 1/4.

Let

Ay = {Hiplgl: ge He and m(Huplg)) > 1/4} © {Hiplgy], Huplgel} -

‘ We cover the gets of A, with a sequence {B}} of mutually disjoint

boxes with the following properties .

(1) for each ¢, B} contains precisely one element, Hip[gil, of A,,
where gy = ¢f and ga = g, .

(2) Hun[gh] ~ 1(BY) = L(Hylg),
) r(BY) ~ Hyl[HE] = 9,
) BiC S(Hulgil, 1/8),
) Hy (B C (g5, 1/2),

(6) if B} ~ Bj # @, then BjiC Bj. i ] o

For each 4, let p} be the point lying in Hys[g:] suel} that.d (2%, Z(H‘.’Z[Igi]))
= 1/4. Using the techniques of Step 1, we may obEaJm 2an isotopy H : : X
x [1/2, 8/4]1—B* where for each i, Hyulgi] = [L(gs), pi] and the isotopy
satisfies the following properties ‘

(1) it = ¢ |J B}, then Hyw) = Hip(w), for 1/2 <1t < 3/4,
(2) if wel, and 1/2 <, <1, < 3[4, then Hy(w) > Hy(x),
(3) if g e Hg, then m(Hydlgl) < 1/4,
(4)
(

(3
(4
5

3 for 1/2 <t < 3/4, H{L) = L, and H{Q:] = Qs,
B) it w e BP, then d{Hp(x), Hysw)) < 1/4-+1/8. L

Step m. We now assume that H: E°x[0, (2"; 1»«l‘r)/f” 1-E* has
been defined. We wish to “extend” H to E* x [0, (2"—1)/2"]. In oxder to
simplify the notation we denote Hgn-iypss by H'. Let

Ay = {H'[g]: g e Ho and m(HTg]) >1/2"}
© {H'Tg:, HTgal, ey H'TgnT} -

We cover the sets of A, with a sequence {B7} of mutually disjoint

boxes with the following properties
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(1) for each i, B} contains precigely one element, H'[g}], of Ay,
where g = g%, = g2, ;g = g,

(2) H'lgil ~ UBY) = HH'[47),

(3) 7(BY) ~ H[HY) = 0,

(4) BY C8(Hg:], 1/2"),

(5) B'T'[BY1C 8(gF, 1/n),

(6) if Bf ~ B} £ @, then BfC B}y ™.

For each 4, let pf be the point lying in H'[g7] such that d(pF, I(H Tetn
=1/2" Itfori=1,2, ,orn m(H'[¢}]) <1/2% then the isotopy which
we shall now define will not move points in BY, and, hence, p? is not
defined. Using the techniques of Step 1, we may obtain an isotopy H: B x
X [(2"7"=1)/2"7%, (2"—1)/2"] > B* where for each i, Hn_yym[g}] = gD, 1
and the isotopy satisfies the following properties

(1) it @'¢ | B, then Hyw)= H'(z), for @M -2 << (212",

(2) if @eL, and (2"7'-1)2"7" <t <1, <(2"—-1)2%, then H(z)
> H‘ﬁ(w)l . .
(3) it g € Hg, then m(Hen_1yen[g]) < 1/2%, .
(4) for (2""~1)2" <t < (2"-1)j2", H{L]= L, and HiQ:] = @i,
(5) if @ ¢ B, then &(H'(z), Hon_yym(®)) < 1/2"+1/2",

Let Hy = H(zk:l)/ak ° H(gk-1~1)12k_1 o ... o Hyp, for each positive integer %.
Let H) = Limit Hy. Sinece {H;} is a sequence of functions which
converges uniformly to H,, it follows that H, is well defined, continuous,
and onto. It remains to show that if ¢ and ¢ are distinet elements of G,
then H\[g] = H,[g'). This may be seen by noting that there exists a posi-

tive intelger, N, such that Hy.[g] and Hy_s[¢’] will either lie in distinet

boxes B; and By or perhaps will not lie in any box (recall (5) of Step ).

In either case it is clear from the construction of subsequent boxes that
Hi[gl# Hg'].

Since H leaves the planes, @, and @s, and the line, L set-wise fixed,
and fpr g € G, Hy[g] must be a point, the proof of Lemma 4.3 ig complete.

) THEOREM 4. Let G be a cellular nondegenerately continuous decomposi-
tion of E°. Let Q,,Qy, ..., Qm be a finite sequence of planes such that for
each g« Ha, g is contained in at least one of these planes.

Then EP|G is homeomorphic to FP.

Proof. We shall prove the theorem for m = 2, although a similar
argu}:nent holds for any finite number of planes. We first consider the
special case where no elements of Hy lie in @1 ~ Q,. For this case we shall
show Fhat G is shrinkable, and, hence, by Lemma 4.2, E¥G is homeo-
morphlle to B Let U be a cover of H by saturated open sets. Liet & be
‘an arbitrary homeomorphism from E* onto itself, and let .« be a positive
number. We denote by @ the nondegenerately continuous decomposition.

e © :
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of B* whose nondegenerate elements consist of those nondegenerate
elements of @ which lie in @, for i =1, 2.

Our first step consists in separating H& and HY, by suitably chosen
open sets. If g eHg, let a5, =d(g, ClHY,), and for g, < Hg, let
gy = B8z CLHY,). Since @ is a nondegenerately continuous decomposition
of B, ay, and a,, will be positive numbers. For each g ¢ Hg, let U, be
5 saturated open set containing g such that:

(1) U, C 8(g, as/3),

(2) Uy is contained in some U e .

Suppose ¢, € Hy, and ¢, e Hy,. We claim that U, ~ U, = @. We
may assume that a, < ay,. Suppose that ze Uy ~ U,. Then

tgy = A(ga, OLHE,) <2 d (g, 2)+ d (2, OLHE,) < d(ge, #)+d(2, §)

< aﬂn/B “+ “{!1/3 = 2”’(12/3 )

a contradiction.

For i=1,2, G is a decomposition of E* whose nondegenerate ele-
ments lie in a plane, and, hence, B*/G4 is homeomorphic to B°[6]. Therefore,
by Lemma 4.2, Gy is shrinkable, and since {U,: g € Hg,} is an open cover
of H¥,, there exists a homeomorphism, h¢, from E° onto E* such that:

(1) for each ¢ e Hey,, diamhig] <e, :

(2) hifgl'w R[y] C BLD), where D = U, for some ¢ € Hg,

(8) it w e P | {Up: g € Ha}y ha(w) = h().

Let f be a homeomorphism from E® onto itself such that

(1) f(®) == hy(w), if @ e BP~— | ) {Uy: ¢'e He,),

(2) f(x) = hy(), otherwise.

Then it may be readily verified that f is the required “shrinking”
homeomorphism for @, and the proof of the special case is concluded.

Now we consider the more general situation, where elements of He
may lie in @, ~ @,. Let H, be the function obtained in Lemma 4.3 which
shrinks the nondegenerate elements lying in ¢ » @, to points and is one
to one othérwise. M, is clearly a compact map, and if we let @& be the
nondegenerately continuous decomposition of E® whose elements are of
the form, Hy¢|, for ¢ <2 ¢, then by Lemma 4.1, E*/G’ is homeomorphic
to BPG. But ¢/ has no nondegenerate elements on @y » @y, and, hgnee,
by our above work, K¢’ is homeomorphic to E°, which completes the
proof. :

TunorsM 5. Suppose that @ is « cellulay decomposition of B such
that the elements of He le in either of two planes, @y and Qo. Furthermore,
assume that 4f g e Hy, and g~ (Qy ~ Qo) # O, then g C ¢y Q.

Then |G 48 homeomorphic 1o B°.

Proof. Let H, he the function obtained in Lemma 4.3 v'vhieh shrinks
the nondegenerate elements lying in @ » @y to points and is one to one
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otherwise. Let ¢ = {Hi[g]: ¢ ¢ &}. As mentioned previously, H, i5 com-
pact and, hence, by Lemma 4.1, ¢ is a decomposition of A? and BGg
homeomorphic to E°/G. With the aid of the techniques used in the proof
of Theorem 4, it may be shown that FY@ iy homeomorphie to P, anq,
thus, Theorem 5 is established.

320 W. Voxman
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