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Ordered sets, -semilattices, distributive lattices
and Boolean algebras
with homomorphic endomorphism semigroups

by
B, M. Schein (Saratov)

§ 0. Introduction. In this paper we give necessary and sufficient
conditions in order that two algebraic systems of the type mentioned
in the title have homomorphic endomorphism semigroups. An analogous
result is ‘obtained for semigroups.of some special endomorphisms of
ordered sets (those endomorphisms have to preserve some suprema and
infima of certain subsets of a given ordered set, e.g., one may consider
only complete endomorphisms, or the smallest element of the ordered
set, if it exists, may be fixed under all endomorphisms considered). The
typical result is as follows: every homomorphism (excluding some trivial -
ones) is an isomorphism induced by an isomorphism or an anti-isomorphism
of the ordered sets. In particular, every two algebraic systems of the
type mentioned in the title are isomorphic or anti-isomorphie if and only
if they have isomorphic endomorphism semigroups.

It is well known that groups of automorphisms cannot characterize
the above-mentioned algebraic systems up to an isomorphism: two non-
isomorphic Boolean algebras may have isomorphic—in fact, trivial—auto-
morphism groups [13].

Every ordered set, semilattice, distributive lattice or Boolean al-
gebra may be faithfully represented as an inclusion-ordered set of subsets,
meet- or join-semilattice of subsets, ring or field of sets [1] (this fact is.
infimately connected with the other one: all those algebraic systems
are unary relation algebras in the sense of [9], whence they musb e
representable). This representability is essential for our proois.

‘ We begin with some definitions and then formulate the main results.
The rest of the paper is devoted to proofs and gome corollaries to those
results.

§ 1. Main definitions. Let ¢ be a binary relation over a set A
A transformation f of A is called an endomorphism of the algebraic-
system (4, o) if (ay, as) € 0 = (f(a), f(as)) € ¢ for all a, ayeA.
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If % is an algebraic system, then |U| denotes the cardinality of 9,
i.e., the cardinality of the set A of all elements of U. If |fl[[ =1, N is calleg
degenerate. A homomorphism onto a degenerate algebx.'a.lc system is calleqd
degenerate. 1t % iy & Boolean algebra and U = 2, A is called trivial.

P(4) is the set of all subsets of a set 4, Po(d) = P(AN\{B}, B,(4)
is the set of all non-empty finite subsets of A.

§(2) denotés the endomorphism semigroup of an algebraic system 9
(the elements of &() are all endomorphisms of %, the operation is natural);
£8(%) is the surmorphism (i.e., endomorphism onto) semigroup of 9,
A(%) is the automorphism group of A. Clearly, A(WU) C ES(A) C ().
If (%) and §(%B) are isomorphic, then £(A) and A(B) are isomorphic
(since #£(W) is the maximal subgroup of &(A) containing the identity
of &§2)). The converse is not generally true.

Now let A= (4, <) be an ordered set, M and N subsets of Py(4)
and ¢ an isomorphism of % onto some inclusion ordered set of subsets.
«p is called an (M, N)-representation (cf. [2]) if, for every a « M for which
the supremum V a exists, ¢(V a) =1 ¢(a); and, for every aeM for

which the infimum A a exists, (A @) = N(a). A is called (M, RN)-rep-

resentable if' there exists an (M, N)-representation of .
An endomorphism ¢ e 8(U) is called an (M, N) - endomorphism it it
preserves the supremsa from I and the infima from N, that is, for every

@ e Wt for which the supremum V a exists, the supremum Ve(a) also
exists and ¢(Va) = Ve(a); and for every a ¢ N for which the infimum Aa

exists, the infimum A g(a) also exists and p(Aa) = A ¢(a).
The pair (M, N) is called permissible if the product of every two
(M, N)-endomorphisms of A is an (M, N)-endomiorphism. In this case

we may consider the semigroup 8mn(2) of all (I, N) -endomorphisms of 9. -

The necessary and sufficient conditions for the (M, N) - representa-
bility of 9 are well known [2]. An evident sufficient condition for the
permissibility of (I, N) is the following: ¢(M) CM and (MR for
every (IR, 9N)-endomorphism . Hence, (M, N) is permissible if M and N
are either empty, or equal to Pa(4), or equal to Py(A).

Clearly, 8aq(%)=8(). If (M, N) equals (Pu(4), 9), (9, Pu(4),
(B4, 0), (0, Bo(4), (Bald), BulA)), (Bu(4), Bo(A), (Bo(4), Dol )
or (Po(4), Py(4)), then the semigroup &ma(¥) is denoted respectively
by EV(QUJ SI\(QI)) SV(%)i GA(Q[)ﬂ ‘Sv A(QI)7 8\//\(2[)7 8VA(QI) or 8Vr‘\(m:)-

Let A = (4, <) be-an ordered set. The smallest equivalence relation
over A containing < (i.e., the equivalence closure of =) s called the
-connectivity relation of A and is denoted by s U iy called connected
if xq= 4 xA. Clearly, a, = a(xy) if and only if there exists a sequence

@gy Gy ...y Gn = 6 of elements of A such that a; and a;.; are comparable
for every ¢=0, .., n~1.
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Let G(B) be the full transformation semigroup over B (i.e., let G(B)
be the semigroup of all transformations of 4) and let f be a mapping
of A onto B such that xy is the kernel equivalence of f (the latter means
that f(a) = f(as)>a; = ay(x) for every ay, a, €A). If ¢e&(A), then ¢
induces a transformation g of the quotient set A[xy, since ay = ay(y)
> (@) = @(a)(x5). Therefore, every ¢e8(%) defines a transformation
? € B(B)+ p(by) = by means that ¢(a,) = a, for some a, and a, such that
flas) = by (=1,2). The mapping F: §(A) —G(B) is a homomorphism.
Moreover, it is a surmorphism. In effect, let w ¢ G(B). For every b eB
choose an element ay e A such that f(a;)=b and define Pp(@) = Gy
for all a ¢ A. Then ¢, € §(A) and g, = . Clearly, ¢, ¢ &qn(A) for every
permissible pair (M, N), whence f induces a surmorphism of &y g(4)
onto G(B). The homomorphism induced by } on any subsemigroup of
§(%) is called disconmecting. Endomorphisms ¢, of 9% are called discon-
necting endomorphisms. If U is connected, then every disconnecting homo-
morphism iy degenerate.

A left zero semigroup is any semigroup satisfying the identity wy = .
Right zero semigroups are defined dually. Left zero semigroups and
right zero semigroups constitute the class of singular semigroups.

If U is a semilattice or lattice, then U = (4, <«) where <y is the
natural order of . If A is linearly ordered, then % is called linear.
A linear bi-semilattice is an algebraic system U= (4, 0,0) with two
equal binary operations o such that (4, o) is a linear semilattice. In this
case we define UA'= (4,0)". A singular chain is any algebraic system
A= (4,0,%) with two binary operations o and ¢ such that one of the
operations is'a singular semigroup multiplication and the other operation
is a linear semilattice multiplication. If 9 is a singular chain, then 9’
is the set A ordered with the natural semilattice order of 9. If 9 is an
ordered set, then, by definition, %" = QL.

Let % and B be algebraic systems for which %" and B' are defined.
A bijection f of 4 onto B is called an order (anti-)isomorphism of U onto B
if f is an (anti-)isomorphism of A’ onto B'. Clearly, if % and B are both
ordered sets, semilattices or lattices, then order (anti-)isomorphisms are

+ precisely the ordinary (anti-)isomorphisms.

Let f be a bijection of a set 4 onto a set B and ¢ e G(4). Define
7(p) € B(B) as follows: ms(e)(f(a)) = f(p(a)). Then z is an isomorphism
of B(4) onto G(B). If & C B(4), ¥C B(B) and = is an isomorphism of &
onto ¥ which is a restriction of m; to @, we say that a is induced
by f. : .

An ordered set with zero is an algebraic system U = (4, <, 0) where
(4,<) is an ordered set with the smallest element 0 (0 is considered as
a nullary operation). Define &m (%)= &(A) M dma((4, <)) (i.e., Smn()
are precisely those endomorphisms from &ma((4,<C)) for “which 0 is
Fundamenta Mathematicae LXVIII . - 3
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a fixed point). An ordered sef with identity is a system (4, <, 1) where

(4, <) is an ordered set with the largest element 1.

‘ Let % be a Boolean algebra, MM C Py(A). A is called M -representable
if the corresponding lattice (4, A, V) is (iUt,‘ M) -representable. M- endo-
morphisms of U are endomorphisms of A which are (¢, M)-endomorphismg
of this lattice. If the set &m(2) of all M-endomorphisms of A is a gub-
semigroup of §(A), M is called permissidle. : i

A transformation iy called m-valued if its range has cardinality n;
¢, denotes the constant (i.e., the 1-valued transformation) taking the
value a.

Let U be an ordered set. A subsemigroup @ C 8(%) is called sufficient
if it satisfies the following two conditions:

1) every constant from () belongs to &;

2) if {a;, 4x} and {as, a,} are two ordered subsets of U, then every
one-to-one homomorphism of {a;, a,} onto {as, a,} which is a restriction
of some ¢ ¢ &(UA) is also a restriction of some y ¢« @.

Remark. There exists a one-to-one homomorphism of {a,, a,} onto
{a3, @} which is a restriction of some ¢ e §(U) if and only if either a,
= as(xw) or ay and a, are comparable (provided a, # ay, a; # a,).

Let A be an ordered set with zero. A subsemigroup & C §(2) is called
sufficient if it satisfies the following two conditions:

1) for every a, # 0 and a,< A there exists an n-valued ¢ e® such
that » <2 and @(a;) = ay;

2) if @y, 4, € A and a; <{ 2y, then @(a;) # 0 = p(a,) for some ¢ P.

The first condition implies ¢, e &. .

Let %A be a Boolean algebra. A subsemigroup @ C §(A) is calle
sufficient if it satisfies the following three conditions:

1) for every distinet ay, @, ¢ A there exists a two-valued @ e D such
that g(a,) # @(am);

2) it gie®, g iy two-valued for 1<4i<4 and @, 5= @y, then
{9100, @20 0} = {m, @} for some ¢ e B; :

3) it |4|> 2, then the ranges of 4-valued endomorphisms from @
cover A.

§ 2. Main results.

TEeoREM 1. Lot U and B be ordered sets, & and ¥ sufficient semi-
groups of endomorphisms of A and B respectively, and m a homomorphism
of @ onto W. Then one of the Jollowing three cases holds:

1) B and x are degencrate;

2) B is trivially ordered and w s disconnecting;
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3) m is oan isomorphism induced by o wni
or anti-isomorphism of A onto B.

THEOREM 2. Let A and B be ordered sets with zeros,
semigroups of endomorphisms of W and B respectively,
of @ onto . Then =z is induced by a uniquely defined 4s
and B. ’

TaeoREM 3. Let % and B be Boolean algebras, & and ¥ sufficient semi-
groups of endomorphisms of W and B respectively, and = a homomorphism
of @ onto ¥. Then one of the following two cases holds:

1) B is cither degenerate or irivial, and = is degenerate;

2) m is an isomorphism induced by o uniquely defined isomorphism
between A and B.

CoroLLARY 1. Let (M, N) and (P, Q) be permissible pairs of sets of
non-empty subsels of ordered sets % and B respectively, U being (M, N)-rep-
resentable and B — (P, Q)-representable. Bvery isomorphism. x between,

quely defined 180Morphism

D and ¥ sufficient
7 be an isomorphism
omorphism between U

"o n(W) and &p,a(B) s induced either by a uniguely defined isomorphism f

of A onto B (in which case &pgo(B)= Eramyy(B)) or by a uniquely
defined anti-isomorphism of W onto B (in which case &p o B) = Era, 7ais( B)).

CorOLLARY 2. Let (I, N) and (P, Q) be permissible pairs for ordered
sets with zeros W and B respectively, A being (B, N)-representable and B —
(B, Q)-representable. Tvery isomorphism between &mn(YW) and Ep,a(B) is
induced by o uniquely defined isomorphism f between W and B and &p.0(B)
= &y sm(B)- _ ‘

CorOLLARY 3. Let M be a permissible set of non-emply subsets of
a Boolean algebra A, M & permissible set of non-empty subsets for a Boolean
algebra B, W being M-representable and B — N-representable. If A and B
are not degenerate, then every isomorphism between Exm(N) and Ex(B) is
induced by a uniquely defined isomorphism f between %A and B, in which
case Sn(B) = &am)(B).

TaHEOREM 4. Let A be an ordered set and B = (B, o) be a non-empty
set with o reflexive binary velation. There ewists o homomorphism x of &(%)
onto 8§(B) if and only if one of the following three cases holds:

1) B and & are degenerate;

2) B is o trivially quasi-ordered set (which means that o is either the
identical, or universal binary relation), &(B) = B(B) and B has the same
cardinality as Wny (any homomorphism of &(A) onto &(B) is disconnecting
in this case); ‘

3) B is an ordered set isomorphic or amti-isomorphic with .

THEOREM 5. Let N be a semilatiice and B = (B, 0) a set with an idem-
potent binary operation o. There exists o homomorphism = of §(A) onto &(B)
if and only if one of the following three cases holds: B

3*
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1) B and = are degenerate;

2) B is a semilattice and m is induced by am isomorphism of N onto B;

3) A and B are anti-isomorphic linear semilattices and m is an iso-
morphism induced by an anti-isomorphism between W and B.

THEOREM 6. Let U be a distributive lattice and B = (B, 0, 1) an algebra
with two idempotent binary operations o and t. There ewists a homomorphism w
of §(:) onto §(B) if and only if one of the following four cases holds:

1) B and n are degenerate; ‘

2) B is a distributive lattice isomorphic or anti-isomorphic with U
and = is induced by an disomorphism or amti-isomorphism of A onto B;

3) B is a lineay bi-semilattice order-isomorphic or ovder-antiisomorphio
with W and 7w is an isomorphism induced by a uniquely defined order-iso-
morphism or order amti-isomorphism between U and B;

4) B s o singular chain order-isomorphic or order-anti-isomorphic
with A and 7 is an isomorphism induced by o uniquely defined. order-iso-
morphism or order-anti-isomorphism between N and B.

Remark. Theorems 5-7 could be strengthened (one may consider
some subsemigroups @ C §(%) and ¥ C §(B) instead of semigroups ()
and §(B) themselves. These subsemigroups @ and ¥ should be “sutticient”
in a sense that they have to contain “enough” endomorphismg with
“small” ranges; it is sufficient to consider only »-valued endomorphisms
with n < 4). We state these Theorems in their present form to simplify
the proofs.

§ 3. Proofs. Proof of Theorem 1. Let A, B, & and ¥ be as in
Theorem 1. Clearly, the constant ¢, is a left zero of & for every a e A.
If @ € @ is a left zero of @, then ¢ = @ o ¢, = Cp(ay; Which shows that every
left zero of @ is a constant. Let = be a homomorphism of @ ‘onto .
Then 7(cs) is a left zero of ¥ for every a e A, whence 7(¢s) = ¢ for some
b ¢ B. Define b = f(a) (i.e., %(0a) = ¢xa) for every a ¢ 4. Then fis a mapping
of A into B. If b ¢ B then ¢, ¢ ¥ and the counter-image of ¢ under & is
a right ideal of @. Every right ideal of @ meets the smallest ideal of @
containing precisely. all left zeros of &. Hence, ¢y = n(c,) for some a ¢ 4.
It follows that f is an onto-mapping. - k

For —every ¢ec®, g¢(a)= g, P © Oy = Cay=> TE(P) © Cpug) == Oyfay)
=7(p)(f(a)) = (@s), whence

@) 7(9) (f(a)) = flp(a)) .

Leﬁ ¢r be the kernel equivalence of f, Le.y a; == ay(er) > f(ay) = flay).
It a, = ay(ey) then, for every ¢ <@, f (@) = =(9) (f(a) = m(p) (£(an))
=f(‘P(a2)): whence ¢(a;) = ®(az)(&5).
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Cage 1.1. Let e = A x A. Then f is de
and = are degenerate.

Now let &7 # 4 x A, which means that o = ay(

generate, which means that B

&) for some a, a, € 4.

Case 1.2. Lebt a; = ay(ef) and o < a; for some distinct a;, ay e A.
If a3 < a4, then there exists a p e ® such thag a3 = o(ay) and a, = @(a,).
Hence, a3 = ay(er). It follows that g C &r. Therefore wy 5 .4 x4, ie.,
9 is not connected. Let a =% ay(xy) for some @, a4y € A. Then for every
two-element trivially ordered subsystem {a,, as} of U there exigts a ped
inducing an isomorphism between {a, a0} and {as, a,}, whence a, = a(ey)
implies that a, = a,(e;). Hence, if o = t(&5), then ag = a,(sf) for every
05,84 € A, which means that &= 4 xA—a contradiction, Therefore
o == ag(er), that is, xe = &. It means that o is a disconnecting homo-
morphism of & into G(B).

Now let &, b, be distinet elements of B, f(a)= b, f(ay) = by for
some @, aye.A. Then a =% ay(x4), whence the subsystem {a, a,} of U is
trivially ordered. This subsystem has two automorphisms which are
restrictions of some endomorphisms @1, @5 € @. It follows that the re-
strictions of 7 (g;) and of @ (p,) on {by, by} are two different automorphisms
of the subsystem {b,, b,}. Hence, b, and b, are not comparable. It follows
that B is trivially ordered.

Cage 1.3. Let a,. = ay(ef) imply that e, and a, are not comparable
or that a, = a,. There exist comparable distinct elements ag, a, € A and
@ e® such that g(a,) = as, ¢(a,) = a,, Whence, a; = a,(¢;) if a, = LAED)
for non-comparable a;, a,. It follows that a, = ay(ey) >0, = as, L., f is
a Dbijection of A onto B. Together with (1) it implies that » is an iso-

‘morphism induced by f.

Let 7 be induced by another bijection g. Then ¢yp = m(cs) = Cola)
whence, f=g.

Let {b., b} be a two-element trivially ordered subsystem of B.
Then {b;, by} possesses two automorphisms which are induced by some
transformations from ¥. Hence, {f™(b,),f “(b,)} has two distinct one-
to-one endomorphisms’ (it may be proved that these endomorphisms
are automorphisms), whence {f~(b,),f (by)} is a trivially ordered sub-
sjs‘uem of A In exactly the same way we may prove that if a,, a, are
incomparable in A, then f(a,), f(as) are incomparable in B.

Now let a; << a, for some a,, a, ¢ A. Then f(a,) and f(a,) are com-

© parable in B. Two subcases are possible:

Subease 1.3.1. Let f(a,) < f(ay). If a3 < a, for some as, a, < 4, then
there exists a @ e @ such that ¢(a)= @y, @(a)=a,, whence f(as)
= 7(g) (f(a) < () (f(n) = Flan). It flas) < fla;) for some as,as¢4,
then a; and ag are comparable in % and ag < a; is impossible, whence,
@5 < ag. Therefore f is an isomorphism between U and B.
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Subecase 1.3.2. Let f(a,) < f(a). In the same way a$ in the previous
subcase we may prove that f is an anti-isomorphism between U and 3.

Theorem - 1 is proved. To prove Corollary 1 we mention that if %, B,
(M, M), (B, Q) are as in Corollary 1, then Emn(W) and &pa(B) are
sufficient semlgroups of endomorphisms (evidently, the constants belong
to &mn(M); to check the other property of sufficient semigroups consider
two-valued -endomorphisms from &ma(¥) and apply the (M, N)-rep-
resentability criterion from [2]).

Theorem 1 strengthens Gluskin’s pioneer result on endomorphism
gsemigroups of ordered sets [5].

2. Proof of Theorem 2. Let A, B, §, ¥ and = be as in Theorem 2.
If @ is degenerate, then ¥ is, and Theorem 2 is obviously true.

Let 9 be non-degenerate. Hy denotes the set of all two-valued
endomorphisms from @. If d € Hy then d o ¢ o d equals either d or ¢, for
every ¢ e®. Conversely, let do®odC{c, d}. Suppose d =z ¢. Then
d{a) = ay # 0 for some o € A. Lot dg € Ho and da(ay) = a. Then d.o dy o d(a)
= ay % 0, whence d = d o dg o d. Clearly, d o dys o d is two-valued. There-
fore b e @ is two-valued if and only if & 5= ¢; and ko @ o h C {¢y, h}. Since ¢,
is zero of @ we have m(c,) = ¢, and = (Hy) = Hg.

Iid e« Hy, then d denotes the non-zero value of d.

Let dy, dy e Hy and 4, = dp. Then ¢ o dy = ¢y« o dy = ¢y for all g ¢ D.
It follows that ¢ o m(dy) = g p o m(dy) = ¢ for all @ ¢ ¥, whence ¢ % (dy)
=0 g(m(dy)) = 0. Hence, n(dy) = n(dy). In exactly the same way we
may prove the converse part of the equivalence d; = dy«> 7 (dy) = 7 (da),
which means that it we define f(0) = 0 and f(d) = = (a) for every d ¢ Hy,
we obtain a bijection f between U and B.

Let a5 0 and g e®. Then @(a)=0—go dqco where d = a. The
latter means that =(@)owm(d) = cq, i, m(p)(n(d)) =0, which means
that 7(p)(f(a)) = 0. If p(a)=a,# 0 and &= a, dy= a, for d,d, e Hy,
then g(a) = ay & n(p) o #(d) = 7 (do) & n(p)(f(a)) = f(a,). Therefore & is
induced by f. ‘

Let = be induced by another bijection g betwecn A and B. "hen'

g(a) = n(d) for d e Hy such that d = a. Hence, g = .

Now. a; < ay for @y, a¢ A means that ¢(a) = 0—>¢(a,) ==
¢ «®. Bquivalently, #(p)(f(a:)) = 0~>x(p)(f(ay)) = 0, ie., fla
Therefore f is an isomorphism between % and B.

Theorem 2 is proved.

Corollary 2 follows from Theorem 2 in precisely the same way o8
Corollary 1 from Theorem 1.

A very special corollary of Theorem 2 (for some special sufficient
semigroups of endomorphisms of ordered sets with identities) hab been
found by E. 8. Ljapin [8]. k

all

0 for
1) < flaa).
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3. Proof of Theorem 3. Let %, B, &, ¥ and x be as in Theorem 3.

Olearly, two-valued endomorphisms from & are homomorphisms of A

onto {0,1}CA. Let Hy be the set of all two-valued endomorphisms
from @. Every element of Hy is a right zero of @; if ¢ is a right zero of @,
then ¢ =dog@ for deHy. Clearly, dog is two-va,lued i.e., Hy is the

set of all right zeros of @. Analogously, Hyis the set of all righ’c zerog of ¥.

If ¥ is degenerate, then B is either degenerate or trivial.

Let |B| > 2. Then = is not degenerate. Let Fy be the set of all 4-valued
endomorphisms from @. If deFy, then the range of d is {0, a,a’,1}
for some a € AN{0, 1}. Let / e Hy. Then (%) is a right zero of ¥, whence,

w(h) e Hy. Conversely, if y ¢ Hy, then the counter-image of v under = is
a left ideal of @ which meets the smallest ideal Hy of &. Therefore
7(h) = for some h e Hy. Thiz means that x(Hy) = Hs.

Let 7 (hy) = m(hy) for some distinet %y, hye Hy. Then for every
Ty hy e Hy there exists a pe® such that {h, ho}op = {hs, Iy} Since
7i(hy o @) = @(hy o @), we infer that m(hs) = n(h,) and |#(Hy)| = 1—a con-
tradiction. It follows that m(hy) = m(hy) —>h; = hs.

Now let d e Py, @ be a value of d and a ¢ {0, 1}. There exist &y, hye Hy

such that iy(a) = ho(a). It follows that Ay o d # hy o d, whence, |Hy o d| = 2.

If |Hy o d| = 2 for some d e @ then, clearly, d ¢ Hy. If the range of d con-
taing more that 4 elements; then it contains elements a; and a, such that
0 < @, < ay< 1. There exist hye Hy, ¢=1,2,3, such that hfa)=1,
ho(ay) = 0, ho(as) = 1, hg(ay) = 0, whence, by o d, hyod and & o d are three

distinet elements of Hy o d—a contradietion. Therefore, d e Fyr. Now if

d e Py, then |Hy o d| = 2 and |Hg o n(d)| = 2 (we use the fact that = is
one-to-one on Hy). It follows that m(d) ¢ Hy. Conversely, let w(h) e Fs.
It means that [Hy o k| = |Hg o m(h)| = 2, whence, h e Fyr. Let hy, hy e Fy

and w(hy) = m(hy). It follows that m(d o hy) = m(d) o w(hy) = 7(d) o (he)

= m(d o hy) for all d e Hy. Therefore d o by = d o hyfor alld e Hy. Leba € A.

Then d{ky(a)) = d(hy(a)) for all d e Hy, which means that hy(a) = ha)

for all @ ¢ A and hy = hy,. Hence, n is one-to-one on Fy and n(Fy) = Fy.

Define a bijection f of 4 onto B. By definition, f(0) = 0, f(1) = 1.
YLet a e AN{0, 1}. Consider h ¢ Fy having o as a value. Let b and b’ be
values of m(h)e Py, bg¢{0,1}. For every dieHy, i=1,2 di(a)= dy(a)

oy o b= dy o hesm(dy) o m(h) = 7 (dy) o w(h) 7 (dy) (b) = w(da) (). Let d ()

=0 for some d e Hy. Then either m(d)(b) = 0 or =(d)(b')=0. In the
fivst case define f(a)==b, in the second case f(a)=D". Hence, d(a)
= 0> (d)(f(a)) = 0. This definition does not depend on the choice of d.
Let dy e Hy and dy(a) = 0. Then d(e) = d,(a), which means that =(d)(b)
= w(dy)(b). Hence, w(d)(b) = 0—>a(dy)(b) = 0. Bvidently, f is & bijection.

Now let @(ay) = ay for some ay, ay¢ 4. If a, € {0, 1} then, clearly,
w(g) (f(an)) = f(ay). Let a, ¢{0,1}. For every & eHu d(ay)=0d e p(a)
= 0>70(d o o) (F(ay)) = 04——>n(d)(yz(q))(f(a1))} = 0. But d(a;) = 0>7(d){f(a))


GUEST


40 ' B. M. Schein im©

= 0, whence = (d) (n(qo)'(f(al))) = (n(d)(f(az))) for all d e Hy. Xt follows that
() (f(al)) = f(a;). Therefore f induces =, and = is an isomorphism.

Let a; < a, for some a,,a,¢A. Then @(a) = 0->¢(a,) =0 for all
¢ € . Therefore y(f(as)) = 0 >p(f(a,)) = 0 for all yp ¢ ¥. It follows that
a(f(a) Af(as)) = d(f(ar)) Ad(f(ay))" = 0 for all d e Hg, which means that
J(a)Af(as) =0 or f(a,) < f(a,). In the same way we may prove that
flay) < flas) >a, < a,. Hence, f is an isomorphism of ‘% onto 8.

- Now let & be induced by another hijection g of A onto B. Then for
every deHy z(d)(f(a) = 0+d(a) = 0-n(d)(g(a)) = g(0). If ¢ is an
isomorphism of % onto B, then ¢(0) = 0 and =(d)(f(a)) == a(d) (9(a)) for
all d ¢ Hy. Therefore f(a)= g(a) and f= g.

Theorem 3 is proved.

Corollary 3 may be deduced from Theorem 3 along the same lines
25 Corollary 1 from Theorem 1. If 9f is an 9i-representable Boolean al-
gebra and I is permissible, then the semigroup &w() is sufficient which
may be proved by using an 9-representability criterion from [2].

4. Proof of Theorem 4. Let % and B be as in Theorem 4. Then
6(B) contains all the constants from B(B). Exactly as in the proof of
Theorem 1 we may define a mapping f of A onto B and prove formula (1).
If B is degenerate, then f and & are degenerate (here s denotes a given
homomorphism of §(A) onto §(2)). Suppose B is not degenerate. The
argument in Case 1.2 carries through in our situation since &) is,
clearly, a sufficient subsemigroup of itself. Hence, = is a disconnecting
homomorphism of §(90) into T(B). In § 1 we have seen that if ¢ = &(N),
then z is & homomorphism onto G(B). Therefore §(B) = B(B). By a lemma
of Gluskin [5], B is a quasi-ordered set and o is trivial. If = is neither de-

generate nor disconnecting, then the argument in Case 1.3 shows that = |

%'s an isomorphism induced by f. By Gluskin’s result [5], f is either an
Isomorphism or an anti-isomorphism. The unicity of f may be shown in
the same way as in Case 1.3.

Theorem 4 is proved.

‘ 5. Proof of Theoram 5. Let A, B be as in Theorem 5. Clearly,
If %A and B are isomorphic or anti-isomorphic, or B is degenerate, then
there exists a homomorphism of &(A) onto &§(B).

Now let # be a non-degenerate homomorphism of U onto B. Clearly,
8(U) -contains all the constants from T(A), &(B) all the constants from
?3(93). &() is a sufficient subsemigroup of &§(U) and the ordered set U
1s connected. The argument in the proof of Theorem 1 is applicable here,
and it shows that = is an isomorphism induced by a uniquely defined
bijeetion f. .

_ Let {ay, a} be a subsemilattice of A. Then there exists a g e §(2A)
with the range {a;, a,} [11]. The range of z(p) is {f(ay), f(a,)} = B,. It
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follows that B, is a subalgebra of B. Suppose B, is a singular sémigroup,
a denoting its non-trivial automorphism and g a non-trivial permutation
of {a, as}. Then fop=a"(ao7(p) and aomu(g)<8(B), whence §op
€ §(%). Hence, § is an automorphism of the subsemilattice {a;, a;} —a con-
tradiction. Therefore B, cannot be a singular semigroup. But every
two-element algebra with one binary idempotent operation either is
a singular semigroup or a semigroup having zero and identity.

Define & binary relation <y on B: b <gbynb, = b0y = byob,. It
by <wby Or by <wby, We say that b, and b, are comparable. Hence, if a,
and a; are comparable (relative to the natural order of 91), then flay)
and f(a,) are comparable.

Let ¢ be a mapping of {a,, a,} onto a subset {as, 0} C A, g(a)) = ag,
g(a,) = a, and b be the corresponding mapping of {f(ay),f(as)} onto
{f(as), f(as)}. Now (g is an isomorphism)«sg o ¢ e §(U)sh o 7(p) = n(g * @)
€ §(B)«>(h is. an isomorphism).

Clearly, a, and a, are comparable in A', we may suppose that a, <eds.

Congsider the following two cases:

Case 5.1. Let f(a,) <sf(a,). Then a, <y (9 i3 an isomorphism)
«(h is an isomorphism) < f(a;) <gf(a,). Therefore f iy an isomorphism.
between A’ and (B, <g). : :

Let 7a(ay) = aya for all ay < A (here aya is the product of a, and a
in ). Then 74 ¢ §(A) for every a e A. Suppose f(as)of(a,) = f(a,). Then
flapa) = f(m(%)) == W(Ta)(f(%)) = W(Ta)(f(aa))Oﬂ(Vu)(f(’h)) =f("'ﬂ(“3)) Of(“(a«i))
= flaga)of(a,a). Substitute @, for ¢ in this formula. Then f(aS)of(aA)
= fla) = flaga) = flaga)of(asas) = flagas)of(aoa) = (f(“z“a)of(%a’s))
4 (f(“a“4)0f(“4“4)) = (f(“s)of(“a‘%)) 4 (f(“a“a)of(%)) = flaza,)of (azay)
= f(asa,), whence f is an isomorphism of 2 onto B.

Case 5.2. Let f(a,) <uf(a,). Then a; <uay—(g is an isomorphisgl
< (h is an isomorphism)«s f(a,) <sf(4s). Therefore, f is an ,anti-
isomorphism® between %' and (B, <s). )

A prime ideal of B is any proper subset of B which is an ideal Qf B
and whose complement is a subalgebra of 8. Prime ideals of % are deflped
in the same way. Clearly, the join of two prime ideals is again a prime
ideal, provided it is a proper subset. Evidently, a proper subset ¢ C 4
ig a prime ideal of A if and only if de € §(A) where do maps all the elements
of 0 onto a, and all the elements of ¢’ onto a,. Let D be a proper subset
of B. Define a mapping dp e G(B): dp maps all the e.leme.nts of D onto
flay) and all the elements of D’ onto f(a,). If .D is a prime ideal, ﬂ'len one
can eagily verify that dpe 8(8B). Conversely, lt_a;o dDe§(23). .Ewdently,
{f(ay)} is an ideal of {f(ay),f(as)}, Whence D = dp (f(ay) is an ideal of B.
D' = ap' f(a,)) and f(a,) is an idempotent, whence D’ ig a subalgebra of B.
It follows that D is a prime ideal of B if and only if dp e §(3B).
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Since 7 is induced by f, we conclude that ¢ is a prime ideal of 9 if
and only if f(C") is a prime ideal of 8. If ¢, and O, are prime ideals of 9f,
‘then f(Ci) and f(Cs) are prime ideals of B, whence F(01) v f(03)
= f(Ci v 05) = f((Cy n Cy)) either is a prime ideal of B or equals B.
It follows that C; n 0, either is a prime ideal of % or is empty. The meet
of two ideals of a semigroup cannot be empty, whence, the meet of two
prime ideals of 9 is a prime ideal of . ‘

For every a ¢ 4 the set [a, + o)’ is a prime ideal of % unless empty,
T6 is empty if and only if a is the smallest element of 9. For every
g, @y € A @y, +00) U [ay, +o0) is a prime ideal of A or empty. Hence
[#3, +00) U [ay, +o0) is a subsystem of 9. This subsystem contains a,
and a,. Therefore, it contains aya,. It follows that either Uy Coudg @ty OF
@y Su@y @y, which means that either a, <ga, or g <yay. Therefore A is
a linear semilattice. It follows that B also is a linear semilattice and f is
an anti-isomorphism of % onto B.

Theorem 5 is proved.

6. Proof of Theorem 6. The “if” part of Theorem 6 may be
verified straightforwardly. Now let 9 and B be as in Theorem 6 and
let & be a non-degenerate homomorphism of §(4) onto §(B). Bince &(9)
is a sufficlent subsemigroup of &(U) (it follows from the distributivity
of ), the same argument as in the proof of Theorem 1 shows that = is
an isomorphism induced by a uniquely defined bijection I

Consider two binary relations on B: <@, which was introduced in
the proof of Theorem 5, and <® defined by the following formula:
by <®bysby = byth, = byth,. et {a1; 4} be a sublattice of 9. Precisely
as in the proof of Theorem 5, we may verify that {fl@), f(as)} is a sub-
algebra of B which cannot be a singular semigroup under either o or ¢
{provided a, = a,). Now for arbitrary as, @, e A define the mappings ¢
and % as has been done in the previous proof and by the same argument
prove that ¢ is an isomorphism if and only if 7 is. Continuing the same
argument, we prove the following four staternents:

1)if f(a,) <wf(as), then f is an isomorphism of A onto (B,
2) if f(as) <wf(a,), then f is an anti-isomorphism of %" onto (B,

3) if f(a) <%(a), then f is an Isomorphism of A" onto ( i

4) if f(ay) <®f(a,), then fis an anti-isomorphism of A" onto (B, <%

For every a, 0y ¢ A defing 74 () = apha and 7)) = ayV a. Lvidently,
74,74 € §(A) for all g e 4.

If the first of the aforesaid cases holds, then, using the endo-
morphisms r; and the operation o, we may prove that f is an isomorphism
of (4, A) onto (B, 0) (the proof is the same as given in the Case 5.1).

If the second case holds, then, using the endomorphisms 7}, and
the operation o, we prove that 1 is an isomorphism of (4,v) onto (B, o)

)
);
)

%
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In the third case we use ry and ¢ to prove that f is an isomorphism
of (4,v) onto (B 1), -

In the fourth case we use r; and ¢ to prove along the lines of Cage 5.1
that f is an isomorphism of (4, A) onto (B, ¢). ) ‘ .

If both the first and the third cases hold, then f is an isomorphism
petween W and B; if both the second and the fourth cases 4h01d t-hex},
clearly, f is an isomorphism of (4,v, A) ontoe B, whence f is an anti-
isomorphism of % onto B. If both the first and the fourth cases hold,
then f is an isomorphism of (4, A) onto (B, o) ajnd of (4, ./\) qnto (B, t.),
whence o0 == t. (4, A) is a vemillattice, whence B is a @;gemﬂa};tlce and f is
an order-isomorphism of A onto B. It follows that = * is an isomorphism
of §(B) = &((B, 0)) onto §((4, A)), whence 8(A) = 8.((A, A)). By Lemma 1‘,
9 is a linear lattice. Ience, B is a linear bi—semllattlfze. ‘If both t?le cases 2
and 8 hold, then in the same way we prove that 9 is linear, B is a linear
bi-semilattice and f is an order anti-isomorphism Dbetween U and B.

LemMA L. Let W= (A, A, V) be o latlice. W is linear if and only if
5(UA) = &§((4, A))-

Proof. If U i linear, then every endomorphism of 9’ is.also an
endomorphism of (4, A) and of (4, V), whiqh proves thg “only'lf” pa,rt».

Now leti §(2) = §{(4, A)) for some laftice A. If C is a prime ideal
of (4, A), then do € 8((4, A)); hence do ¢ 6(2). Tet a;va,=a for<some
agy @y, @ € A and a ¢ C. Then dg(as)Vdo(a,) = de(a) = a (prowd(?dltzl,1 \Za,g).
This is possible only if do(as)= a, or dg(a4). =y, 1.&., only,lf s ¢ ' or
a,¢ 0. It @ is not the smallest element of U ,‘then [a, + oo‘) is <a prmiz
ideal, whence aye[a, +o0) or a,c¢la, +°°)’4 Le. a0 Lgts OF & <qy. -
follows that either a, <ya, or as <udy, and if o iy the smallest element,
tlien a3 = @ = a,. Therefore, U is linear.

a 1 i proved. ) )

Il}?filvmwe musi consider the case where {f(a;),f(a,)} is a singular

igr inder one of the operations o and ?. ‘
Seml%;tu}}fl(al), flay)} be a singular semigr"oup under ‘the qperat;ozzhz
We shall consider. only thiy case and omit t1.10 con.s1deraFlon o o
completely analogons case where {f(al),f(az)}lls a s.Lngulmlse;l}lllegrcaslg
relative to the operation o. Furthermore, we will cons1d9r only o o
where {f(a,), f(ay)} is o left zero semigroup unde-r 1 ommmrng a otatied
consideration of the dual case_of right zero se@1g011ps. V\fa mu; gmce
that (B,t) iy a left zero semigroup and U is linearly ()1((11651':ew.re e
{f(@), f(ay)} cannot be a singular semigroup both 1}nder 0 an h, o I
that either the first or the second of above-mentioned ca,;eswi?l ed’gl. 1;
fis an isomorphism of (4, A) or of (r.l, V) On’U_O (B’O)c'l Esomorphism
linear, we infer that B is a singular chain and fis an order- pomorpus
or an order-anti-isomorphism of A onto B. To shf)rten our argu
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still more, we shall consider only the case where fis an isomorphism
of (4, A) onto (B, o) (if f is an isomorphism of (4, v) onto (B, 0), we
may consider (4.,V, A) instead of A and reduce thig case to the previ-
ous one). :

If a; <ws, and a5 <ya,, then g iz an isomorphism, whence 5 ig an
isomorphism. Therefore {f(as), f(a)} i a left zero semigroup under i,
Let bs, b, be two arbitrary elements of B. It b, and b, are comparable
under <g, then ay = f'(b;) and a, = 7(by) are comparable under <y,
Hence b5tb, = b,.

Now let b, and b, be incomparable under <@, which means that ay
and a, are not comparable under <y Define a, = a,A oy and a; = ayva,,
¥ is isomorphie to a subdirect product of two-element lattices {0, 1} [13;
hence there exist homomorphisms d, and dy of A onto {0, 1} such that
(o) # dh(a;) and dy(as) # dy(a,). Define a transformation deB(4) for
every acd: d(a)= aydya)= 0= do(a), d(a) = ag<sdy(a) % 0 = dy{a),
d(a) = a,>dy{a) = 0 # dy(a) and d(a) = ag>d,(a) £ 0 = do(a). One can
easily verify that d e §(%) and Ay = {ay, az, a,, as} is the range of d. Let
bo = f(a) and b; = f(a;). Then By = {by, b, by, b;} is the range of n(d),
whence B, is a subsystem of B. It follows that bytb, € By. Let p and ¢ be
the transformations of B, corresponding (under f) to the transformations P
and g of 41 defined as follows: P = (ZEZ:Z:Z:) and ¢= (Zzg:g;:g).
Clearly, 7 and g are endomorphisms of 4,, whence Pod,godeb(
and poxn(d), gomn(d)es(B). It follows that p and ¢ are endo-

- morphismg of B;. ’

Suppose bytb, = b,. Using the fact that @ <u¢y, which implies
Potbe =B, we obtain by = byib, = p(b)tp(by) = p(bytby) = p(by) = b, —
a contradiction. Suppose now that bytb, = b,. Repeating the previous
equalities, we obtain by = p(bsth,) = p(b,) = b, — a contradiction. Now
leti bytd, = b,. Using the fact that 3y <udy, Which implies b, = byth,, we
obtain by = byth, = q(b)tq(by) = q(by1d,) = 4(by) = by—a contradiction.
Thus, bytb, = b,.

It follows that (B, 1) is a left zero semigroup. .

Evidently, &((B,) = 6(B), whence &(B) = &((B, o)) ~ 8((B,1)
= &((B, 0)). It follows that §(2) — 7 (8(8)) = a7Y(8((B, 0)) = &((4,n)).
By Lemma 1, % is linear. ) ’

Theorem 6 iy proved.

§ 4. Applications. An obvious corollary to Theorem 6 i

COROLLARY 4. Let U and B be lattices, §() and §
If A is distributive then, B is distributive.

If A is a semilattice, then §(9r) = &,(U)
=&, (A"), which, Permits the appli

(B) being isomorphic.

; it A i a lattice, then §()
cation of Theorem 1 not; only to ordered

icm®
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gets but also to semilattices and lattices. Tf 91 is a semilattice, then &(3)

always contains a sufficient subsemigroup (e.g., 8(A) itself). Tf U is
a lattice, then &(2) containg a sufficient subsemigroup if and only if &§(9[)

i its own sufficient subsemigroup. This is the cage precisely when 9 is

distributive. If U is a semilattice with zero (or with identity) or a distrib-

utive lattice with zero (or with identity), then the set of all endomorphisms

of ¥ respecting zero (or identity) is & sufficient subsemigroup of

g((ﬂl,s.:;gr, 0)), which permity the application of Theorem 2 in the case

of semilattices and distributive lattices. One can consider semigroups of
complete endomorphisms of complete (or not necessarily complete)

semilattices and representable distributive lattices; these semigroups also

characterize the underlying algebras up to isomorphism. If m is a cardinal

number and A is an m-field of sets [13], then the semigroup of all m-endo-

morphisms of U (i.e. those endomorphisms of U which Tespect meets and

joins of subsets having cardinality m at most) characterizes up to an

isomorphism.

Let % be an algebraic system with the basic set 4 and $(4) denote
the symmetric group of all permutations of 4. There exists a natural
homomorphism A: (%) -—wé(ﬂ(%[))—eif a e A(A), then h(e) is the auto-
morphism of §(%) induced by a. If 7 is a surmorphism, we say that every

~ gutomorphism of §() is inmer. If h is a bijection we say that every auto-

morphism of &() is strictly inmer. The latter being the case, #(8(2) is
naturally isomorphic with (). o

In the general case e #(6()) is called inner (stricly inmer) if it is
induced by some (uniquely defined) automorphism of 2.

Let % be an ordered set, a semilattice or a lattice. Then one can
congider the group AJ(A) of all- automorphisms and a,nti-automOrphlsms
of A (of course, A may well possess no anti-automorphisms). The h_omo-
morphism & may be extended to he: £3() >4 (8(A)). An automorphL$m a
of §() is called (strictly) inner in a wider sense if o is induced by an (uniquely
defined) element of #3(2). :

CoROLLARY B. Let U be an ordered set, @ a sufficient semz:group of
endomorphisms of W, Then &8(P) = (D) and every automorphism of D
is strictly dmmer in o wider sense. In partioular, &8(6(2)) = J'E(K;(QI)) and
A(8(W)) is maturally isomorphic with A3(%). - :

If a ket U is trivially ordered and U = (A,‘=) i the corresponding
ordered set, then §(%) == B(4). Hence we obtain .

COROLLARY 6. 88(B(4)) = #(B(4)), every automorphism of B(4) is
sirieily inmer and /(G (A)) is naturally isomorphic with $(4).

Automorphisms of G(4) were first found in [12]. 3

COROTLARY 7. Let U be an ordered -set with zero, and @ a sufficient
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semigroup of endomorphisms of W. Bvery automorphism of & is strietly inner,
In particular, £(8()) is naturally isomorphic with 4 (%A). ‘

‘ Consider a set 4,= 4 « {0} where 0 ¢ 4. Order 4, in the following
way: a4, < ay if and only if @, = a, or 4, = 0. Then 8(Ao) = By(4,y) where
Ty(4y) is the set of all transformations of 4, for which 0 is & fixed point.
Let 5(A) be the semigroup of all partial transformations of 4. Then
F(4) is naturally isomorphic with G4, (if @ € 7(A) then ¢, denotey
the extension of ¢: py(a) = 0 for all a ¢ 4, for which @(a) is not defined;
the correspondence ¢->g, is the natural isomorphism between F (4)
and Gy(4,). We obtain

COROLLARY 8. Hvery automorphism of F (d) is strictly inmer . and
A(F(4)) is naturally isomorphic with 8(A) for every set A.

Automorphisms of F(4) were first found in [4].

A distributive lattice % = (4, A, V) is called self-dual it A possesses
an anti-antomorphism (i.e., if 9 is isomorphic with (4,v, A)).

A semilattice % is called self-dual if A" bossesses an anti-automorphism.

COROLLARY 9..Let U be o semalattice. If W-4s linear and self-dual, then
every automorphism of §() is strictly inner in a wider sense and JE(E(Q[))
is naturally isomorphic with 43 (). Otherwise, every automorphism of §(A)
18 strictly inner and A&(8(N)) s isomorphic with K(A). In-every case
85(8() = A (8(W)).

CoROLLARY 10. Let U be a distributive lattice. If W is self-dual, then
every automorphism of &() is strictly inmer in a wider sense and # {8(0)
is naturally isomorphic with 43 (). Otherwise, every automorphism of &§(A)
18 strictly inner and :%(8(91)} 18 naturally isomorphic with 7&(A). In every
case &8 (8()) = 4 (8(2)).

COROLLARY 11, Let U be a Boolean algebra. If @ is a sufficient semi-
group of endomorphisms of %, then 88(0) = #(D) and every automorphism
of @ is strictly inmer. In partioular, ES(8(A)) = #(8(%)) and A(6() 45
naturally isomorphic with A(A).

If 3(4) is the semigroup of all one-to-one partial transformations
of a set A, then the isomorphic image of J (4) under the natural isomorphism
of F(4) into By(4,) is a sufficient semigroup of endomorphisms of the
ordered set 4,, whence we obtain

CoROLLARY 12. Bvery automorphism of 3(4) 4s
A(I(A)) 4s isomorphic with $(4).

Automorphismg of J(4) were first found in [77].

We may also conclude that if 4 and B are sets of unequal cardinality,
|B] > 1, then there are no surmorphisms of G(4) onto G(B).

Let P(A x4) be the semigroup of all binary relations on a set A..
If ¢ eP(d xA4), then ¢eB(P(4)) is the transformation naturally cor-

strictly inner and

m®
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responding to ¢: o € ¢(a) if and only if (a1, @) € o for some a, € q. Clearly,.
the correspondence ¢~>¢ i8 an isomorphism of §(4 x4) into B(P(4)).
One can straightforwardly verify that the isomorphic image of P4 xA4)
in 'B(ﬁ)(A)} is a sufficient subsemigroup of S(SB(B)) (here g(sg(B)) is
considered as the endomorphism semigroup of the naturally ordered.
set P(A4) of all subsets of A).

We obtain »

COROLLARY 13. &8(P(4 XA-)) = (P4 XA)) and every automorphism.
of P(A X A) i strictly inner. £(B(4 x A)) is naturally isomorphic with §(4).
P(AXA) may be Iwmomwphigalty mapped onto B(B x B) if and only
if 4 and B have the same cardinality or if B = @. :

Auntomorphisms of B(4 xA4) were first found in [16].

In exactly the same way one can prove that every antomorphism
of & is‘strictly inner and /(@) is naturally isomorphic with $(4) if @ is.
the semigroup of all reflexive binary relations, or the semigroup of all
rectangular binary relations, or of all full binary relations, or of adll‘del_lse
binary relations, or of all (r, s)-relations over a set A (a blnary re%atm’n
0 e P(A xA) iy called full if its domain is 4, p is callgd dense 1f.~ els fuﬂ
and the range of ¢ is 4, ¢ is called an (r, s)-relation if the cardma:l'lty of
its domain < r and the cardinality of its range < s). To prove th1§ one..
should consider either the isomorphism g—¢ of (Z: into T%'(SB(B)) or‘the
isomorphism. ¢ -~ 8o (Where g, is the resfﬁri(}tion of ¢ on SBO(A))_ (')f‘@ into-
B(Py(4)) and verify that the isomorphic image of & is a sufficient sub-
semigroup of the endomorphism semigroup of $(4) or of Py(4) _ordered
by their inclusion relation. P(A4) is considered as an ordergd get with zero
or as an ordered set with identity). We omit the proofs. AutOHlOI“phISmS»
of these semigroups were first found by different authors and 1?y dlﬁ:erent
methods (cf. [6, 16, 177). In particular, every result of [6] is a S@ple
corollary to Theorem 2. These results may be strengthened (88 (@) = #(P)
if one uses the fact that the isomorphic imagg of ‘qﬁ is a semlgrﬁoup‘(if
endomorphisms of P(4) considered as join-semxlattleg. As f1:11‘thel cor(;« -
laries we may prove that surmorphisms of fnhe aforesaid semigroups onto.
one another are either trivial or izomorphisms. ‘ .

Using Theorem 1 (or other theorems) one can easily ‘eongtrm? 3
exclusive families of arbitrary cardinality (a family § of semigroups is.
called exclusive if the only surmorphisms between the members of § are.
trivial automorphisms). A o

Lot U = (_/]1,', +,1) be a Boolean ring (i.e., a ring sa;tx]ifiytlnx:gsezz?
identity #* = ) with identity 1 and let 8(2) be the endomo(l}flp i S
group of U (all endomorphisms considered respect 1). leea;ya‘ll o
coincides with the endomorphism semigroup of the Boolean algs
corresponding to 2A.
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We obtain

CoroLLARY 14. Let % and B be two non-degenerate Boolean rings with
identities, and let & C&A) and Y C &(B) be sufficient subsemigroups.
Then every homomorphism of @ onto ¥ is an isomorphism induced by a uni-
quely defined isomorphism between W and B. In particular, §(N) and &(B)
are isomorphic if and only if W and B are isomorphic. &8 (8(2[)} = A(&(Q{)},
every automorphism of §(N) is strictly inmer and J(:(S(‘l[)) is naturally iso-
morphic with £().

The same corollary could be proved for Boolean rings without

identity (one should previously prove an analog of Theorem 3 for distrih-

utive lattices with relative complements considered as algebras with
three binary operations: join, meet and subtraction).
Let A be a Boolean space (i.e., a totally disconnect compact Haus-
dortf topological space). It is well known [13] that continuous transfor-
mations of A correspond to endomorphisms of the Boolean algebra o
dual to A.
The semigroup C(%) of all continuous transformations of 9 is natur-
ally anti-isomorphic to §(%), which gives
COROLLARY 15. Let A and B be non-degenerate Boolean spaces, and
et @CC(A) and PCC(V) be sufficient subsemigroups. Every homo-
morphism of ® onto ¥ is an isomorphism induced by a homeomorphism
of W onto B. In particular, C(A) and C(B) are isomorphic if and only if A
and B are homeomorphic. 88(C(Aw) = A(C(AU), every automorphism of
C(¥) 1s stricily inner and JE(C(%I)) 18 naturally isomorphic with the group JC(A)
of all homeomorphisms of 9.

A weaker version of thig Corollary was first proved in [14].

Remark. Sufficient semigroups in the cases of Boolean rings or

Boolean spaces are defined in the obvious way by using the same concept
for Boolean algebras.

Let 8 be a topological space, and ¢ a binary relation over §. 0 is
called closed if 3(a) is closed for every closed a C 8. ¢ is called a multi-
homeomorphism if o and its converse o™* are closed and ¢is dense (i.e., the
domain and the range of ¢ coincide with §). The set L (8) of all multi-
homeomorphisms of § is a semigroup of binary relations. Let ¢ be the
set of all non-empty closed subsets of 8, €= (C,C,8) ie., € is the
inclusion-ordered set ¢ with the largest element §. For every f e JEu(S)
let f denote the restriction of f to the set C. Clearly f, o fy = f; o f, for
every fi,fo e %m(8). If f,=7 and § is a Ty-space, then fy({a}) = Jy({a})
for every a €S, Whiph means that fi(a) = fy(a) and fi= f. Therefore the
correspondence f—+7 is an isomorphism of ¥n(8) into &(E). Let a; be
proper closed subsets of 8. Then f = (§ xa;) u (a, x 8) is an element of
¥n(8) and the range of 7 is {q,, 8}. For every ay ¢ 0,0, ~ a, = @ (a) = a,.

iom°®
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Now let @, ¢ @, for some @, a, ¢ (. Then G\a@,  @. Let aC 4\G. Then
f@y) = 8 # ay = }(@,). Hence, the isomorphie image of J,(8) in §(€) is
a sufficient subsemigroup.

CoROLLARY 16. Let S, and 8 be Ty-spaces. Bn(S,) and () are
isomorphic if and only if 8, and § are homeomorphic. Buery isomorphism
between Jem(So) and Ien(8S) is induced by a uniquely defined homeomorphism
between Sy and 8. Hvery automorphism of ,(8) s strictly inner and fk(Je,,,(S))
is isomorphic with JC(8). :

Proof. Let Jtn(S,) and ¥%n(8) be isomorphic. Then the isomorphic
images of these semigroups are isomorphic sufficient subsemigroups
of &(C) and of &(C€) respectively. By Theorem 2, the isomorphism
between these sufficient subsemigroups is induced by an isomorphism
between. & and €. By [15], every isomorphism between G, and € is
induced by a uniquely defined homeomorphism between 8, and 8.
Hence, the isomorphism betiween 1,(S,) and 3€,(8) is induced by a homeo-
morphism between 8, and 8. Xf this isomorphism is induced by two
homeomorphisms f and g, then gof *isa homeomorphism of 8 inducing
the trivial automorphism of &§(€), whence f= g. '

Corollary 16 is proved.

A continuous mapping of a closed subspace of § into 8 is called
a partial continuous mapping. One can show, as another corollary of
Theorem. 2, that two T'-spaces with isomorphic semigroups of partial
continuous transformations are homeomorphic (this result may be deduced
from a far stronger result from [10]). Analogously, one can prove the
main result of [3] and of many other papers.

The following question is natural after Theorem 5 and Corollary 4:
it §(¥) and 8(B) ave isomorphic for two non-distributive lattices % and B,
need ¥ and B be isomorphic or anti-morphic? Clearly, A and B must
have the same order. One can easily construct two finite lattices U and B
which are neither isomorphic, nor anti-isomorphic and for which &§(2)
and §(B) are isomorphic. The author has such an example for lattices
of order 10.

Added in proof. In the abstract: A. SI. Aftsemmrar, T. B. lsapu, O6 ompexme-
JIASMOCTH  CIPYKTYP CYPYKIYPHBIMK sumomopduamamy, IX Bceccfzosu. anrefp. - KOMIOKB.
Pestome mayunnix coobuiesmit, Tomems, 1968, pp. 5-6, there is announced that sgch
examples do exist if and only if the lattices have more than 7 elements._ A wea.keg:i
version of Theorem 6 (if 6(2) and &) are isomorphic, 2% and. ‘EB are lattices and
is distributive, then @ and 5 arve either isomorphic or antl-momoxphm).has been
announced without proof in the same summary. A corollary to Theorem 1 in tht]aﬁ case
when # ig an isomorphism, @ and ¥ ave semigroups of all a:n-va.lged endomor}; shms
from &,(a) and §,(b) respectively, where n < m, m is a fixed integer, m >2, has
been announced in the abstract: 10, M. Basenms, 06 inf-saromopduamax ynopxno‘{en:ﬂ;m
Muosxecrs, TX Beecorosm, asremi. KONIOKB., PearoMe HAYUHBIX coomumienmil, Tomels, 1968, ‘

" pp. 39-40.
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On the Baire system
generated by a linear lattice of functions

by

R. Daniel Mauldin (Gainsville, Fla)

Suppose @ is a linear space of real functions defined over a point
set § such that if fis in &, then |f] is in &; & is a linear lattice of functions
over §. Also, suppose G containg the constant functions over §. Let
By@) = G and for each ordinal number a, 0 < < 8, let B,(G) denote -
the collection of all pointwise limits of sequences from the collection
2 B,(@). Sierpinski [1] and Tucker [2] have given necessary . and
y<a
sufficient conditions on a function f in order that it be in B,(G). These
conditions are in terms of partieular sequences of functions which con-
verge in a uniform or a monotonic sense. Since for each ordinal a > 0,
the collection ' B,(@) is a linear lattice of real functions over S and

y<a
it contains the constant function over §, these results may be extended
to give necessary and sufficient conditions on a function f in order that
it be in Bu(G). In this paper we characterize the collection Bi(@), a> 0,
in terms of an associated collection of Baire sets (Theorem 7). and give
some relationships between these collections and the collections deseribed
by Hausdorff in [3].

Notation. If K is a lattice of functions, then K. denotes the
collection of all functions which are uniform limits of sequences from K,
USK the collection of all funetions which are limits of nonincreasing
sequences from K and LSK the collection of all functions which are
limits of nondecreasing sequences from K. The Baire system of functions
generated by K is denoted by B(XK). If f is 2 bounded function, ||f]| denotes
the Lu.b. norm of f.

THEOREM 1. If f is a bounded function in @, then f*is in Gu.
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