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Tree-likeness of dendroids and J-dendroids

by
H. Cook (Houston, Tex.)

By a continuum is meant a compact, connected, metric space,
A dendroid is an arcwise connected, hereditarily unicoherent con-
tinuum, [4]. A i-dendroid is an hereditarily decomposable, hereditarily
unicoherent continuum, [5]. A continuum 2 is said to be tree-like if it
is degenerate or if, for every positive number &, there is an e-map throw-
ing M onto a finite tree, and arc-like if, for every positive number e,
there is an e-map throwing M onto an arc. It has not heen known that
every dendroid is tree-like. In this note, we establish a theorem (Theo-
rem 1) from which it follows that every dendroid and every A-dendroid
is tree-like. Our Theorem 1 is also used to establish (Theorem 2) that,
if the intersection of two tree-like continua is connected and non-empty,
then their union is also tree-like. This latter theorem is analogous to
Ingram’s theorem [7] that, if the intersection of two arc-like continua
is connected and non-empty, and if their union is atriodic, then their
union is arc-like. )

Bing has shown ([2], Theorem 11) that every non-degenerate, heredi-
tarily decomposable, hereditarily unicoherent, atriodic continuum. is
arc-like; and Fugate has shown, [9], that every mon-degenerate heredi-
tarily unicoherent, atriodic continuum each of whose indeeompq\éé,ble
subcontinua are arc-like is itself arc-like. Theorem 1 of this paper-is
analagous to Fugate’s above mentioned theorem. It follows from ([2],
Theorem 6) that every planar i-dendroid is tree-like (if it be observed
that each subcontinmum of a A-dendroid is a 2-dendroid and no
planar A-dendroid separates the plane). Fugate has shown, [8], that
certain (not necessarily planar) dendroids, called smooth dendroids, are
tree-like.

Lemma 1. Suppose that M is a decomposable, unicoheremt comtimuum,
P is a connected, one dimensional polyhedron, and f is an essential map
of M into P. Then there is o proper subcontinuum M’ of M such that f|lM’
8 essential.

Proof. Suppose the contrary. Let H and K denote two proper sub-

continua of M such that M = H v K and let m, denote a point of the
2*
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subcontinunm H ~ K of M. Let p, = f(m,). Denote by X the universal
covering space of P, with projection m; and denote by x, a point of X
guch that 7 (%) = P, Since f{H and f|K are both homotopic to a constant,
it follows from the covering homotopy theorem, [6], that fhere exist
continuous mappings Ta: H—+X and Tx: KX such that Tw(m,)
= Tg(my) = %, #Tw=f|H, and zTk = f|K. Suppose that Tu|(H ~ K)
+# Ty|(H ~ K). Let Z = {g e H ~ K|Tn(z) = Tx(2)}. Them my e Z and Z is
a closed proper subset of H n K.

Let 41, Yz, Y3y --- De a sequence of points of (H ~ K\Z converging
to a point y e Z. For each n, Tu(ys) # Tx(ys). Let O denote an open
subset of X containing Tu(y) = Tk(y) such that #|0 is & homeomorphism.
There exists a positive integer N such that, if n > N, Twu(y.) ¢ 0 and
Ti(ys) € 0. Then, it 0> N, {Ta(ya)} =[x~ 'nTa(yn)] ~ 0= [~ 2 Tx(ya)] ~
~ 0 = {Tx(ys)}, & contradiction. Thus Tu(H ~ K)= Tx(H ~ K). Hence,
there is a transformation f*: M —~X such that f*|H = Ty and f*|K = Tk;
f* is continuous; and nf* = f. o

Since X is a 1-complex (infinite) which contains no simple closed
curve and f¥[M] is a compact continuum lying in X, f*[M] is a tree and,
thus, is contractible. Then =f* is inessential. But sf* = f which is essential,
a contradiction.

THEOREM 1. Suppose that M is an hereditarily unicoherent continuum
such that, if X 18 an indecomposable subcontinuum of M, X is tree-like.
Then M is tree-like.

Proof. Suppose that dim M > 2. It follows from a theorem of
Alexandroff ([1], p. 170) and a theorem of Mazurkiewicz ([11], Cor. 1)
that there is a subcontinuum M, of M and an essential map f of M onto
a eircle J. There is ([10], p. 281), a subcontinuum M, of M, such that f|.M,
is essential but, if M; is a proper subcontinuum of M,, then f|M; is
inessential, Then, since M, is unicoherent, it follows from Lemma 1
that M, is indecomposable. Then M, is tree-like. Then every mapping
of M, onto a circle is inessential, ([3], Theorem 1), a contradiction. Then
dim M < 1.

If dim M =0, M iy degenerate and, hence, is tree-like.

Suppose dim M = 1 but M is not tree-like. Then, [3, Theorem 1],
there is a one-dimensional polyhedron P and an essential map ¢ of M
onto P. There is, ([10], p.281), a sub-continuum M’ of M such that g|M’
is essential but, if M’ is a proper subcontinuum of M’, then g|M" is
inessential. Since M’ is unicoherent, it follows from Lemma 1 that M’
is indecomposable. Then M’ is tree-like and, [3, Theorem 1], every mapping
of M’ into P is inessential, a contradiction. Thus M is tree-like.

COROLLARY. Every dendroid and every A-dendroid is_tree-like.

The author has been told that several people (including Fugate)
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know the following Lemma 2 but, since he has not seen it in print, its
proof is included here. .

LemMmA 2. If the continuum M is the union of two hereditarily uni-
coherent continua H and K whose iniersection is a continuum, then M is
hereditarily unicoherent.

Proof. Suppose that X and ¥ are subeontinua of M and X ~ Y ig
the union of two mutually exclusive closed sets U and V.

Suppose that X C M\K, then Y is not a subset of H. One component;
Cy of ¥ ~ H intersects both U and H ~ K and one coniponent, Cy, of
Y ~ H intersects both V and H ~ K. Then X and Cy v Cy u (H ~K)
are intersecting subcontinua of H whose intersection is not connected,
a contradiction. Thus X and Y each intersect both H and K.

Suppose € is a component of X n Y which is & subset of M\K.
Let Ox denote the component containing ¢ of H ~ X and let Cy denote
the component containing ¢ of H ~ ¥. Then Cx v (H~EK) and Cyv
v (H n K) are intersecting subcontinua of H whose intersection is not
connected. Thus, every component of X ~ ¥ intersects both H and K
and, hence, intersects H ~ K. /

It X~H~ K and ¥ ~H ~ K were both connected, then X ~ ¥ ~ .-
nH~ K would be connected and would intersect every - component
of X ~n Y and, hence, X ~ ¥ would be connected. Suppose X "nH n K
is the union of two mutually exclusive closed sets L, and L,. Then there
is a subcontinuum X, of X irreducible from I, to Ly; X,\(L, v L,) is con-
nected ([12], Theorem 47, p. 16) and, thus, is a sub-set either of H or
of K. Then (H nK) v CLLX\(L; v L,)] (where Cl denotes closure) is
& unicoherent continuum, a contradiction. Similarly, the assumption
that ¥ ~ H ~ K is not connected leads to a contradiction. Thus M is
hereditarily unicoherent.

THEOREM 2. If the continuum M is the union of two tree-like continua H
and K whose intersection is connected, then M 4s tree-like.

Proof. By Lemma 2, M is hereditarily unicoherent. Suppose 7T is
an indecomposable subcontinuum of M which is not tree-like. Then T
intersects both M\H and M\E and T ~ H and T ~ K are proper sub-
continua of 7. But ' = (T ~ H) v (T ~ K) and is, therefore, decompos-
able, a contradiction. Thus, by Theorem 1, M is tree-like.
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A 2-complex is collapsible if and only if it admits
a strongly convex metric

by
Warren White (Tempe, Ariz.)

§ 1. Introduction. A metric d on a compact space X is strongly
convew if, for any two points #, y ¢ X, there is a unique point m € X such
that d(z, m) = d(m,y) = +d(x,y). In the last few years, there has been
considerable interest in characterizing the spaces which admit convex
metrics. Lelek and Nitka [3] and Rolfsen [4] have shown that cells are
the only compact 2 and 3-dimensional spaces which admit strongly convex
metrics with the property that no midpoint of # and ¢ is a midpoint of »
and ¥’ unless ¥ = y'.. Rolfsen [4] has further shown that the only compact
n-manifold, n < 3, admitting a strongly convex metric is the. cell.

It is well known (see [2]) that any compact space which admits
a strongly convex metric is contractible, but Sieklucki[5] has demonstrated
a contractible 2-complex which admits no strongly convex metric. Joseph
Martin conjectured in 1966 that the stronger condition of collapsibility
does characterize the 2-complexes which admit strongly convex metries,
and a proof of this is the object of this note. It is interesting to note that
this theorem also provides, conversely, a topological characterization of
collapsibility in 2-complexes, and thus cannot be directly extended to
higher dimensions, for a 3-cell can have a non-collapsible triangulation [1].

§ 2. A collapsible 2-complex admits a strongly convex metric. )

DeriNmrions. All simplices are closed simplices. If a;, as, ..., ax are
points in-a simplex o, then a,a,... @z is their convex hull in the linear
structure of o. A triangle is a 2-simplex in B* with the regular euclidean
metric |z —y||.

All maps are continuous; if X and Y are spaces, the notation f: X ¥
denotes a map from X onto ¥. If K is a complex, then K™ denotes the
k-skeleton of K.

Let X be a compact space with a strongly convex metric d. Any two

“points z, y of X are joined in X by a unique arc, the segment oy, which
'i8 1some‘nr1c to a closed interval of the real line ([2]). A concave collection

for @ is a finite collection T of segments in X satisfying:
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