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morphism for every ¢eI. Bquivalently, this can be expressed in £ ag
follows: there is an epimorphism »* mapping ¢ into a free product
g = ZI’ ai(mi) such that z7y* = af is a (normal) monomorphism for
i€

each ¢ € I. In this case the object @ is called a transfree image of the objects
ai, ¢ eI. (This concept is introduced and discussed in [5].) The object a;
is said to be tramsfreely irreducible if the union of all its proper ideals is
again a proper one. The notion of transfree irreducibility is dual to that
of subdirect irreducibility.

In particular, if O(oo)e s is a transfree image of objects a;, then
every a; can be regarded as a subgroup of ((c0), and so each a; is iso-
morphic to C(oc). Since the union of all proper subgroups of ((oo) ig
0(co) itseltf, the components a; cannot be transfreely irreducible. Dualizing,
we find that 0(co), as an object of A%, cannot be subdirectly embedded
in a direct product of subdirectly irreducible objects, and the theorem
is proved.
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Generalized connected functions

by
Rudolph Hrycay (Edmonton, Alberta)

1. Introduction. A function f: §-T is said to be conmected if it
maps every connected set in § onto a connected set in 7. Every continu-
ous function is connected and the question as to when a connected
function is continuous has been studied by many authors; for example,
[2]-[5]. In this article § will denote a regular topological T,-space with
a base B for the open sets such.that every U B is connected. The
generalized connected function studied here will be a function f taking 8
to a T,-space T such that f( U) is connected in T for every U e B. Such
functions will be called functions connected with respect to B or, simply,
connected (B) functions. These functions have been studied in [1] for
a domain restricted to euclidean space and for a range which is sepa-
rable metric.

In thiy article some theorems on conditions implying continuity of
connected (B) functions are presented as well as a sufficient condition
as to when a connected (B) function iy a connected function. In Section 3
it is shown that Theorem 2.1 is a generalization of the well known result
in functional analysis (a linear functional f is continuous if and only if
the null space of fis closed). It is shown that a linear functional is continu-
ous if and only if it is connected. Finally, in Theorem 4.1, a condition
is given as to when a certain type of function is a homeomorphism.

It is clear that a connected function on § is & connected (B) funetion
and if f is a connected (B) function on §, then it can be easily shown
that f takes all connected, open sets onto connected sets. In particular,
it follows that £(U) is connected for each U ¢ B. An example of a function
which is connected (B) with respect to a certain base (B), but which
is not connected, is provided in [1]. Another interesting example is given
in Section 3 below.

2. Continuity of connected (%) functions. The following theorem
gives a necessary and sufficient condition under which a connected (B)
function is continuous. This is a generalization of Theorem 3 of [1] and
of Theorem € of [3]. In particular, if f is real valued, then fis continuous
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if and c;nly if the inverse image of any point is closed. The boundary
of a set N will be denoted by bdXN. ,

THEOREM 2.1. If f: 8 =T is a connected (B) function, then f is continu-
ous if and only if f{bAN) is closed for each set N belonging to a base for
the open sets in T. '

Proof. To show continuity of f at # ¢ § consider f(#) and neighbor-
hood ¥ of f(x). By hypothesis, f(bd ) is closed and with @ ¢f(bd N )
there is a member UePB such that e UC Nf—l(bdN ) (~ denotes
complement). Now, recalling that, by a remark in the introduction f(U)
is connected. Since f(U) containg f(2) e N and misses bd N it follows
that f(U)C N. This shows continuity of f at #, and since & is arbitrary,
f is continuous on §. )

The converse is obvious.

Remark 2.1. In the above theorem if f is simply a function which
takes connected, open sets to connected sets, the proof holds withoust
the assumption of regularity on S.

DrriniTION 2.1. A function f: §—T has at worst a removadble dis-
continuity at ¢ 8 if there is a y e T such that for each neighborhood V
of y there is a neighborhood U of # such that f(U—{z}) C V.

Theorem 3 of [2] generalizes Theorem 3.6 of [4] and the following
theorem extends the result of [2] to connected (B) functions. The proof
is analogous to that in [4] and Remark 2.1 holds here also.

THROREM 2.2. Let 8 be as above and let T be a Hausdorff space. A con-
nected (B) function f: 8T is continuous at © ¢ 8 if and only if f has at
worst a removable discontinuity at x. :

DerFINITION 2.2. Let f: § =T be any function and denote by C(f; =)
the set of all y « T such that for each neighborhood N of y and each
neighborhood M of » the set f™(N) ~ M is not empty.

It can be shown that y € O(f; #) if and only if there is some net {z.}
converging to # for which the net {f(@.)} converges to y. Note that
fl@)e C(f; @) for every = eS.

Levms 2.1. Let N denote the neighborhood system of xeS. Then
Of; @)= f(N), (W eR).

Proof. For any y ¢ 0(f; @) there exists a net {2} converging to »
such that the net {f(z.)} converges to y. The net {®e} is eventually in N for
each N « % and, consequently, the net {f(2.)} is eventually in each f(N).

Since {f(z.)} converges to y it follows that y is in each F@). Thus,

YN f), (W eR).

Conversely, pick y e[ f(N), (N e R) and let M denote the system
of nglghborhoods of y e T.For each N ¢ M and for each M e M choose
apoint y(M, N)e M ~ f(N) and let the point &(M, N) e N be such that
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its image is y (M, N). This can be done since ¥ e}”_(ﬁ) for each N eN.
Thus, {y(M,N)}= {f(w(M, N))} is a net which converges to ¥ and
{w(M, N)} converges to @. From the definition y e C(f; ).

COROLLARY 2.1. For any f: 8T and any =z 8, the set C(f; ») is
closed in T.

LemMA 2.2. Let 8 be as above and let T be a compact Hausdorff space..
If f: 8T is a connected (B) function, then C(f; z) is connected in T for
each « € 8. .

Proof. With only minor modifications the proof is analogous to-
that of Theorem 3.7 of [4].

TEEOREM 2.3. With 8 and T' as in Lemma 2 a connected (B) function.
1 8T is continuous at % € 8 if and only if C(f; ) is finite or denumerable..

The proof iy analogous to that Theorem 3.8 of [4].

THEOREM 2.4. Let S and T be as in Lemma 2. If f: 8—T is a con-
nected (B) function such that for each non-degenerate connected subset C of §
C(f; ) Cf(O) for each » e O, then f is a connected function.

Proof. Suppose that for some connected subset ¢ of S, f(C) is not
connected and that f(C) = 4 v B is a separation. If 4, = {w € O[f(#) e 4}
and B; = {# ¢ O|f(w) e B}, then (=4, v B, A4, ~ B =¢ and 4, # ¢,
B, = . Since C is connected we may, without loss of generality, suppose
that 4; ~ B, # ¢. If v € 4; ~ By, then f(z) e B and there is a net {#,} C A,
which converges to @. Since {f(#.)} C A C 4 and since 4 is compact there
is a subnet {f(@s)} of {f(%.)} which converges to some point y « A and the
subnet {wz} of {w.} will still converge to @. Thus, y ¢ 0(f; =) and since

© O(f; ») Cf(0) it follows that y e f(C); in particular, y € 4 since 4 ~ B = ¢-

by hypothesis. By Lemma 2, O(f; #) is a connected subset of f(C) and,
thus, cannot intersect both 4 and B. However, ¥y e A and f(«x) e B so
this is a contradiction.

BExAMPLE 2.1. The following well known function g satisfies all the
conditions of Theorem 4, but is not a continuous function; in fact, it is
not a connectivity function. Let I=[0,1] and define f: I—+I by

(@) = lim gup B2t o Hln

N=1,2500s n
for 0 <@ <1, where & = (0-a,0,...) is the dyadic development of #.
The function takes on each value in I on .each interval and is thus a con-
nected function. Now consider the function g: I -1 defined by g(z) =0
when # = f(z) and ¢(#) = f(#), otherwise. The function ¢ still takes on
each value in I on each interval but the graph of g does not meet the
diagonal y = & in I x I and so it is not connected. However, C(g; ) C g(0)
for each interval ¢ CI and for each z e (.
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3. Linear functionals. Denote by L a separated topological linear
space with real or complex scalar field @ and let fi L>® Dbe a llnear
functional. It is known [6] that if f is not continuous, then F70), the
wull space of f, is dense in L. A continuous funetion is a eonnected
function and the following theorem shows that the converse is also true
for linear functionals.’

TaEorREM 3.1. If f: L>® is a non-continuous linear functional, then f is
not connected.

Proof. Bvery connected function g must satisfy the property g(C)
C g(0) for every connected set ¢ in the domam if the range is an R,-space
(Sanderson, [5]). Since f is not continuous F7H0) is dense in L and is also
connected gince it is a linear subspace. If K = F740), it is easy to see
that f(K) ¢ fIK).

THEOREM 3.2. If f: L—® is a non-continuous linear functional and O
4s a subset of L with a non-empty interior, then f(C)= &.

Proof. If f(C)+# @, pick te® such that ?¢f(C) and eonsider the
dense set F\(2) in L Since ¢ has a non-empty mtenor, O AF) £ g
Therefore tef(C) and this is a contradiction.

COROLLARY 3.1. Every linear functional f: L—>P is a connected (B)
function. .

Proof. It need only be remarked that every topological linear space
is locally connected, and members of B have non-empty interiors.

Since a linear functional f: L@ is continnous if and only if its real
part is continuous, Corollary 3.1 shows that the result from funectional
analysis (a linear functional f is continuous if and only if F7H0) is closed)
is a special case of Theorem 2.1. It is not a special case of the existing
theorems in the literature since a linear functional need not be connected.

4. Homeomorphic spaces. A topological space is called rim-compact
if it iy Hausdorff and the topology has a base for the open sets such
that the boundary of each member of the base is compact. It is known
that a rim-compact space is regular:

TrROREM 4.1. Let § and T be rim-compact spaces with bases B and B,
respectively, for the open sets consisting of connected open sets. Consider
a one-to-one connected (B) function f:' §—T such that f(T) s also closed
Jor each U < B. Suppose also that f™* is connected (B') and that f~(T7)
is closed for each U’ ¢ B'. Then fis a homeomorphism.

Proof. To show f is continuous, by Theorem 2.1 we need ¢nly show
that f~(bd ¥) is closed for each neighborhood N of each y « T. Without
loss of generality, suppose N is a neighborhood of y with a compact
boundary. For any & ¢f Y(bdN), f(#) ¢ bd N so by hypothesis on bdN
and by Hausdorff property there is a finite cover of pbN by Ui,
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i=1,2,..,m, with each Uje®B’, such that f(a)¢ UU;. Now

» Frr 0
% ¢ J f(T%) and since each term of the finite union is closed by hypo-
i=1

thesis, # is in an open set which does not meet f '(bd ). Therefore
F(bdN) is closed.

A similar argument shows that ™ is continuous.

CoroLLARY 4.1. If 8 and T are locally connected and locally compact

Hausdorff spaces, then any biconnected function f: § T is a homeomorphism
(see Theorem 3.10 of [4]).

Proof. Locally compact, Hausdortf spaces are rim-compact and,
for spaces § and T as general as Ry-spaces, a biconnected function f: § T

is such that both f and f™' take closed connected sets to closed con-
nected sets.

I would like to thank Dr. 8. A. Naimpally for suggesting one of the
problems and for his help in the preparation of this paper.
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