12

morphism for every $i \in I$. Equivalently, this can be expressed in $\mathcal A$ as follows: there is an epimorphism γ^* mapping a into a free product $g^* = \sum_{i \in I} a_i(x_i^*)$ such that $x_i^* \gamma^* = a_i^*$ is a (normal) monomorphism for each $i \in I$. In this case the object a is called a transfree image of the objects a_i , $i \in I$. (This concept is introduced and discussed in [5].) The object a_i is said to be transfreely irreducible if the union of all its proper ideals is again a proper one. The notion of transfree irreducibility is dual to that of subdirect irreducibility.

In particular, if $C(\infty) \in \mathcal{A}$ is a transfree image of objects a_i , then every a_i can be regarded as a subgroup of $C(\infty)$, and so each a_i is isomorphic to $C(\infty)$. Since the union of all proper subgroups of $C(\infty)$ is $C(\infty)$ itself, the components a_i cannot be transfreely irreducible. Dualizing, we find that $C(\infty)$, as an object of \mathcal{A}^* , cannot be subdirectly embedded in a direct product of subdirectly irreducible objects, and the theorem is proved.

References

- G. Birkhoff, Subdirect unions in universal algebras, Bull. Amer. Math. Soc. 50 (1944), pp. 764-768.
- [2] G. Grätzer and E. T. Schmidt, Characterizations of congruence lattices of abstract algebras, Acta Sci. Math. 24 (1963), pp. 34-59.
- [3] A. G. Kurosch, A. Ch. Liwschitz, E. G. Schulgeifer and M. S. Zalenko, Zur Theorie der Kategorien, Berlin, 1963 (In Russian: Ycn. Mar. Hayk. 15 (1960), pp. 3-58).
- [4] A. Suliński, The Brown-McCoy radical in categories, Fund. Math. 59 (1966), pp. 23-41.
- [5] F. Szász and R. Wiegandt, On the dualizing of subdirect embeddings, Acta Math. Acad. Sci. Hung. 20 (1969), pp. 289-302.

MATHEMATICAL INSTITUTE OF THE HUNGARIAN ACADEMY OF SCIENCES

Reçu par la Rédaction le 21.6.1968

Generalized connected functions

by

Rudolph Hrycay (Edmonton, Alberta)

1. Introduction. A function $f\colon S\to T$ is said to be connected if it maps every connected set in S onto a connected set in T. Every continuous function is connected and the question as to when a connected function is continuous has been studied by many authors; for example, [2]–[5]. In this article S will denote a regular topological T_1 -space with a base $\mathfrak B$ for the open sets such that every $U\in \mathfrak B$ is connected. The generalized connected function studied here will be a function f taking S to a T_1 -space T such that $f(\overline{U})$ is connected in T for every $U\in \mathfrak B$. Such functions will be called functions connected with respect to $\mathfrak B$ or, simply, connected ($\mathfrak B$) functions. These functions have been studied in [1] for a domain restricted to euclidean space and for a range which is separable metric.

In this article some theorems on conditions implying continuity of connected (\mathfrak{B}) functions are presented as well as a sufficient condition as to when a connected (\mathfrak{B}) function is a connected function. In Section 3 it is shown that Theorem 2.1 is a generalization of the well known result in functional analysis (a linear functional f is continuous if and only if the null space of f is closed). It is shown that a linear functional is continuous if and only if it is connected. Finally, in Theorem 4.1, a condition is given as to when a certain type of function is a homeomorphism.

It is clear that a connected function on S is a connected (\mathfrak{B}) function and if f is a connected (\mathfrak{B}) function on S, then it can be easily shown that f takes all connected, open sets onto connected sets. In particular, it follows that f(U) is connected for each $U \in \mathfrak{B}$. An example of a function which is connected (\mathfrak{B}) with respect to a certain base (\mathfrak{B}), but which is not connected, is provided in [1]. Another interesting example is given in Section 3 below.

2. Continuity of connected (B) functions. The following theorem gives a necessary and sufficient condition under which a connected (B) function is continuous. This is a generalization of Theorem 3 of [1] and of Theorem C of [3]. In particular, if f is real valued, then f is continuous

if and only if the inverse image of any point is closed. The boundary of a set N will be denoted by $\operatorname{bd} N$.

THEOREM 2.1. If $f \colon S \to T$ is a connected (\mathfrak{B}) function, then f is continuous if and only if $f^{-1}(\mathrm{bd}\,N)$ is closed for each set N belonging to a base for the open sets in T.

Proof. To show continuity of f at $x \in S$ consider f(x) and neighborhood N of f(x). By hypothesis, $f^{-1}(\operatorname{bd} N)$ is closed and with $x \notin f^{-1}(\operatorname{bd} N)$, there is a member $U \in \mathbb{B}$ such that $x \in U \subset \sim f^{-1}(\operatorname{bd} N)$ (\sim denotes complement). Now, recalling that, by a remark in the introduction f(U) is connected. Since f(U) contains $f(x) \in N$ and misses $\operatorname{bd} N$ it follows that $f(U) \subset N$. This shows continuity of f at x, and since x is arbitrary, f is continuous on S.

The converse is obvious.

Remark 2.1. In the above theorem if f is simply a function which takes connected, open sets to connected sets, the proof holds without the assumption of regularity on S.

DEFINITION 2.1. A function $f: S \to T$ has at worst a removable discontinuity at $x \in S$ if there is a $y \in T$ such that for each neighborhood V of y there is a neighborhood U of x such that $f(U - \{x\}) \subset V$.

Theorem 3 of [2] generalizes Theorem 3.6 of [4] and the following theorem extends the result of [2] to connected (3) functions. The proof is analogous to that in [4] and Remark 2.1 holds here also.

THEOREM 2.2. Let S be as above and let T be a Hausdorff space. A connected (\mathfrak{B}) function $f\colon S\to T$ is continuous at $x\in S$ if and only if f has at worst a removable discontinuity at x.

DEFINITION 2.2. Let $f: S \to T$ be any function and denote by C(f; x) the set of all $y \in T$ such that for each neighborhood N of y and each neighborhood M of x the set $f^{-1}(N) \cap M$ is not empty.

It can be shown that $y \in C(f; x)$ if and only if there is some net $\{x_{\alpha}\}$ converging to x for which the net $\{f(x_{\alpha})\}$ converges to y. Note that $f(x) \in C(f; x)$ for every $x \in S$.

LEMMA 2.1. Let \mathfrak{N} denote the neighborhood system of $x \in S$. Then $C(f; x) = \bigcap f(\overline{N}), (N \in \mathfrak{N}).$

Proof. For any $y \in C(f; x)$ there exists a net $\{x_a\}$ converging to x such that the net $\{f(x_a)\}$ converges to y. The net $\{x_a\}$ is eventually in N for each $N \in \Re$ and, consequently, the net $\{f(x_a)\}$ is eventually in each f(N). Since $\{f(x_a)\}$ converges to y it follows that y is in each $f(\overline{N})$. Thus, $y \in \bigcap \overline{f(N)}$, $(N \in \Re)$.

Conversely, pick $y \in \bigcap \overline{f(N)}$, $(N \in \mathfrak{N})$ and let \mathfrak{M} denote the system of neighborhoods of $y \in T$. For each $N \in \mathfrak{N}$ and for each $M \in \mathfrak{M}$ choose a point $y(M,N) \in M \cap f(N)$ and let the point $x(M,N) \in N$ be such that

its image is y(M,N). This can be done since $y \in \overline{f(N)}$ for each $N \in \mathfrak{R}$. Thus, $\{y(M,N)\} = \{f(x(M,N))\}$ is a net which converges to y and $\{x(M,N)\}$ converges to x. From the definition $y \in C(f;x)$.

COROLLARY 2.1. For any $f \colon S \to T$ and any $x \in S$, the set C(f; x) is closed in T.

LEMMA 2.2. Let S be as above and let T be a compact Hausdorff space. If $f \colon S \to T$ is a connected (\mathfrak{B}) function, then C(f; x) is connected in T for each $x \in S$.

Proof. With only minor modifications the proof is analogous to that of Theorem 3.7 of [4].

THEOREM 2.3. With S and T as in Lemma 2 a connected (\mathfrak{B}) function $f: S \rightarrow T$ is continuous at $x \in S$ if and only if C(f; x) is finite or denumerable.

The proof is analogous to that Theorem 3.8 of [4].

THEOREM 2.4. Let S and T be as in Lemma 2. If $f: S \to T$ is a connected (\mathfrak{B}) function such that for each non-degenerate connected subset C of S $C(f;x) \subseteq f(C)$ for each $x \in C$, then f is a connected function.

Proof. Suppose that for some connected subset C of S, f(C) is not connected and that $f(C) = A \cup B$ is a separation. If $A_1 = \{x \in C | f(x) \in A\}$ and $B_1 = \{x \in C | f(x) \in B\}$, then $C = A_1 \cup B_1$, $A_1 \cap B_1 = \varphi$ and $A_1 \neq \varphi$, $B_1 \neq \varphi$. Since C is connected we may, without loss of generality, suppose that $\overline{A_1} \cap B_1 \neq \varphi$. If $x \in \overline{A_1} \cap B_1$, then $f(x) \in B$ and there is a net $\{x_a\} \subset A_1$ which converges to x. Since $\{f(x_a)\} \subset A \subset \overline{A}$ and since \overline{A} is compact there is a subnet $\{f(x_{\beta})\}$ of $\{f(x_{\alpha})\}$ which converges to some point $y \in \overline{A}$ and the subnet $\{x_{\beta}\}$ of $\{x_{\alpha}\}$ will still converge to x. Thus, $y \in C(f; x)$ and since $C(f; x) \subset f(C)$ it follows that $y \in f(C)$; in particular, $y \in A$ since $\overline{A} \cap B = \varphi$ by hypothesis. By Lemma 2, C(f; x) is a connected subset of f(C) and, thus, cannot intersect both A and B. However, $y \in A$ and $f(x) \in B$ so this is a contradiction.

EXAMPLE 2.1. The following well known function g satisfies all the conditions of Theorem 4, but is not a continuous function; in fact, it is not a connectivity function. Let I = [0,1] and define $f: I \rightarrow I$ by

$$f(x) = \limsup_{n=1,2,...} \frac{a_1 + a_2 + ... + a_n}{n}$$
,

for $0 \leqslant x \leqslant 1$, where $x = (0 \cdot a_1 \ a_2 \dots)$ is the dyadic development of x. The function takes on each value in I on each interval and is thus a connected function. Now consider the function $g\colon I\to I$ defined by g(x)=0 when x=f(x) and g(x)=f(x), otherwise. The function g still takes on each value in I on each interval but the graph of g does not meet the diagonal g=x in $I\times I$ and so it is not connected. However, $C(g;x)\subseteq g(C)$ for each interval $C\subseteq I$ and for each $x\in C$.

16

3. Linear functionals. Denote by L a separated topological linear space with real or complex scalar field Φ and let $f: L \rightarrow \Phi$ be a linear functional. It is known [6] that if f is not continuous, then $f^{-1}(0)$, the null space of f, is dense in L. A continuous function is a connected function and the following theorem shows that the converse is also true for linear functionals.

THEOREM 3.1. If $f: L \rightarrow \Phi$ is a non-continuous linear functional, then f is not connected.

Proof. Every connected function g must satisfy the property $g(\bar{C})$ $\subset \overline{g(C)}$ for every connected set C in the domain if the range is an R_0 -space (Sanderson, [5]). Since f is not continuous $f^{-1}(0)$ is dense in L and is also connected since it is a linear subspace. If $K = f^{-1}(0)$, it is easy to see that $f(\overline{K}) \subset \overline{f(K)}$.

THEOREM 3.2. If $f: L \to \Phi$ is a non-continuous linear functional and C is a subset of L with a non-empty interior, then $f(C) = \Phi$.

Proof. If $f(C) \neq \Phi$, pick $t \in \Phi$ such that $t \notin f(C)$ and consider the dense set $f^{-1}(t)$ in L. Since C has a non-empty interior, $C \cap f^{-1}(t) \neq \varphi$. Therefore $t \in f(C)$ and this is a contradiction.

COROLLARY 3.1. Every linear functional $f: L \to \Phi$ is a connected (B) function.

Proof. It need only be remarked that every topological linear space is locally connected, and members of B have non-empty interiors.

Since a linear functional $f: L \to \Phi$ is continuous if and only if its real part is continuous, Corollary 3.1 shows that the result from functional analysis (a linear functional f is continuous if and only if $f^{-1}(0)$ is closed) is a special case of Theorem 2.1. It is not a special case of the existing theorems in the literature since a linear functional need not be connected.

4. Homeomorphic spaces. A topological space is called rim-compact if it is Hausdorff and the topology has a base for the open sets such that the boundary of each member of the base is compact. It is known that a rim-compact space is regular.

THEOREM 4.1. Let S and T be rim-compact spaces with bases \mathfrak{B} and \mathfrak{B}' , respectively, for the open sets consisting of connected open sets. Consider a one-to-one connected (\mathfrak{B}) function $f: S \to T$ such that $f(\overline{U})$ is also closed for each $U \in \mathfrak{B}$. Suppose also that f^{-1} is connected (\mathfrak{B}') and that $f^{-1}(\overline{U}')$ is closed for each $U' \in \mathfrak{B}'$. Then f is a homeomorphism.

Proof. To show f is continuous, by Theorem 2.1 we need only show that $f^{-1}(\operatorname{bd} N)$ is closed for each neighborhood N of each $y \in T$. Without loss of generality, suppose N is a neighborhood of y with a compact boundary. For any $x \notin f^{-1}(\mathrm{bd} N)$, $f(x) \notin \mathrm{bd} N$ so by hypothesis on $\mathrm{bd} N$ and by Hausdorff property there is a finite cover of pb N by U_i ,

 $i=1,\,2,\,...,\,n,$ with each $U_i'\in\mathfrak{B}',$ such that $f(x)\notin\bigcup_{i}^{n}\overline{U_i'}.$ Now $x \notin \bigcup_{i=1}^{n} f^{-1}(\overline{U_i})$ and since each term of the finite union is closed by hypothesis, x is in an open set which does not meet $f^{-1}(\operatorname{bd} N)$. Therefore $f^{-1}(\mathrm{bd}\,N)$ is closed.

A similar argument shows that f^{-1} is continuous.

COROLLARY 4.1. If S and T are locally connected and locally compact Hausdorff spaces, then any biconnected function $f: S \to T$ is a homeomorphism (see Theorem 3.10 of [4]).

Proof. Locally compact, Hausdorff spaces are rim-compact and, for spaces S and T as general as R_0 -spaces, a biconnected function $f: S \to T$ is such that both f and f^{-1} take closed connected sets to closed connected sets.

I would like to thank Dr. S. A. Naimpally for suggesting one of the problems and for his help in the preparation of this paper.

References

- [1] A. M. Bruckner and J. B. Bruckner, Darboux transformations, Trans. Amer. Math. Soc. 128 (1967), pp. 103-111.
- [2] E. Halfar, Conditions implying continuity of functions, Proc. Amer. Math. Soc, 11 (1960), pp. 688-691.
- [3] V. L. Klee and W. R. Utz, Some remarks on continuous transformation, Proc. Amer. Math. Soc. 5 (1954), pp. 182-184.
- [4] W. J. Pervin and N. Levine, Connected mappings of Hausdorff spaces, Proc. Amer. Math. Soc. 9 (1958), pp. 488-496.
- [5] D. E. Sanderson, Relations among some basic properties of non-continuous functions. Duke Math. J. 35 (1968), pp. 407-414.
- [6] A. Wilansky, Functional Analysis, Blaisdell, New York, 1964.

Reçu par la Rédaction le 27.7.1968