H. Cook

- [4] J. J. Charatonik, Ramification points in the classical sense, Fund. Math. 51 (1962), pp. 227-252.
- [5] On decompositions of λ -dendroids, Fund. Math. 67 (1970), pp. 15-30.
- [6] M. L. Curtis, The covering homotopy theorem, Proc. Amer. Math. Soc. 7 (1956), pp. 682-684.
- [7] W. T. Ingram, Decomposable circle-like continua, Fund. Math. 63 (1968), pp. 193-198.
- [8] J. B. Fugate, A sufficient condition that a compact metric continuum be chainable, to appear.
- [9] Retracting dendroids onto trees, Notices Amer. Math. Soc. 15 (1968), pp. 773.
- [10] K. Kuratowski, Topologie II, Warszawa 1961.
- [11] S. Mazurkiewicz, Sur l'existence des continus indécomposables, Fund. Math. 25 (1935), pp. 327-328.
- [12] R. L. Moore, Foundations of point set theory, Amer. Math. Soc. Colloq. Publ., vol. 13, New York, 1962.

THE UNIVERSITY OF HOUSTON Houston, Texas

Reçu par la Rédaction le 2, 12, 1968

A 2-complex is collapsible if and only if it admits a strongly convex metric

by

Warren White (Tempe, Ariz.)

§ 1. Introduction. A metric d on a compact space X is strongly convex if, for any two points $x, y \in X$, there is a unique point $m \in X$ such that $d(x, m) = d(m, y) = \frac{1}{2}d(x, y)$. In the last few years, there has been considerable interest in characterizing the spaces which admit convex metrics. Lelek and Nitka [3] and Rolfsen [4] have shown that cells are the only compact 2 and 3-dimensional spaces which admit strongly convex metrics with the property that no midpoint of x and y is a midpoint of x and y unless y = y. Rolfsen [4] has further shown that the only compact x-manifold, $x \in X$, admitting a strongly convex metric is the cell.

It is well known (see [2]) that any compact space which admits a strongly convex metric is contractible, but Sieklucki [5] has demonstrated a contractible 2-complex which admits no strongly convex metric. Joseph Martin conjectured in 1966 that the stronger condition of collapsibility does characterize the 2-complexes which admit strongly convex metrics, and a proof of this is the object of this note. It is interesting to note that this theorem also provides, conversely, a topological characterization of collapsibility in 2-complexes, and thus cannot be directly extended to higher dimensions, for a 3-cell can have a non-collapsible triangulation [1].

§ 2. A collapsible 2-complex admits a strongly convex metric.

DEFINITIONS. All simplices are closed simplices. If $a_1, a_2, ..., a_k$ are points in a simplex σ , then $a_1a_2...a_k$ is their convex hull in the linear structure of σ . A *triangle* is a 2-simplex in E^2 with the regular euclidean metric ||x-y||.

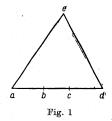
All maps are continuous; if X and Y are spaces, the notation $f: X \to Y$ denotes a map from X onto Y. If K is a complex, then $K^{(k)}$ denotes the k-skeleton of K.

Let X be a compact space with a strongly convex metric d. Any two points x, y of X are joined in X by a unique arc, the segment \widehat{xy} , which is isometric to a closed interval of the real line ([2]). A concave collection for d is a finite collection T of segments in X satisfying:

(2.1) If
$$\varrho$$
, $\tau \in T$ and $x_1, x_2 \in \varrho$, $y_1, y_2 \in \tau$, then $d(x_m, y_m) \leq \frac{1}{2} [d(x_1, y_1) + d(x_2, y_2)]$, where x_m, y_m are the midpoints of $\widehat{x_1 x_2}$ and $\widehat{y_1 y_2}$.

(2.2) If
$$\tau \in T$$
 and $x_1, x_2 \in \tau$ then, for any point $y \in X$, $d(y, x_m) \leq \frac{1}{2} [d(y, x_1) + d(y, x_2)]$, where x_m is the midpoint of $\widehat{x_1 x_2}$.

LEMMA 2. Suppose that $X \cup \sigma$ is a metric space and $X \cap \sigma = \tau$ is an arc. Let d be a strongly convex metric for X and let T be a concave collection for d.



an element of which contains τ . Suppose abode (Figure 1) is a triangle with vertices a, d, and e, and let φ : $abcde \to \sigma$ be a homeomorphism such that $\varphi(bc) = \tau$ and $d(\varphi(x), \varphi(y)) = ||x-y||$ for every $x, y \in bc$.

Then there is a strongly convex metric d' for $X \cup \sigma$ such that:

$$(2.3) \hspace{1cm} d'(x,y) = d(x,y) \hspace{0.5cm} \textit{for all} \hspace{0.5cm} x,\, y \in X \,,$$

(2.4)
$$d'(x, y) = \|\varphi^{-1}(x) - \varphi^{-1}(y)\|$$
 for all $x, y \in \sigma$,

(2.5) $T \cup \{\varphi(ab), \varphi(cd), \varphi(de), \varphi(ea)\}\$ is a concave collection for d'.

Proof. Define d' by:

$$d'(x,y) = \begin{cases} d(x,y), & x, y \in X, \\ \|\varphi^{-1}(x) - \varphi^{-1}(y)\|, & x, y \in \sigma, \\ \min_{x \in T} \{d'(x,p) + d'(p,y)\}, & x \in \sigma, y \in X \text{ or } x \in X, y \in \sigma. \end{cases}$$

Checking that d' satisfies 2.3-2.5 is then a straightforward process.

THEOREM 2. Let L be a 2-complex with a strongly convex metric d on |L|, and let T be a concave collection for d which covers $|L^{(1)}|$. Suppose that σ and τ are a simplex and face, respectively, such that $L' = L \cup \{\sigma, \tau\}$ is a 2-complex and $L' \to L$ is an elementary collapse.

Then there is a strongly convex metric d' for |L'| and a concave collection T' for d' satisfying:

(2.6) T' covers $|L'^{(1)}|$,

 $(2.7) d'(x,y) = d(x,y) for x, y \in |L|.$

Proof. The case when σ is a 1-simplex is left to the reader to check. Suppose σ is a 2-simplex; then σ meets L in two of its faces, τ_1 and τ_2 (Figure 2). T covers the one-skeleton of L, so we can find a subtriangulation $u_0u_1, u_1u_2, ..., u_{k-1}u_k$ of $\{\tau_1, \tau_2\}$ such that each element $u_{i-1}u^i$

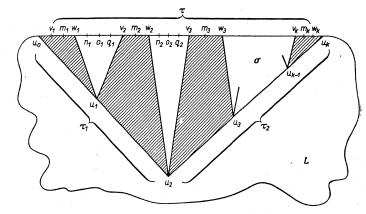


Fig. 2

belongs to T. Choose points $v_i, w_i, m_i, i = 1, ..., k$, and $n_i, o_i, q_i, i = 1, ..., k-1$, so that the order of points along τ is $u_0, v_1, m_1, w_1, n_1, o_1, q_1, v_2, m_2, w_2, n_2, o_2, q_2, ..., v_{k-1}, m_{k-1}, w_{k-1}, n_{k-1}, o_{k-1}, q_{k-1}, v_k, m_k, w_k, u_k$, as illustrated in Figure 2.

PROPOSITION 2A. There is a strongly convex metric d_1 for $L_1 = |L| \cup \cup u_n u_1 w_1 v_1 \cup ... \cup u_{k-1} u_k w_k v_k$ (shaded in Figure 2) such that:

(1) $T_1 = T \cup \{v_1u_0, u_1w_1, w_1m_1, m_1v_1, ..., v_ku_{k-1}, u_kw_k, w_km_k, m_kv_k\}$ is a concave collection for d_1 .

(2) $v_j u_{j-1} \cup u_{j-1} u_j \cup u_j w_j = \widehat{v_j w_j}$, for each j = 1, ..., k.

Proof. The quadrilaterals $u_{j-1}u_jw_jv_j$, j=1,...,k, meet each other only in |L|, so we can apply Lemma 2 repeatedly to obtain d_1 .

We now extend d_1 to the rest of $|L \cup \sigma|$ by induction. Let

$$L_j = L_1 \cup w_1 u_1 v_2 \cup ... \cup w_{j-1} u_{j-1} v_j$$

and

$$T_j = T_1 \cup \{w_1n_1, n_1 \, o_1, \, o_1q_1, \, q_1v_2, \, \dots, \, w_{j-1}n_{j-1}, \, n_{j-1}o_{j-1}, \, o_{j-1}q_{j-1}, \, q_{j-1}v_j\}$$

for j=2,...,k, and suppose that, for some $i \in \{1,...,k\}$, we have a strongly convex metric d_i for L_i such that:

- (i) $d_i(x, y) = d_1(x, y)$ for all x, y in L_1 .
- (ii) T_i is a concave collection for d_i .

If i < k, consider $w_i u_i \cup u_i v_{i+1}$.

Proposition 2B. $w_i u_i \cup u_i v_{i+1} = w_i v_{i+1}$.

Proof. This is certainly true if $u_i \in w_i v_{i+1}$, since $w_i u_i = w_i u_i$ and $\widehat{u_i v_{i+1}} = u_i v_{i+1}$. But u_i must lie on $\widehat{w_i v_{i+1}}$, since $\widehat{w_i v_{i+1}}$ has to hit $u_i u_{i+1}$ and $v_{i+1} u_i \cup u_i u_{i+1}$ is a segment by Proposition 2A(2) and (i).

PROPOSITION 2C. If $p \in \overline{L_i \setminus u_{i-1} u_i w_i v_i}$ (or $p \in \overline{L_i \setminus u_i u_{i+1} w_{i+1} v_{i+1}}$) and $x \in w_i u_i$ ($x \in u_i v_{i+1}$), then $d_i(p, x) = d_i(p, u_i) + d_i(u_i, x)$.

Proof. \widehat{px} must hit $v_i u_{i-1} \cup u_{i-1} u_i$ $(u_i u_{i+1} \cup u_{i+1} w_{i+1})$, but $v_i u_{i-1} \cup u_i u_i \cup u_i w_i$ $(v_{i+1} u_i \cup u_i u_{i+1} \cup u_{i+1} w_{i+1})$ is a segment, so $u_i \in \widehat{px}$.

PROPOSITION 2D. $T_i \cup \{w_i v_{i+1}\}$ is a concave collection for d_1 .

Proof. We will show that $T_i \cup \{\widehat{w_i v_{i+1}}\}\$ and d_i satisfy (2.1). Suppose that $\tau \in T_i \setminus \{u_i w_i, w_i m_i, m_i v_i\}$, and let $x_1, x_2 \in \widehat{w_i v_{i+1}}, y_1, y_2 \in \tau$ (Figure 3).

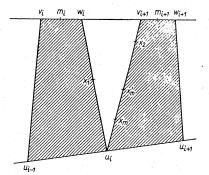


Fig. 3

If $x_1, x_2 \in u_i w_i$ or $x_1, x_2 \in u_i v_{i+1}$ then we are through, since $u_i w_i$ and $u_i v_{i+1} \in T_i$, so assume that $x_1 \in u_i w_i$ and $x_2 \in u_i v_{i+1}$. Let x_m, y_m , and x_m be the midpoints of $\widehat{x_1 x_2}, \widehat{y_1 y_2}$, and $\widehat{u_i x_2}$ respectively. Now, we know that $d_i(x_m', y_m) \leq \frac{1}{2} [d_i(u_i, y_1) + d_i(x_2, y_2)]$. By Proposition 2C, $d_i(x_1, y_1) = d_i(x_1, u_i) + d_i(u_i, y_1)$. $d_i(x_m, x_m') = \frac{1}{2} d_i(x_1, u_i)$, so

$$\begin{split} d_i(x_m,\,y_m) &\leqslant d_i(x_m,\,x_m') + d_i(x_m',\,y_m) = \frac{1}{2}\,d_i(x_1,\,u_i) + d_i(x_m',\,y_m) \\ &\leqslant \frac{1}{2}[d_i(x_1,\,u_i) + d_i(u_i,\,y_1) + d_i(x_2,\,y_2)] = \frac{1}{2}[d_i(x_1,\,y_1) + d_i(x_2,\,y_2)] \;. \end{split}$$

A symmetric argument works if τ is $u_i w_i$, $w_i m_i$, or $m_i v_i$, and the proof that $T_i \cup \{\widehat{w_i v_{i+1}}\}$ and d_i satisfy (2.2) is similar.

PROPOSITION 2E. There is a strongly convex metric d_{i+1} for L_{i+1} which satisfies conditions (i) and (ii) with i+1 substituted for i.

Proof. Propositions 2B and 2D allow us to apply Lemma 2.

By induction, there is a strongly convex metric d_k for $L_k = |L'|$ which satisfies conditions (i) and (ii) with k substituted for i. It is easy to check that $d' = d_k$ and $T' = T_k$ then satisfy the conclusions of the theorem.

COROLLARY 2. A collapsible 2-complex admits a strongly convex metric.

§ 3. A 2-complex which admits a strongly convex metric is collapsible.

DEFINITIONS. We will consider all complexes to be embedded linearly in some euclidean space, although not, of course, with the inherited metric. If C is a complex and x a point of |C|, we define

$$St(x, C) = \{ \sigma \in C \colon x \in \sigma \},\$$

$$\mathrm{Lk}(x,\,C) = \{\tau \in C \colon \tau \subset |\mathrm{St}(x,\,C)|, \ x \notin \tau\}.$$

 $|\mathrm{St}(x,\,C)|=x|\mathrm{Lk}(x,\,C)|$, and we can use this cone structure of $\mathrm{St}(x,\,C)$ to define the natural projection $\pi(x,\,C)\colon |\mathrm{St}(x,\,C)|\backslash \{x\}\to |\mathrm{Lk}(x,\,C)|$. Similarly, if $S^e(x)=\{y\;\epsilon\;|C|\colon ||y-x||=\varepsilon\}$ is contained in $|\mathrm{St}(x,\,C|,$ we can define a natural homeomorphism $\pi^e(x,\,C)\colon |\mathrm{Lk}(x,\,C)|\to S^e(x)$ such that $\pi(x,\,C)\pi^e(x,\,C)=I$, the identity. A subcomplex C' of C is a *spine* of C if C collapses to C'.

LEMMA 3. Let K be an n-complex, n=2 or 3, with a strongly convex metric d, and let $L \subseteq K$ be a subcomplex consisting of n-simplices and their faces. Then there is an n-simplex of L with a face free in L.

Proof. Fix a point p in the interior of an n-simplex of L. The metric d induces a contraction $H: |K| \times [0, 1] \rightarrow |K|$ such that (see [2]):

- (i) H(x, 0) = x for all $x \in |K|$,
- (ii) H(x, 1) = p for all $x \in |K|$,
- (iii) $H(x, t) \in \widehat{px}$ for all $x \in |K|, t \in [0, 1]$.

Proposition 3A. There is a point x_0 of |L| such that:

- (1) x_0 is not a vertex of K,
- (2) for any $y \in |L|$, $x_0 \in \widehat{py} \Rightarrow x_0 = y$.

Proof. $S^{\epsilon}(p)$ separates the *n*-cell containing p if ϵ is small enough, and $S \cap H(K^{(0)} \times [0,1])$ is a finite set. Choose $x \in S \setminus H(K^{(0)} \times [0,1])$, and let $F = \{y \in |L|: x \in \widehat{py}\}$. F is closed and hence compact, and so contains a point x_0 such that $d(p,x) \leq d(p,x_0)$ for all $x \in F$. It is easy to check that x_0 satisfies Proposition 3A (1) and Proposition 3A (2).

PROPOSITION 3B. $|Lk(x_0, L)|$ can be shrunk to a point in $|Lk(x_0, K)|$.

Proof. Pick $t_1 \in [0, 1]$ so that $H(x_0, t_1) \neq x_0$ and $H(x_0, t) \in \text{int} | \operatorname{St}(x_0, K)|$ for all $t \in [0, t_1]$. Let $\pi = \pi(x_0, K)$. We can find a neighborhood N_0 of x_0 in |K| such that:

- (iv) $H(N_0, t) \subset \operatorname{int} |\operatorname{St}(x_0, K)|$ for all $t \in [0, t_1]$,
- (v) $\pi[H(N_0, t_1)]$ can be shrunk to a point in $|Lk(x_0, K)|$.

The second condition is possible because $|\mathrm{Lk}(x_0,K)|$, being a polyhedron, is locally contractible. Let $\pi_1=\pi^\epsilon(x_0,K)$, where ϵ is small enough that $S^\epsilon(x_0)\subset N_0$, and consider the function $\pi H(\cdot,t)\pi_1$ on $|\mathrm{Lk}(x_0,L)|$ for $t\in[0,t_1]$. Proposition 3A (2) and (iv) show that it is well-defined, since $\pi_1[|\mathrm{Lk}(x_0,L)|]\subset |L|$. It is a continuous family of mappings from $|\mathrm{Lk}(x_0,L)|$ into $|\mathrm{Lk}(x_0,K)|$, and $\pi H(\cdot,0)\pi_1=I$. By (v), $\pi H(\cdot,t_1)\pi_1$ of $[|\mathrm{Lk}(x_0,L)|]$ can be shrunk to a point in $|\mathrm{Lk}(x_0,K)|$, and we are through.

Proposition 3C. x_0 lies on a (n-1)-simplex which is the face of exactly one n-simplex of L.

Proof. We will consider the case when n=3, leaving the case n=2 for the reader to check. Let τ be the simplex of L containing x_0 in its interior. It follows from Proposition 3B that $|\mathrm{Lk}(x_0,L)|$ contains no 2-sphere, so τ is not a 3-simplex and, if τ is a 2-simplex, it is the face of exactly one 3-simplex in L.

If τ is a 1-simplex, then $\mathrm{Lk}(x_0,L)$ is the suspension of $\mathrm{Lk}(\tau,L)$, where $\mathrm{Lk}(\tau,L) = \{\mu\colon \tau\mu \in L\}$. $\mathrm{Lk}(\tau,L)$ contains no simple closed curve, because $\mathrm{Lk}(x_0,L)$ contains no 2-sphere. $\mathrm{Lk}(\tau,L)$ does contain a 1-simplex, since τ is the face of a 3-simplex in L. $\mathrm{Lk}(\tau,L)$ therefore contains a 1-simplex μ with a vertex v free in $\mathrm{Lk}(\tau,L)$. $\mu\tau$ is then a 3-simplex of $\mathrm{St}(x_0,L)$ with a face $v\tau$ free in L.

THEOREM 3. If K is an n-complex, n = 2 or 3, with a strongly convex metric, then K has an (n-1)-dimensional spine.

Proof. Suppose we have already collapsed K down to a subcomplex L. If L contains n-simplices, let L' be the collection of n-simplices of L and their faces. Applying Lemma 3 to L', we get an n-simplex of L with a face which must be free in L, since L-L' is (n-1)-dimensional.

COROLLARY 3. If K is a 2-complex with a strongly convex metric, then K is collapsible.

Proof. K is contractible and, by Theorem 3, collapses to a 1-complex, which must also be contractible. Any contractible 1-complex is collapsible.

References

 R. H. Bing, Some aspects of the topology of 3-manifolds related to the Poincaré conjecture, Lectures on Modern Mathematics II edited by T. L. Saaty, New York, 1964.

- [2] K. Borsuk, On a metrization of polytopes, Fund. Math. 47 (1959), pp. 325-341.
- [3] A. Lelek and W. Nitka, On convex metric spaces I, Fund. Math. 49 (1961), pp. 183-204.
- [4] D. Rolfsen, Strongly convex metrics in cells, Bull. Amer. Math. Soc. 74 (1968), 171-175.
- [5] K. Sieklucki, On a contractible polytope which cannot be metrized in the strong convex manner, Bull. Acad. Polon. Sci. 6 (1958), pp. 361-364.

Reçu par la Rédaction le 24. 1. 1969