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Introdaction. The results of the present paper generalize and
strengthen the Anderson—-Kadec Theorem on the homeomorphism of all
separable infinite-dimensional Fréchet spaces (= locally convex complete
linear metric spaces) and the Keller-Klee Theorem on the homeomorphism
of all infinite-dimensional convex compact sets in Fréechet spaces. We
obtain some criteria for the existence of homeomorphisms of pairs
consisting either of a Fréchet space and its dense sigma-compact linear
subspace, or of an infinite-dimensional convex compact set in a Fréchet
space and a dense sigma-compact subset of that set. A typical result is
the following.

(A) Let X be a dense linear subspace of an infinile-dimensional
Fréchet space X. Let Xoo be a countable union of compact convew sets. Then
the pair (X, Xe) is homeomorphic either to the pair (I, Ix) or to the pair
(%, 12), where I° denotes the Hilbert space of square-summable sequences, and

= {z= (s(9)) el%: (i) =0 for all but finitely many i},

o0
= o=@l eB: Y )t < +oof .
i=1
From (A) we easily derive the following facts:
(B) Al s,-dimensional locally convex linear melric spaces are homeo-
morphic. )
(C) AlL locally convex linear meltric core spaces are homeomorphic.
By an s,-dimensional linear space we mean a linear space which
has exactly s, linearly independent elements. By a linear metric core
gpace we mean a space Which is a countable union of infinite-dimensional

compact convex sets.
11*
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Clearly (B) generalizes results due to Klee and Long [23] (for ﬁérmed
linear spaces), Bessaga [5], and a recent result of Raymond Wong [28]
stating that the space Iy is homeomorphic to the space 3 E.

Here ) R is the subspace of B® (=the infinite countable produet
of lines) consisting of real sequences whose all but finitely many coor-
dinates are zero. ) ’

Another result generalizes the Keller-Klee Theorem as follows:

(D) Let W, and W, be infinite-dimensional compact convex sets in
Fréchet spaces and let W, and W, be centrally symmetric with respect to the
origins of the spaces. Write

rint Wy = {& ¢ Wy: fo e Wy for some ¢ >1}  (i=1,2).

Then the pair (W, rint Wy) is homeomorphic to the pair (W,, rint W,).

Combining (D) with a result due to R.D. Anderson [3], we get

(E) Let By, denot{f’ the unit ball of I* equipped with the weak topology
and let 8= {zel*: 121 [z(i)? = 1} denote the unit sphere. Then the pair
(Buw, 8) is homeomorphic to the pair ([—1; 171, (—1; 1)‘Nq). v

Observe that the last resnlt can be regarded as a strengthening of
Anderson’s Theorem on the homeomorphism of I* and RN, because the
eoun‘ihspable product (—1; 1) of open intervals is obviously homeomorphic
to B, the weak and the norm topologies on § coincide, and § is homeo-
morphic to 1.

The idea of the proof of the results (A) and (D) is the following: By
the theorems of Anderson-Kadec and Keller—Klee, mentioned ab.over
tht?re exist homeomorphisms between the first elements of the considere(i
pairs, 'i.e. between X and I* and between W, and W,. These homeo-
morph}sms are then corrected in order to carry the second elements of
the pairs, accordingly. The correction is based on the fact that the second
elementt,s of the pairs are countable unions of sets belonging to a class %
for which a version of the “Estimated Extension Theorem” is valid
Roughly spekajng, the Estimated Extension Theorem states that ever.
homeon}orphlsm between sets belonging to X which is sufficient] closye
to the' identity can be extended to a homeomorphism of the Wholz spac
on‘to itself which is elose to the identity. An axiomatic treatme: 1; ‘;
this method of correction leads to the concept of g homogenneOSS

coﬁeetl:on .'K a_nd a JC-§keleton. A typical example of a homogeneous
co. ection in P is tk{e family of all compact subsets of 1% a typical skeleton
with respect to this collection is the sequence (Wa) where

o0

Wa={oel: D Pa()f<n} @m=1,2,..).

i=1

iom®
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The present "pap(ért tonsists of seven sections. Section 1 is of a pre-
liminary nature. Section'2 contains some (known) facts on Anderson’s
7-gets in the Hilbert cube. Section 3 is devoted to the proof of the Esti-
mated Bxtension Theorem {Theorem 3.1) for Z-sets in the Hilbert cube
and for compact sets in Fréchet spaces. This result, which is a genera-
lization of the Anderson [2] and Klee [22] extension theorems, -seems to
e of some independent interest. In Section 4 the concepts of homogeneous
collections and skeletons are introduced and the basie result on “cor-
recting of homeomorphisms” (Proposition 4.3) is proved. Applying this
result, we show that Z-sets in the Hilbert cube and compact subsets
of an infinite-dimensional Fréchet space X (resp. finite-dimensional
eompact subsets of X) are homogeneous collections. Also examples of
gkeletons with respect to these collections are presented. Section 5 contains
an application of the homogeneous collections and skeletons technique
to the topological classification of linear metric spaces. Here the results
(A); (B) and (C) are proved. Section 6 is devoted to other applications of
the apparatus developed in Section 4. Tn particular, we prove there the
results (D) and (B) and complete the discussion (started in Section 5)
concerning topological types of Cartesian products and countable weak
products of certain sigma-compact linear metric spaces and convex
sets. Section 7 is an addendum. It contains some remarks on the
existence of homeomorphisms between linear metric spaces preserving
linear gradations of the spaces, i.e: carrying a given increasing sequence
of linear subspaces of one of the spaces onto a given sequence of linear
subspaces of the other space.

Acknowledgement. The authors would like to express their gratitude
to R.D. Anderson for a valuable discussion (during his visit at the
Mathematical Institute of the Polish Academy of Sciences, in May 1968).
The discussion was the starting point for the present paper. We are also
indebted to A. Szankowski, who read the manuseript and made some
useful remarks.

* * *

After this paper had been submitted for publication, the authors
learned that R. D. Anderson had introduced the concept of fdeap, which
leads in fact to 6C-skeletons. He had independently proved our Theo-
rem 5.1 (cf. [33], remark to Problem 29 and [34]).

A version of the Estimated Extension Theorem has been announced
by W. Barit [29]. For further results in this direction, see Torutezyk [32].

H. Torunezyk [27] has considerably improved our Proposition 4.2
by showing that if & set T-is a countable union of members of a homo-
geneous collection % and contains a J-skeletoid K, then L i3 homeo-
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morphic to K by means of a homeomorphism of the whole space onfo
itself. From this result one can easily deduce Proposition 6.5, stated in
our paper without any proof.

Applying Proposition 6.5 mentioned above, the authors [30] have
obtained an alternative proof of the Kadec-Anderson Theorem. For
further applications 9f Proposition 6.5 see [31] and [3].

1. Preliminaries

Metric spaces. All topological spaces considered in the Present paper
are metric spaces. We shall often use the term “space” instead of “metric
space”. The symbol d(-, -) will denote the metric for a space X. For any
point z in X and a non-empty subset 4 of X we put d(z, 4) = inf d(z, a).

aed

If X is a normed linear space (cf. [11], p. 24, for the definition), then the

metric of X is defined by d(z, y) = llz—yll for z, y ¢ X, where |[]] denotes

the norm -of X. The symbol I;a Xm denotes the Cartesian product of
me

topf)l.ogic-a,l spaces X, (m e M). In the case where M = N is the set”of
positive integers [resp. M is the set {1, 2,...,n} for some positive inte-
ger n] and each X, is a copy of a space X, we shall write XV [resp. X"}

" instead of P X, [resp. P Xl
meN 1<m<n

By a poinied space we mean a Dair (X, ) consisting of a space X
and & point z of X which is called the bage point. If X is either a linear
Space or a convex set in a linear space which contains the point zero
of the space, then (unless otherwise stated) we take zero as the bage point.

Let (X, @:)}5., be a sequence of Dointed spaces. The set

ie N

ZJ;(X(, z) = {z= (=), e“?;’ Xi: #(1) = @ for all but finitely many 4}

equipped with the topology inheredited from P X; is called the weak
e’

produvc.t of the pointed spaces (X1, @) (i=1,2,..). In the sequel, if

there is no doubt what points are the hase points, we shall write shol"tly

2 X, and Y X in the case where all X, are copies of the same space X

and all #; are equal to g given point z ¢ X, V
We shall consider the following special spaces:
I—the closed interval [—15 1],
R—the real line,

I* — the sequence Hilbert #pace of real sequences g — {(

o = Zm' l2(0)P)” < 4 oo

i=1

%)) such that

H

icm®
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g= N — the Hilbert cube; the metric for @ is defined by

d(@,y) = fz"’iwm—ymi for o= (w(i)) and y = (y() @,
i=1
7,: @-~R are coordinate functions, 1. e. wa(x) = z(n), and v, € @ are

wnit vectors, i. e. va(m) =10 for m #n and v,(n)=1. Clearly, for each

J . -
ze@, we have 3= Y wix)vs, the sum of the series being understood
K i=1

cdordinatewise, )
= (w(¢ : ¢(4) =0 for even %j,

Qoaa = (&= (#(4)) € Q: (i) : -

P°= o= (o) ¢@: —1<z()<1 for i=1,2,..) —the pseudo
interior of @ . .

- B= Q\J!’J — the pseudoboundary of Q.

Maps. By a map f: X Y we mean a continuous function from
4 space X into a space Y. If A is a non-empty gubset of & 5pace X, thix
a n?a,p f: A—X is called an embedding if it is a homeomorphlsmeif)iitween
and f(4). For a map f: A—»X (4 being & subset of X) we define

a(f) = sufd(f(m),w%

ots of a space X, then 2 map [resp. an embedding]

Tf K'is o family of subs “map [resp. @ %.-embedding] if both A and F(4)

f: A—>X is said to be a &
belong to .

Let A and A, be subsets of spaces X and X, respectively. We ghall

sav that the pair (X, 4) i8 homeomorphic to the pair (Xl’.élz) Aif cjl}f;g
issf; homeomorphism H of X onto X, such that H (4) =AA1‘, . (1; o
a pair homeomorphism. Tf spaces X and Xy [re;p. tpan‘s (;%( Z‘Sn & 1,A 1)]‘
i “hic. then we write X~X, [resp. s A)~ (X 4
j’: %oilrg;%?}iiﬁc;f a space X onto itself is called an ;ﬁol;fm?mzﬁgwgg
isD X will be den
homeomorphism of a space
P I(;Efz lils a:fsflb(;:; of a space X, then the set of those autohomzo-
Authl;x;'m of i which carry A onto itself will be denoted by Auth(X _x’j W)e
morpByS a zero function of a non-empty (closed) s1}13§?§)11 o;x‘l Y ﬁacgrysohﬂ
: R such that 0 <f<1 and ) = 4. i
memtl' j;;]::falfb fI;aiTA, B) consisting of non-empty disjoint (fllos?)Bsub
J;Zﬁsc :)Of a space X is any Zero function f of 4 such that f (1) = B.

i i i X
limi . By a semicover in & Space
i d ted homeomorphisms
lslzlllinfr(l’::.l; ;I?y non-empty collection Us of open subsets of X. We let
we sha ;

= sup 4(x,¥) -
Tt 0 M

i i b D AL
A cover of a subset 4 of X is any semicover b in X guch that {_ W
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Given' ACX and a semicover U. A map f: A—X is said to he
Limited by AU if the conditions z # f(x) and v e A imply that there existy
an U in W such that both # and f(z) belong to U. In other words, f ig
limited by U if and only if -

raph f C A UxU
graphf “‘UUEJ%U ’

where the graph f= {(z,%) e X xX: y =f(z)} and 4= {(=, y) e X x X:
=1y and red}.

By Authq,, X [resp. Authq,(X, 4)] we shall denote the set of all auto-
homeomorphism of a space X [belonging to Auth(X, 4)] which are
limited by a semicover L. If U = {U} is a one-member semicover, then
we shall write simply AuthyX and Authg(X, 4) instead of Authgn X
and Auth (X, 4).

In the ease of compact spaces the limitation by covers is related to
metric estimations:

1.1. PROPOSITION. Let A be a compact subsét of a space X and let U,
be a cover of A. Then there exists a finite cover AT of A such that if & map
J: A—X is limited by U, thew it is limited by W. Moreover, there is a ¢ > 0
such that every map f: A—X, with d(f) < ¢, 1s limited by U.

- Proof. Since A is compact, there is & finite subcover VU of U, which
is & cover of A. Tt is easily verified that U has the desired property. To
prove the second assertion define a metric d*(-, -) on the space X XX by

(@), (@, 9) = dlz, o) +d(y, "),

where d(-, -) denotes the metric of X. Since the diagonal 4 is a compact
subset of X xX (because 4 is compact), we have

c.—_‘i']EﬂAd*((a, a), XXX\UKEJ%U xU)>0.

The number ¢ has the required property.
The concept of limited homeomorphisms has been introduced by

Anderson and Bing [4]. They also proved the following important fact
(cf. [4], Theorem 4.2).

1.2. ANDERSON-BING CRITERION. If (@) is a sequence of auto-
homeomorphisms of a complete metric space X and if (VU)o is a se-
quence of covers of X such that GGt < Authqy, X, meshV; < 2% and
mesh G771 (Vs) < 27° for i— 0,1,2,..., then the sequence (G)7eo point-
wise converges o an autohomeomorphism of X.

(If G cAuthX and VU is a semicover, then the semicover G(V) is
defined by G(V)= {G(V)}yev.)

icm®

Estimated extension theorem, homogeneous collections and skeletons 159

-~ Limear metric spaces. A (real) linear metric $pace iy a linear space
(over reals) with a translation invariant metrie d(-, -) such that the
function (¢, )tz from R xX onto X is continuous in this metric.
According t¢ a result of Eidelheit and Mazur [13] (et. also [101), we may
assume without loss of generality that the translation invariant metric
is monotone, ie., for each x in X, the function t—d(tz, 0) is monotone
for ¢ > 0. A linear metric space X is locally convex if there is a base for the
topology of X consisting of convex sets. A locally convex complete linear
metric space is called a Fréchet space. Observe that if X is a linear metric
[ocally convex] space, then X, X™ for n =1, 2,... and Y X are (with
natural structures induced by X) linear metric [locally convex] spaces.
If X is a Fréchet space, then XV and X" for n — 1,2, .. have the same
property. The space > X is never a Fréchet space. Normed linear spaces
(ef. [11], p. 24 for the definition) are the most important examples of
locally convex linear metric spaces. A, complete normed linear space is
called a Banach space. Banach spaces form g proper subclass of Fréchet
spaces. The sequence Hilbert space I* defined above is & Banach space.

The. basic result on topological classification of Fréchet spaces (cf.
[1], [4], [18] and [19]) is the following

1.3. ANDERSON-KADEC THEOREM. EBuery infinite-dimensional separ-
able Fréchet space is homeomorphic to I2.

If A and B are subsets of a linear space X, then for rach z ¢ X and
te R, we write

A+B={a+b: acd,beB}, Atfx=AL{z}, 1A= {ta: aeAd}.

2. Anderson Z-sets

The Z-sets in the Hilbert cube have been introduced and studied
by R. D. Anderson [2]. The following definition is due to Torud-
czyk [26]. - .

2.1. DEFINITION. A compact subset 4 of the Hilbert cube Q is called
a Z-set if for every & > 0, every positive integer n and every map f: I"—Q
there exists a map g: I"—~@ such that ¢(I") CQ\4 and d{f(z), glo) <e
for z ¢ I".

The class of all Z-sets in @ will be denoted by 3; by 3* we shall de-
note the class of all sets in @ which are compact subsets of the pseudo-
interior P.

It is not difficult to deduce that the notion of a Z-set is a topological
notion and does not depend on the choice of the particular metrie d on Q.
Also the proof of the next proposition is a matter of routine.
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2.2. PROPOSITION. (a) If Zye3 for i=1,2,..,n (n=1,2,..), the

UZ¢ 3; every closed subset of d Z-set is a - set;

(b) every compact subset of the pseudoboundary Q\.P belongs to 3;
(c) every non-empty compact subset A of @ which is flat in infinitely
many directions (i.e. m(A) = {0} for infinitely many i) is a Z-set;

(@) let —1<as<bi<l for i=1,2,. .y m and for some m > 1. Let

Q= {@eQ: as < mfw) <bs (1=1,2,..,m)}.

Then for every Z-set A in Q the set A ~Q; is a Z et with respect to the
“Hilbert cube” Q.

Proof. We leave to the reader the simple checking of (a), (b), and (c),
and we shall prove here only (d).

Let > 0 and let f: I"->Q, be a map. Define fi: 1”@, by

fla) = F@)—c ) (mif(@)F (betad2)o. for zel,

i=1
where ¢ (0;1) is chosen so small that d(f(z), fi(#)f < /2 for = eI™
Since A is a Z-set with respect to @, there exists 2 map ¢: I"—>Q such
that g(I") CQ\A and d(fi(#), g(x)) < & for = eI”, where ¢, € (0;¢/2) is
chosen g0 small that a; < mig(e) < b; for 2 ¢ I" and for ¢ =1,2,..., m.
(A ¢ satisfying the above inequalities exists because a,+ ¢(bs— a)/2
< mify() < bi—e(bs—ag)[2 for @ « I" and for i=1,2, ..., m). Hence

g(ImcC [AV:]
and

a(fl@), 9()) < d{f(@), frl@)+d(filz), g

This completes the prooi.
In the sequel we shall need the following significant result

(%’)) <e for zeI'.

2.3. ANDERSON EXTENSION THEOREM. Every 3-embedding f: A—@Q
admits an exiension F ¢ AuthQ. Moreover if the set A ~ (Q\P) is compact,
f@) ==z for ze A ~ (Q\P), and {4 ~ P)C P, then f admits an extension
F e Auth(Q, P).

Proof. The first assertion is stated in [2], Corollary 10.3. To prove
the second part, observe that by our assumption eoneernmg f and by [2],
Theorem 8.5, there exists an H e AuthQ such that H (4 v P) = P.
Then, by [2], Theorem 3.5, there exists a @ ¢ Auth(Q, P) which iz an
extension of the 3*-embedding H'fh, where % denotes the restriction
of H to H(4). We put F = HGH .

i ted 1
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The next resnlt follows from Anderson’s argument in [2], Seetion 7
but is not explicitly stated there. For k=1, 2,... we put

Qodd(k) =

2.4, PROPOSITION. If A is a non-empty Z-set and &> 0, then there
exists an H e Auth(Q, P) such that d(H) < ¢ and H(A) C Q.aa(k) for some
index k.

Proof. By a result of Anderson {2], Theorem 8.1, there exists an
F e Auth(Q, P) such that F(4) is flat in infinitely many directions, say,
F(A)C{z eQ: my(x) =0 for all i 543 (mod4)}. Pick a k> 1 such that

@1 | Doi<ap,

2k

{z €Q: mw) = 0 for all even i >k}.

where ¢ €(0; ¢/2) is chosen so small that

(2.2) if d(z,y) <e, then d(F (&), F ' (y)) < ¢/2 for z,y Q.
Let M = [ J{ji} where jo=14 for i=1,2, ...,k and jo= 4i+1 for
i=1

1 >k. We define two auxiliary maps on ¢

T(@) = D (@) vn;
n=1
Finally, we let H = GF.
‘We shall verify that H has the required properties. First we observe
that the map G is the Cartesian product of two antohomeomorphisms such
that the first acts on 51 1;, the second acts on ; €];[I ; and each preserves
*

Glo)= 2 zi() "05+2 o AT () - 0,
i¢M n=1

the corresponding pseudbinterior (by Ii (i=1,2,..) we denote copies
of the interval I). Hence G e Auth(Q, P). Thus H € Auth{@, P). Further,
if { > % and 4 is an even integer, then 4 ¢ M, whence m;G(z) = m(2) and
i H () = mF(x) =0 for every zed, ie. H(A)C Qoaa(k).

By (2.1) and the definition of the sequence (ju), we have d(T)
< ¢/3 < ¢/2. Hence, using (2.1) and (2.2), we get

d(H)= d(GF) = supd(G(w), F(2))
T,F‘l J+2- Do
< supd(F_l(T(m)] , F"‘(w>)+: e<ef2+ef2=c.
zeQ

This completes the proof.
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The concept of Z-sets can naturally be extended to topological
spaces homeomorphic to @. Namely, if & is a homeomorphism from
a space W onto @, then a subset A C W is called a Z-set in W if G(4)
is a Z-set in Q. Equivalently, 4 is a Z-set in W if A satisties Definition 2.1,
with @ replaced by W and d replaced by any metric on W. A large class
of topological spaces homeomorphic to @ is deseribed by the following
result:

2.5. Kureer-KLEE THEOREM. FHvery infinite-dimensional compact
convex swbset of the Hilbert space I* is homeomorphic to the Hilbert cube.
Eoery infinite-dimensional compact conves subset of an arbitrary Fréchet
space is affinely homeomorphic to a convex subset of I

The first statement of this theorem was obtained by Keller [20]
in 1930, the second one has been observed by Klee [22].

We recall that convex sets W and W, are said to be affinely homeo-
morphic if there exists a homeomorphism H: WﬁWl which is an
affine map, i.e., H(cx+(1—c)y) = cH () (1—c)H(y) for @,y ¢ W and
0<e<l.

Let W be a convex set. By the radial interior of W.and the radial
boundary of W we mean the sets

rintW = {we W: if 2 ¢« W then w+e(w—x) e W for some & > 0},
and rhd W = W\rint W, respectively.
It is easy to check that
(1) if 0 erint W then rint W = {ew: we W and 0 < ¢ < 1}.

This holds in particular when W is symmetric with respect to 0.

Now we are ready for the proof of the main result of the present
section.

i

2.6. PROPOSITION. Let K be an infinite-dimensional compact convex
subset of a Fréchet space and let 0 erintK. Then, for each a €(0;1), the
set aK is a Z-set in K and the pair (K, aK) is homeomorphic o the pair
(Q; Qodd)-

Proof. Given ¢ > 0. We shall check the condition appearing in De-
finition 2.1. By the second statement of the Keller-Klee Theorem 2.,
we may assume that K CI. Let f: I">K be a map. Replacing f, if
necessary, by its suitable simplicial approximation, we may assume that

@23) FINCA—ef2)(T A E),

where Y is a finite-dimensional subspace of I2. Since ¥ is finite-dimengional

and K is eompact, there exists a versor w which ig orthogonal to ¥ and
such that

(2.4) (zlw) < 3[2 forall gek. )
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Here (z|w) denotes the scalar product of z and w. Define on the set
(L—¢/2)- (¥ ~ XK) a real-valued function ¢ by

o(y) = sup{t: y+iweK}.

It is easy to verify (using the fact that ¥ is finite-dimensional and K is
compact and convex) that the function ¢ is continuous. Finally we define
a map g: I"~I by

g(@) = flx)+of(m)-w for wmel™.

By (2.3), the composed function ¢f and therefore g are well-defined. By

the definition of ¢, the values of g are on the boundary of the set K n ¥,

with respect to the space ¥;=span(¥Y v {w}). Hence ¢(I")C K\aK. Since

f(I™) is orthogonal to w; condition (2.4) implies that sup||f(z)—g(2)] < s,
zelr

ie., according to Definition 2.1, aK is a Z-set with respect to K.

To obtain the second statement of the proposition, observe first
that, by the Keller-Klee Theorem, there exist homeomorphisms G: KEE)Q
and G aKondd. Since aK is a Z-set with respect to K and G is
a homeomorphism, G(aK) is a Z-set in Q. Thus the map f: G{aK)—Q de-
fined by f(») = 6.6 }(z) for z e G(aK) is a 3-embedding and f(G(aK))
= Qoaa - By the Anderson Extension Theorem 2.3, there exists an F' ¢ Auth@
which is an extension of f. Clearly, FG is the required homeomorphism
of pairs. This completes the proof.

2.7. COROLLARY. 3*C3, i.., every compact subset of the pseudo-
interior P is a Z-set i Q. )

Proof. If A is a non-empty compact subset of P, then

a, = suplm(z) <1 for i=1,2,..
' zed

Thus there exist fi e AuthI such that fl[ —a:; ad) C[—1/2; 1/2] for
all i. Define F e Auth @ by F(z) = (fim(z))5, for x €Q. Then F(4)C1Q.
Hence, by Proposition 2.6, F(4) is a Z-set. This completes the proof.

3. Estimated extensions of homeomorphisms

Recall that a 3-embedding (3*-embedding) is any homeomorphism
f: £-+Q such that both the domain K and the range f(X) are Z -sets
in @ (such that K and f(K) are compact subsets of the pseudointerior
P of Q).

This section is devoted to the proof of the following crucial resulf.

3.1. EsTMATED EXTENSION THEOREM. Let K C Q be a Z-set {a com-
pact subset of P). Then for cover any A of the set K, there exists a cover Us
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of K such that every 3-embedding (every 3*-embedding) f: K —~Q which is
limited by U admits an extension F e AuthqyQ (admits an extension
P e Authay(Q, P)).

The first step of the proof is the following:

InTERPOLATION LEMMA. If f: K ~Q is a 3-embedding (3*-embedding),
Ao, 4y are disjoint compact subsets of K such that f(A;) ~ Adg= 9, and
fixf= {w e K: f(zx) = @}, then there ewist 3-embeddings (3% - embeddings)
Jo and f; such thai

(3.1) d(fy <2d(f) for i=1,2,
(3.2) fuw)=w for xed, U fixf and Ji®) = f(w) for w e 4, ,
(3.3) ' =71

Proof. By Proposition 2.4, the general case can be reduced to that
of K v f(K) being flat in infinitely many directions, and, say K v fIK)
C Qoaal(n), where n > 1 is chosen so tha,t.z 27 < 1d(f). Let : KR be

>
an Urysohn function of the pair (4, A;),nand let

M) = 1p(a) (1 —p(2)-d{o, f(2)) ,

fl@) = 2+ ¢(0) (f(2) =)+ 2@) (0wt ) 11/(0) viar) -
i=1

Condition (3.2) follows directly from the last formulas and from
the fact that ¢ is an Urysohn function of (4o, 41) and that A(z) =0
for z e 4, v 4, U fixf,

We shall show that f, is an embedding. Let us check that & == 4’
implies fi(2) + fy(x"). If 2,2’ are both in 4, v fixf or #, 2" are both in
A, v fixf, this is obvious. If # €4, and a4’ € 4,, this follows from the
agsumption f(4,) n 4,= @. Finally, for z, 4’ ¢ K\(4, w A, U fixf), this

is due to the contribution of the term Az)- 70f (%) “Vsntsy, Which is
j=1

orthogonal to the remaining terms appearing in the formula for f, (because
E U f(E) CQoaaln)).

Now we define f, to satisfy (3.3), i.e. by letting f, = ff; ™.

Since there exist infinitely many integers non-divisible by 4, we
conclude that the set f,(K) is flat in infinitely many directions, and therefore
by Proposition 2.2, fi(K) is a Z-set (also one easily checks that f,(K) C P,
provided that K o f(K)C P). Henece the maps fi: K—+Q and f,: f,(K)—~0Q
are 3-embeddings (are 3*-embeddings).

Finally, using the formulas defining 2 and e i
that d(fi) < 1-d(f). This is better than estm’la{ulions (31}) zitheiiiztglf sz

However, in the general situation (when not assuming K o f(K) C Qoaa(m)),
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g

we have to pass through homeomorphisms % and b~ of Proposition 2.4

and therefore the estimations with the constant 1 fail to be true, bub

any constant greater than 1 will do. This completes the proof of the lemma.
Suppose that e >0, § >0, U is an open subset of @ and X denotes

one of the collections: 3, 3*. We shall write

Ule) = {2 ¢Q: d(zx, Q\T) > ¢},

and
I'y(U, e, d) :
= {f: f is a X-embedding, f(x) =2 for ¢ U(s), and d(f) < 6},

The symbol I'(U,e,d) will denote either of the sets I5(U, ¢, 6}
and I'5(U, e, d); that is, the expression “feI'(U, s, 8)” will stand for
“fel5(U, &, 0) (resp. fel3:(T,e,8))".

3.2. PROPOSITION. For every open set UCQ and &>0, there is
a 6=20(U, &) >0 such that every map feI'(U,s,06) has an extension
F e AuthpQ (resp. F e Auth (9, P)).

Proof. 1° Begin with the case where U is a cubical neighbourhood,
i.e., a set of type

{we@: a, <mlw) <b; for i=1,2,..,m},

where m is a positive integer, and for each 7 < m, the intersection of open
intervals (as; bs) ~(—1;1) is non-empty.

Let 6= ¢ and let f: K~>Q, feI'(U,s,d). The boundary aU is ob-
viously a finite union of endslices (faces) of the small Hilbert cube cl U,
and therefore, by Proposition 2.2, the set clU~ K uf(clUnK)ual is
a Z-set with respect to clU. Hence the map g: K ~ U walU-sclU given
by: g(@) =f(z) for 2 e K ~ U and g(a) =& for w ¢aU satisfies the as-
sumption of the Anderson Extension Theorem, and therefore g has an
extension @ e Auth(clU) (resp. & e Auth(clT, U n P). Extending G as
the identity map beyond 28U, we obtain the required F.

2° Suppose that the proposition has been proved for every open
set V, which is a union of #—1 cubical neighbourhoods, and suppose
that U=V, V,, where V, is a cubical neighbourhood. Let f: K-@Q,
fel(U,e,0), with ,

(3.4) 6 = min (e/4, §6(V,, ¢/4)) .

Write

(3.8) A=K nclVye), 4A;=K nclVyn (Q\F(e/2)).

Since d(f) <6< &4, we have f(4y) Cf(clVy(e)) C Vole/2). Thus f(d,) ~
~ 4, Cf(4,) ~ (@\Vo(/2)) = D, and we are in the position of Interpolation
Lemma. Let f=f,f; be the decomposition of Interpolation Lemma.
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By (3.1)~(3.5), we have f;eI'(Vy,s&/4,28) for i=0,1, ie., according
to (3.4), we get

(3.6 foeI'(Vo, e/4, (Vo €/4)) ,  freI(Vy, &/4, e/4) .

Now, using 1° (in the case ¢ = 1), and the inductive hypothesis (in
the case i = 0), we infer that the map fi admits an extension F; e Authy,(
{resp. F; e Authy,(Q, P)), for ¢=0,1. Now F=FF; is the required
extension of f. ‘

3° Let U be an arbitrary open set. For every » e c1U (¢/2) let ¥, be
a eubical neighbourhood of # with V,C U. Sellect -a finite subcover

{Vays oo Vo for the set clU(g/2), and let V = | )V, a finite union of
i=1
cubical neighbourhoods. We obviously have
I(V,&2,8) DU, 8).

Hence, it is enough to take §(U, &) = 6(V, ¢/2). This completes the proof
of the proposition. . :

Recall that for any semicover U the symbol | U denotes the union
of all the members of U. We have

3.3. PROPOSITION. For every finite semicover U and & > 0, there is
6 6=106(W,e)>0 such that every feI'(|JW,es,d) has an extension
F e Autha,Q (resp. F e Authq,(Q, P)).

Proof. By the multiplicity of the semicover U, (briefly: mult )

we mean the maximal number of members in U which have a non-empty
intersection. Our proof will be inductive with respect to mult U.

1° Suppose that mult W =1, U= {U,, ..., Ua}. Applying Propo-

sition 3.2 to each U; separately and taking as ¥ the product of the homeo-

morphisms obtained, we get the assertion. )

2° Suppose that Proposition 3.3 has been proved for all semicovers

of multiplicity less than % and let U= {7, ... ; Un} be of multiplicity %.
Let

V = the set of all points in @ which are covered by k¥ members of .
Then ¥V is the union of (Z) pairwise disjoint sets
Va Bt Uﬁ (G W o Uik
(some of them may be empty) corresponding to all %-element subsets
a={iy, ..., g} C {1, ..., n}. Let, for each i < n,
Wi= TUye/2) n (7\017(8/2)) .
It is easily seen that
mult{Ws, ..., W} <k

icm°
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(3.7) W = {Wl: erey Wn} ,; U= {Vu}aC(l,unfd
and let
(3.8) 8 = min (s/8, $5(W, ¢/8), §6(V, £/8)) .

Suppose that f: K ——>Q,' feI'(W, £, 6) with the above 8. Let us define
(3.9) Ag=clV(ef2) n K, A= K\V(e4). )

Since < /8, we easily check that f(4,) ~ 4,= @, and therefore there
exists a decomposition f= f,f; of the Interpolation Lemma.
By (3.%), d{f,) < 28, whence, according to (3.8) we obtain

(3.10) d(fo) < 8(V, &f8) .

We have 4,=K\V(e/4)DE\V(ef8); hence, by (3.2), fyz)=2 for
@ « E\V (¢/8). This together with (3.10) gives

(3.11) foeI'(V, /8, 6(U, &/8)) .

Using the same argument as in the proof of (3.10), we conclude that
(3.12) : a{fy) < 8(W, &/8) . '
Examining the expressions for Wy (i = 1, ..., n), and §, we easily check that

W(e[o) n KEC A, v fixf, where W= {JW

and therefore, by (3.2), fi(#) = = for & ¢ W(¢/8). This together with (3.12)
gives

(8.13) Fiel(LJW,e8,8(1UW, ¢8)).

By (3.7), mult W < ¥ and. mult® = 1. Hence, statement 1° together
with (3.11) and the inductive@hypothesis together with (3.13) give the
existence of homeomorphisms F;e AuthqyQ and F,e Authqy@ (resp.
FyeAuthay(Q, P) and F, e Auth(@, P)) which are extensions of f, and f;,
respectively. Now F = FF, is an extension of the embedding f, and
F e Auth@Q (resp. F eAuth(Q, P)). It remains to check that F is
limited by L.

Suppose that x «Q. Sinee F, is limited by W and, obviously W is
a refinement of U, we infer that F, is limited by W, i.e. there is an index
j < n such that both x and Fy(x) are in U;. Since F, is limited by U, there
exists a subset «C {1, ...,%}, 88y a= {i;, ..., i} such that both F,(x)
and F F,(x) = F(x) are in V,. But from mult U = % we conclude that
j € @, whence both # and F'(x) are in U; (because Us D Uy, n oo~ Uy = ‘Va).
Hence F' is limited by <. This completes the proof of the proposition.
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Proof of Theorem 3.1. Assume that K €3 (resp. K e3*) and
qy is a cover of K: Since K is compact, we may assume without loss of gene-
rality that cover the %V is finite. Let &= (K, Q\U.‘q)_(i.e. e=1inf{d(x, y):
@K,y e Q\UV}), & = 8(7V, &). Then, by the definition of the set I'(...),
every 3-embedding (every %*.embedding) f:.K—~@ such that d(f) <4
belongs to I'(\JV,¢,d), and therefore, by Proposition 3.3, f has an
extension in AutheyQ (in Authay(@, P)). Letting U be any cover of K
with mesh U < 6, we complete the proof.

The following result of H. Torwiczyk [27] generalizes the 3*-statement of the
Estimated Extension Theorem: )

3.4. THEOREM. Given a closed subset K C Q. Then for every cover U of the set K, there
is a coverUs of K such that every embedding f* K @ limited by Us and such that f(E N P) CP,
F(E N (Q\P)) CQ\P, admits an extension F' € Authqy(@, P).

4. Homogeneous collections and skeletons

4.1, DEPINITIONS. A non empty family X of closed subsets of
a topological space X is called a homogencous collection if it satisfies the
following conditions:

(4.1) K eX and H e AuthX imply H(K) e X%,
and
(4.2) if 9 is a cover of a set K e X, then there is a cover U of K such

that each X-embedding h: K~—X which is limited by U admits
an extension H e AuthayX. )

Let X be a homogeneous collection in a space X. An increasing
sequence (K») of sets of J is called a X - skelefon if it satisfies the following
condition:

(4.3) if 4 is a set in X and W is its covfar, then for each index m there
exists an index #=n(m, W, A) and a X-embedding h: A—>X

which is limited by U and such that h(4)C Ky; h(z) == for
zeAdnKy.

- o
We shall nse the notation Ko = J Ky,; the set Ko will be called
a K%-skeletoid. =
The next proposition shows that the concept of a JC-skeleton is
invariant under the autohomeomorphisms of the space. ’

4.2. ProrostTioN. If (Kj) i8 a X-skeleton in o space X and if
H e Auth X, then (H (Ka)) is also a X-skeleton.
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Proof. By (41) the sets H(K.) belong to X for all #. Since
K,CK,C..., we infer that H(K,) CH(K,)C...

To prove that the sequence (H(K,)) satisties (4.3) pick an L%
and a cover VU of L. Put 4 =H L) and W= H %). Since (Ku) is
a Jo-skeleton, for each index m there exist a J-embedding h: 4—X
and an index n = n(m, W, A) with the property described in (4.3). We
put g(o) = H(h(H (@) for o ¢L and a(m,V,L) = n(m, W, 4). Then
clearly g: L—X i3 a X-embedding, ¢(L)C H(K,) and g(z)= 2z for
2 eL ~ H(Kp). This completes the proof.

Our next result is one of the main technical -tools in the present
paper.

4.3. PROPOSITION. Let X be a homogeneous collection in a complete
metric space X and let (Kn) and (L) be X.-skeletons. Then there ewists
a G eAuthX such that G(Kw) = L. )

Proof. We shall construct an increasing sequence of indices (n(i))7.,,

a sequence of’ covers (Vi)i, and a sequence of autohomeomorphisms
(G470 such that

(4.4) GFis1G7" € Authey, X,

(4.5) mesh?; < 27 meshGEl('in) <27f,
(4.6) ’ G (Koi1) C Tages C Gor( o) ’
(4.7 it Gufo) € To1, then Gopra(a) = Guilr)
and

(4.8) if & e Kopy, then Guule) = Gara(2),

where K} = Knq and Ly = Ly, for each index %.
Agsume that we have done this. Then we put

G=li!11G¢.

Conditions (4.4) and (4.5) together with the Anderson-Bing Cri-
terion 1.2 imply that G eAuthX. We shall show that G(Hew)=Leo.
If 9 € L, then ¥ e Lop—: for some k> 0. Thus, by (4.6), there is an z
in K such that y= Ga(z). Hence, by (4.7), ¥ = Garl®) = Ga1:(®).

* Sinee © e Ky, condition (4.8) implies that Guia(#) = Gaxssf). Since

T}z,_ljfgk_l for r > %, a simple induction lea.gs to the conclusion that
y = Gyx) for all i3> 2k. Thus y = G(a) € ¢(Hs). This proves the in-
clusion G (Heo) D Lio.

Conversely, if # e Ko, then z ¢ RKapeC fgk for some k > 0. Thus, by
(4.6), ¥ = Gap1(%) € Lyp—1. By (4.8) and (4.7), Gap1(2) = Gax(®) = Goresa(2).

12*


GUEST


icm°®

170 C. Bessaga and A. Pelezyndski

Again by (4.8), ¥ = Gop11(%) = Gapse(). Since By s CRys for k <
a simple induetion leags to the conclusion that y = G4() for all ¢ = 270-1,
Therefore @(z) =y € Lz;—;. This shows the inclusion G (Ku) C L. Thus.
G (Eeo) = Leo.

We define the sequences (n(i));,, (G4)i=0 and (V)i inductively.
We pgt n#(0) =1, @, = the identity, and VU, = X. Suppose that for some
even 1lnteger 2j=0 and for 0<¢< 2§ the indices #(i), autohomeo-
morphisms @; and covers VU; have been defined to satisfy conditions
(4.4)-(4.8). By (4.1), we have Gﬂ(ffy)e%. Thus, by (4‘.2), there exists
a cover U of the set 4 = Ga(Ky) such that every X-embedding of 4
which is limited by U can be extended to an element of Authqy,. X. Now
applying (4.3) to the J.-skeleton (L,) we choose, for the triple (n (‘2;)7 » W, A},
an index #n(2j+1)= n{n(2j), Wb, 4) and - i :
limited by W in such a( véajy),tha’t ) ! W frembedding b 4-X

49)  BA)CIyy and h(y)=y for yednIy.

By the definition of the cover U, there exists in Authay,X an
extension of hi say H ‘We put Gfm_l = H@,; and we define the cover Vs,
80 sm{agll that 1t‘sat1sf1es together with Gy, condition (4.5) for ¢ = 2j+1.

Sinece (19) is & J-skeleton, Proposition 4.2 implies that the sequence
(Ggiﬂ(l(,.)) Is also a X-skeleton. Pick, according to (4.2), the cover 9
;)f Lei+1l 50 that each X.-embedding of 732,-+1 limited by 4, can be extended

0 an element of-AuthqyﬂﬂX. Aplgying (4.3) to the X-skeleton (Gy:(Ky))
and ( 1:02- the t:xplg (n(Zj-}—l), U, Loj1) we find an index n(2j+2)
= n(n(2§-+1), W, Ls; - ing %: T imi Ul
o 1-,51 ;t—i- ), L,L,,H) and a X embeddmg‘ h: Lojiq > X limited by U
(410)  B(Lojsa) C Goga(Bojs)  and  A(y) =y

for  y € Lojpr O Gojia(Kojpa) .
. teB.y th(; geﬁnltign of the cover ‘ﬁi there exists in Authqy, nX an
q? nms(:)n ;m:ﬁ S:]faf :tWe Pt Gojpe = H 'Goyys and we define t}ie cover
siie ‘ i " . s

; ::,2j+2. satisties together with Gs;.» condition (4.5) for
. uTo eomp%ete the induction we have to ghow that the “extended”
Olq eln—ees ((n (zv)) _,-fg,-.-,g, (G4)icojre and (V) sojyo satisfy conditions (4.4)—(4.8).
'beiu y Ecggm 6o = H e Authay, X, and GosGofis = A" ¢ Authay,, . X,

anse H ¢ ji'uthcuwﬂX - This fact, together with the inductive hypot]?(;sis’
proves .condmon (4.4). Condition (4.5) for ¢ — 2j+1and ¢ = 2j+2 followé
immediately from the construction of the covers Usjy; and Vajeas. Next
we check (4.6) for kE=j+1. By (4.9), we get N S

Gojpa(Hoj) = H(Ggf(fgj)) = h(4) sziﬂ .
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On the other hand, by (4.10), we obtain

H(Loji1) = MZojar) C Gy (Bagio) .
Thus . - -
Loj1 C H 7 Gopya(Kojis) = GojrolHojre) -

This proves (4.6) for k= q§-+1.

Tt @ e G5'(Toj-1) and j >0, then y= Goi(w) eLoj. By the right-
hand side inclusion (4.6) for k= j (which is assumed to hold by the
inductive hypothesis), we infer that y € Goj(Bop). Thus 9 ed n Loy
C A ~ Ls;. Hence, by (4.9),

Gai(w) = y = h(y) = HGy(x) = Goja(2)

This proves (4.7) for j=%. o

Finally if meffgj, then by the left-hand side inclusion (4.6) for
%= j+1 (which has been checked above), we infer that y= Gaja()
€ Lo41. Therefore y e NGZ,-(I?ZHNQ ~ Tojr1, becanse Ky C Koppa. Thus, by
(4.10), Gojpa(w) =y = h(y) = H(y). Hence

Gojro(®) = H7@oj34(2) = § = Gojal®) -

This proves (4.8) for k=j+1 and completes the induetion.

Remark. Tt follows from the analysis of the above proof that, for
every cover U of X, the autohomeomorphism G appearing in the statement
of Proposition 4.2 may be chosen in Authay X,

Tn some special situations, %o establish that a sequence (K.) is
a J-skeleton, it is enough to eonstruct a J-map rather than a J-em-
bedding satisfying the conditions of (4.3). More preecisely, we have
44, ProposITION. Suppose that % is a homogeneous collection in

- @ metric space X and 3 is hereditary with respect to closed subsets, that

is B= clB C A eX implies B e ¥. Then every increasing sequence (Kn) of
sets of 3 such that :
(4.11) each pair (Bpt1, En) i homeomorphic to the pair (Q,Qm}a)

and }
(4.12) if A X and U is a cover of the set A, then for each index m there
ewists an index n=mn(m, VU, 4) and a K-map f: A +X which is
limited by 0 and such that f(4) CEuyor,flz)=u for xe A N Kn,

18 a X - skeleton.

Proof. Suppose that (K,) satisfies the above conditions and that
we are given a set A4 ¢ X, a cover W and an index m. By (4.12) f(4) is
a closed subset of Ky_; and, by (4.11) the set K, is compact. Hence f(4)
is compact. The set A is closed, and if we take a cover U of A with
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mesh W < &, then, by (4.12), each point of A is within an e-distance from
the compact set f(4), and therefore the set A is compact. Thus we infer
that there exists an e >0 such that every map h: 4 X, with d(h) < 2s
is limited by the cover L. Pick another cover U for 4 such that mesh VU < s,
and let f and » be those of (4.12). Then d(f) < e. Let g be a homeomorphism
of the pair (K, Ky_1) onto (@, Qoaa). Let 2: X—+R be a zero function
of the set 4~ Ky, such that A(z) <z for all zeX, where 0 < n
<1 is chosen in such a way that z,ye@ and d(z,y) < 29 imply
d(gY(x), g74y)) < & We define f': 4@ by the formula

112 = gf(@)+2(@)- (o0 3 79 ()t -
i=1

Finally we let h= g-3f". .

We shall verify that h: 4->X satisties conditions (4.3). Firgt, since
7 <1, we easily conclude that f(z) €@ for all # ¢ 4, and therefore h ()
is well-defined and %(z) ¢ K. Also the continuity of the map & is obvious.
Further, for x¢ A ~ Ky we have A(z)=0, whence f'(@) = gf(x) and
hie) = f(z) = . ‘

Assume that #,y e 4, # 3 y. Then the natural projections onto the
orthogonal complement of @oaq of the points f().and f'(y) are:

1(—%)-(%%—2 g(2)vasss)  and z(y)-(v2+§’n¢g(y)~vu+z),
=1 i=1

respectively, and they do not coincide unless A(@) = A(y) = 0. This means
that f(z) # f'(y) if at least one of the numbers Alz), A(y) is not zero.
But A(x) = A(y) = 0 means that Z,yed Ky and f(z) = g(z) 9(y)
= f'(y), because ¢ is a homeomorphism. Hence J’ is one-to-one and there-

fore h is one-to-one. From the compactness of the domain A of the map & it

follows that & is a homeomorphism.

Sinee h(4) C K, and the collection K is hereditary, we get h(4) e X;
this means that h is a J-embedding. This completes the proot,

In the last two propositions in this section we shall present; examples
of homogeneous collections and skeletons. In order to state them we
need the following notation. If X is a metric space, then Cx denotes the
family of all compact subsets of X. The subfamily of Cx consisting of
those subsets of X which are finite-dimensional will be denoted by &§Cx.

4.5. PROPOSITION. If X is an infinite-dimensional separable Fréchet
space (= locally convex complete linear metric space), then Cx and 6Cx are
homogeneous collections.

Proof. Clearly, if a subcollection of g homogeneous collection satis-

fies (4.1), then it is itself a homogeneous collection. Thus it is enough to

show that Cx is a homogeneous collection., By the Anderson-Kadec
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Theorem 1.3, the space X is homeomorphic to the pseudointerior of the
Hilbert cube. Hence condition (4.2) for Cx is an obvious consequence of
the Estimated Extension Theorem 3.1.

Remark. The statement of the proposition above holds true without
the assumption of separability of X. This follows from Toruriczyk ([32],
Theorem).

Our next proposition shows that increasing sequences of compact
convex subsets of an infinite-dimensional Fréchet space X are, under
sothe georhetrié conditions, either Cx- or §Cx-skeletons.

4.6. PrOPOSITION. Let X be an infinite-dimensional separable Fréchet

. space and let (Kn) be a sequence of compact subsels of X which are conver,

symmelric with respect to zero and such that

(413) EnC2 'Kpys for all n>1

and.

(4.14) the set | J Ky is dense in X,
n=1

then

(a) the condition AimK, < oo for all n =1 implies that (Ks) i8 an
§Cx-skeleton, )

(b) the condition dimEKn= oo for some m implies that (K,) s
a Cx-skeleton.

The proof of this proposition is based on the following

4.7. LeMMA. Under the assumption of Proposition 4.6, for ea:oh triple
(m, 0, A) consisting of a compact set A, a cover VU of A a,nd‘an mdo:om,
there ewist an indew p = p(m, VU, A) and a map r: 4K, which is limited
by W and is identity on A ~ Kp. )

Proof; The compactness of 4 and the local convexity of X imply
that there exist a finite subset {ay, @y, ..., an} of 4 and a convex sym-
metric neighbourhood of zero, say W, such that for each a e A there is
an U e such that 3W+aC U and i£J1W¢3A, where Wi= W-+a¢
for i=1,2, .., N. Condition (4.14) and again the compactness of A imply
that there is an index p = p(m, U, A)>m such that W;f\K,,;é 4]
for i=1,2,.., ¥N. Then the set Ky ~clW: is an absolute refract, as
a closed convex set in a Fréchet space (cf. [17], pp- 60, 83-84). Let r; de-

N
" note the retraction of X onto K, ~ el Wy, Furthermore, let {At}i=1 be
N

a partition of unity of the seb {U Wi such that each 2; vanishes outside Wi.
) =1

Let us put

N .
r(a) == Zzi(a) ri{a) for aed.

{1
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Clearly, r(4)C K, (because K, is a convex set). If ae Ky~ 4 and
Ada) # 0, then a e« W; and ria) = a. Thus

rla)= D Ma)a=a, where T,={i: Lfa)0}.
i€l
In particular, 7{a) = a for a e Kn n 4, because KnC K,. Finally,-if
Jila) 5= 0, then a—a; e W and ri(a)—a; ecl W C 2W. Thus

i€l 1€Ty

a—r(@) = 3 Ma)a—rda) = > u(a) (o ai)+12 (@) (as—ri(a))  3W.
€Ty

This shows that 7 is limited by U and completes the proof of the lemma.

Remark. The argument used above gives, in fact, the following:
If K is an infinite-dimensional compact convex subset of a Fréchet space
and K, CK,CXK;.. are compact convex subsets of K such that
cliyl1ﬁ= XK, then, for each triple (m, U, A) consisting of a compact
set ACK, a cover W of 4 and an index m there exists an index
p=p(m, W, A) and a map r: 4~>K, which is limited by U and is
identity on A n K. '

) Proof of Proposition 4.6. Case (a). We have to check con-
dltion. (4.3). Suppose that 4 ¢ §Cx, U is a cover of 4 and m is an index.
We pick an index n = n(m, 4, W) so that dimK,—dimK, > %, where
»=p(m, W, 4) is that of Lemma 4.7, and % is so large that the Buclidean
(If—l)-lspa,ee containg a subset homeomorphic to A. Since X is infinite-
dimengional, conditions (4.13) and (4.14) imply that the dimensions of

the sets K, are monotonely diverging to + oo, and therefore the index n

?vith the above properties exists. Next, let us pick in K,\K, linearly
independent vectors e, €, ..., 65 80 that K, span{e;, €y, ..., ¢z} = ‘{0}.
Let g be an §C-embedding of 4 into the span{e,, ¢, ..., ex—1}y and let ¢ be
& zero function of K. Let us put :

(4.15) h(w)="(“’)‘H(‘P(@'g(m)—!'qﬂ(w)-ek) for zed,

where the map r: 4— K, is that of Lemma 4.7 {limited by U and fhe

identity on 4 ~ Ky), and ¢ > 0 is chosen so small that is still limi
by AL at k(w) is still limited

e((®) 9(@)+ 9 () ex) e Kn ~ spanfes, ..., e}  for med . |

(This is possible because of the compactness of A.) Thus, by (4.13)
h'(m) ezKpCIK,.. Owing to the contribution of the second t’erm on' thg
right-hand S{de of (4.15) & is one-to-one. Indeed, if A(wm,)—h(xy) = 0 for
some z;, 7, in 4, then r(z,)—r(z,) = 0; @ (@) g (%) —(2s) g(x,) = 0 and
() —@(2,) = 0 because the vectors (@) —7(2), e and ¢(z)g(@,)—
—p(@2)g(2s) belong to linearly independent. and ﬁnite—dimensio;a,l slub-
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¢

spaces. Thus either ¢(sy) = @(2;) # 0 or g(z,) = p(z,) = 0. In the first
case g(x;) = ¢(m,) and @, = &, because g is one-to-one. In the second case
both @, and @, belong to K because g is a zero function of K». Hence 2,
and 2, are in En ~ 4, and 0= r(2)—r(x,) = ©,—2,. Thus % is one-to-
one and therefore it is an 8§C-embedding (because of the compactness
of A). Clearly, if ¢ EnC Kp, then @(x)= 0. Thus h{z)=r(x). Since
¢ is the identity on 4 ~ Ky, the §C-embedding k has the same property.
This completes the proof of the proposition in case (a).

(b) By Definition 4.1, we may assume without loss of generality
that dimXK, = - co. Thus, by Proposition 2.6, each pair (Knt1, Kn) 1s
homeomorphic to the pair (@, @eaa). Therefore, by Lemma 4.7 and
Proposition 4.4, (K,) is a C-skeleton. This completes the proof.

5. Topological classification of sigma-compact linear metric spaces

The main results of this section are consequences of Proposition- 4.3
applied to the skeletons of - Proposition 4.6.

We Tecall that a linear metric space X is sg-dimensional if it has
exactly sn—li'nea,rly independent vectors, that is, there is an infinite
sequence (¢,) of linearly independent vectors in X such that span{(es)} = X.

5.1. THEOREM. Let X, and ¥, be %y~ dimensional dense linear sub-
spaces of Fréchet spaces X and Y, respectively. Then the pairs (X, Xy)
and (¥, X,) are homeomorphic.

Proof. First observe that the spaces X and Y are separable because
their dense subspaces X, and Y, have the same property. Next note
that X, is an 8Cx-skeletoid and ¥, is an &Cy-skeletoid. Indeed,
let X, = span{z:}i-1, where (z:) is an appropriate linearly independent
sequence of vectors in X,. Let X, = span{&:}i-;. Then X,CX,C...

and X, = GX,,. Since each X, is exa,ctiy n-dimensional, there exists
n=1
a compact, symmetric with respect to zero and convex subsets Ln of Xy

such that C} mLn= Xn. Therefore each compact subset of Xa is contained
m=1 .

in m-Lp for some m. Thus one can define inductively an increai\,smg ge-

quence of indices m(n) so that for Kn= m(n)-Ly, the following con-

ditions are satisfied:

«

EaC2 Ky, UEn=2X,, 0(mHK.=n.
n=1

Since ¢l X, = X, by Proposition 4.6 (a), we infer that (Ky) is' an 8§Cx-skel-
eton, The same argument shows that ¥, is an §Cy-skeletoid.


GUEST


icm®

176 C. Bessaga and 4. Pelezyniski

Now, by the Anderson-Kadee Theorem 1.3, there exists a homeo-
morphism, say H from X onto Y. Clearly H takes the collection §Cx
onto §Cy. Therefore (H (K,,)) is an §Cy-skeleton. By Proposition 4.3,

there exists a & e Auth¥ such that G(|J H (K,)) = ¥,. Thus GH is the
n=1

required homeomorphism of the pair (X, X,) onto the pair (¥, T,).

5.2. COROLLARY. All %,-dimensional locally conves linear metric spaces
are homeomorphie.

It seems convenient to restate Theorem 5.1 in the following “more
effective” form

5.3. CoroLLARY. Hach pair (X, X,), consisting of a Fréchet space X
and s dense %,-dimensional linear subspace X, is homeomorphic to the
pair (% 1%) as well as to the pair (RN, Y R), where 1y and 3 R, denote the
subspaces of I* and of RN, respectively, consisting of those sequences which
have all but finitely many coordinates equal to zero.

Now we pass to another class of sigma-compact linear metric spaces.

A linear metric spaces F is called a core space if there is a sequence (W)

of compact convex subsets of ¥ such that G W, = F and dim Wi= +oo
n=1 ¢

for some index j. If F is a core space and is a linear subspace of a linear
metric space X, then F is called a core linear subspace of X.

‘We observe here that every core space can be decomposed into its
convex subsets in a certain regular way; namely, we have

5.4. Lemua. If B is a core space, then there is a sequence (Ky,) of com-
pmact convex and symmelric with respect 1o zero subsets of E such that
URn=F, K,C2 ' Epys for all n>1, AimE; = +oco for some j.

=1

Proof. Let E= U1W"’ where W, are compact convex séts and
. n= .. . :
dim Wy = +-oo for some index j. We put, for n=1,2,...,

B = 2" (Wit Wt oo +Wad (= W)+ (= W)+ oo +(— W)

We leave to the reader the verification that the sequence (K,) has the
required properties.
Our next result is a full analogue of Theorem 5.1.

5.5. TEEOREM. If X, and Y, are dense core linear subspaces of Fréchet
spaces X and Y, respectively, then the pairs (X, X,) and (Y, Y,) are homeo-
morphic, :

) Proof. Observe first that the spaces X and Y are separable because
their dense subspaces X, and ¥, are separable. Next, note that X, is
& Cx-skeletoid and Y, is a Cp-skeletoid. This is an obvious consequence
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of Lemma 5.4 and Proposition 4.6. The remaining part of the proof is
the same as that of Theorem 5.1.

5.6. COROLLARY. All locally convew core spaces are homeomorphic.

B.7. COROLLARY. Bvery pair (X, X,) consisting of a Fréchet space X

and its dense core linear subspace X, is homeomorphic to the pair (% 1)
as well as to the pair (BY, (RY),), where

B=loel Y lom)n < oo} and (R),={z<R": supla(n)| < oo}.
n=1 : »

Recall that, for every topological vector space X, the symbol ¢
denotes the space consisting of all X -valued sequences @ = (#(i)) having
all but finitely many coordinates equal to zero. The topology in DX is
that inherited from X°¥. The symbol “~" means “is homeomorphic t0”.
Under this notation we have

5.8. COROLLARY. Suppose that X, is an x,-dimensional locally conven
Tinear metric space and X, is a locally convex cove space, and let I =[—1;11},
IT == (0;1], J=(=1;1) be the closed, the half-open an the open intervals
respectively. Then the following formulas hold

(5.1) X% Xo~X,, XoxXemXe, O Xo~X
(5.2) ' XoxXo~Xyy D) Xo~Xo;

(8.3) XX I X X It~ X x I ~Xy5

(5.4) Xy X I Xy X IT Xy x J ~Xy5.

Proof. Identities (5.2) are obvious consequences of Corollary 5.2
because the spaces X, xX, and > X, have the natural structure of an
%,- dimensional space compactible with their topologies.

Now we shall establish the identity X, x X,~X,. By the definition

o
of a core space, we have X,= | J W, where W, are convex compact

=1
gets and dim W;= oo for at lea:;t one index j. Similarly (cf. the proof
of Theorem 5.1), one can find finite-dimensional convex compact sets Kn ’

such that X,= GK,,,. Clearly, X, xX, is a loeally convex linear metric
m=1
space, and
X, xXe= U UEnXWa,

n=1m=1

each of the sets KmxWn is compact and convex, and dim(E; x Wy)
> dim Wy == oo.
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Hence X, x X, is a locally convex core space. Thus by Corollary 5.6
X, x X;~X,. The proof of the other two identities in (5.1) is simila,r’

Proof of (5.3). Assume that X, iy a dense linear set in a Fréchet
space X, and that (Ko) is a G-skeleton in X, with | ) K= X,. By [21]
H

II1. (1.3), and by Anderson-Kadec Theorem 1.3, 7;v; have X xI~X x
X IT~X xJ ~X. Let Ay = Ky XI, By = Ko XI", On= Ky xJ. It is easy
to check that the sequences (4a), (Ba), (C2) are C-skeletons in the spaces
X xI, XxI', Xxd, respectively, and Ao = X,XI, Bo= X,xI*
O = X, XJ. Hence, applying Proposition 4.3, we establish formﬁlasa (5 3)’
The proof of (5.4) is similar. o
. 5.9. CorRoLLARY. If F is a locally convex linear metric space which is
either N,-dimensional or a core space, then every closed convex body W i
the space E is homeomorphic to E. ! "

Proof. By [7], W is homeomorphic to the product of % intervals
(0 < k< oo) and a closed subspace Y of F of codimension & Usin
formulas (5.3) and (5.4) of the last corollary we get the assertic;n. #

There are several interesting examples of core spaces. For instance
,the. space of all real-valued functions defined on the interval I Whic]_":
fia,tlsfy the Holder condition with a fixed exponent a (0 < a < 1), regarded
in the supremum-norm topology, i.e. regarded as a subspace (;f C(I), is
a eore space. These spaces, as well as the spaces I2 and (BN’) defined i)e-
fore, belong to a special class of so called simply genemteducore spaces

A core space B is called simply generated if there exists a compa,ci;
convex and symmetric with respect to zero subset W of B such that
dim W= oo and B = GnW.

Observe that not;n=elvery core space is sim
. ] i ply generated. Indeed
gefe; ;:ezfl arbitrary core space, then the core space 2 X, is not simi)lsi

We shall need the following conecept.

A bounded linear operator u: Z->X acting from a Banach space Z

" into 3 linear metric space X is said to be clo, d-com ct if the set
u({zeZ. !zﬂ <1}) 18 ﬂompa:cb. e "

5.10. PROPOSITION. Let B be a Ui i
condifons e sputndon wnear metric space. Then the following

(1) B is a simply generated core space,

(ii) there is a Banach sp}zoe Z

such that 1(Z) — 5. ‘wn.d a closed-compact operator u: Z-—~E "

Proof. (i) =(i). Put W= u({ze2: el < 1})

B icm®
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(i) = (ii). Let Z be the space (W) of all scalai-valued functions f{-)
defined on W such that

Ifi= sup D If(B)] < oo.
AeFw hed

Here Ty denotes the family of all finite subsets of W. Next we define
the operator u: {W)—E by
w(fy= D fo)b.
beW
To show that w is well-defined for each fe W, observe that if U is
a neighbourhood of zero in B, then from the compactness of W it follows

that there is a & > 0 such that 6-W C U. On the other hand, by the
definition of the norm ||f]| there is an 4, e Fw such that for each 4 € Fy

> wi<s,

bed\Ao

and therefore, by the eonvexity and central symmetry of W,

Y fmybeswCU.

bedNAo

This shows that- the family (DZA F(b) D) acsw is a Cauchy neb i |Ify-W.

Since the set ||fi]- W is compact, this net is convergent to an element of
the set |f||W. This element is denoted by . }_n,; f(b)-b. Clearly

w({f «B(W): [l <1}) = W. The linearity of  is obvions. Finally, the
continuity of « follows from the fact that, it takes the unit ball of the
space [{{(W) onto W which is & compact, and therefore is & bounded subset
of the linear metric space ¥ (cf. [12], pp. 51; 54). This completes the proof.

There exist compact linear operators which are not closed-compact
(for instance the natural embedding of the space of all scalar-valued
functions, having the first derivative continuous, defined on the interval I,
into the space C(I) of all continnous functions on I, both spaces regarded
under the supremum-norm). However, we have s

5.11. PROPOSITION. If u is @ compact linear operator from a reflexive
Banach space Z into an arbitrary linear metric space, then u 18 closed-
-compact and the range of u 8 & simply generated core space.

Proof. The argument is very easy in the cage where the range of % is
a locally convex linear metric space. Tndeed, the reflexivity of Z implies
that the unit ball of Z, say §, is weakly compact, [11], p. 56. Therefore
the set W = u(8) is weakly eompact, hence weakly closed. Thus it is
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closed. On the other hand, the compactness of « implies that ﬁhe set W is
totally bounded (pre-compact). Hence W is compact..
In the case where %(Z) is an arbitrary linear metric space, the

argument is more sophisticated. As before, let W be the image under » of

the unit ball § of the space w. We have to show that W is closed. Let (wy,)
be a sequence of elements of W. Since W is totally bounded, there exists
a limit point, 825 0o, of the set {wn}n-:. Hence there is a subsequence

{ws,) such that ﬂ;l A (W, wo) < oo, (Here d(-, ) denotes a translation

invariant and monotone admissible metric of the space u(Z), i.e. d(z,y)
= d(z—y,0) for all #,y eu(Z) and d(iz,0) is a monotone funection c’)f t
for ¢> 0, for every fixed 2 eu(Z)). Let wi,= u(z:) for some z,e8
(n=1,2,..). Bince Z is reflexive, there is a subsequence (z,,) which
weakly converges to an element z, of 8. Thus, by a result of Maz"ur ([11]
. 40), there is a sequence () of real numbers and an increasing sequence’
{n{5)7., of indices such that '

”gl) n(7+1)
0<in<1 Ie=1 - =1
’ e s ”"=n2(7;+1 AnZanyg zo“ <)
for j=1,2, ... Hence
n(j+1)
(5.5) imd( D iwwh—ulz),0) =0,
i n=n(j)+1

where w;, = W, (0=1,2,..).
On the other hand, for j=1,2, ..., we have

n(f+1) n(f+1)
d Intn—wy, 0) = d r_
(-u=%'+l “ ) (n=%y+1 Aﬂ(wn w‘))’o),
n{j+1) n{7+1)
< D dfa(wa—wy), 0) < d(wh, 105)
n=n{j)+1 n=n(j)+1

o0

<§d(wk,,,wo).

Since é’ld (Wiyy wo) < + oo, we infer that
. wj+1)
(56) imd

y An Wy ~— 10y, 0) =0.
n=n{j)}+1

Clearly, (5.5) and (5.6) im
] . ply that w, = u(z,). Hence w,e W. This
establishes the closedness of W and completes the proof of the Izroposition.

w
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6. Other applications

In the first place we shall discuss applications related to homogeneous
collections and skeletons in the Hilbert cube @.

In Section 5 we defined the class 3 of Z -sets in ¢. The notion of Z -sets
can be naturally transferred to any topological space W which is homeo-
morphic to Q. The class of all Z-sets in W will be denoted by 3w By &
and &7 we shall denote the collections of finite-dimensional Z-sets in @

- and in W, respectively.

6.1. PROPOSITION. The classes 3 and 83 are homogeneous collections.
Proof. The statement about 3 follows directly from the Estimated
Extension Theorem 3.1. Since &3 is a subclass of 3 invariant under antho-
homeomorphisms of @, we obtain that 83 is also a homogeneous collection.
Now let us assume that:

(6.1) W is an infinite-dimensional compact convew subset of a Fréchet
space with a non-empty rint W.

The notions of a radial interior (rint) and the radial boundary (rbd)
of a convex set have been defined in Section 2. We recall here that if
0 erint W (in particular if O is the centre of symmetry for W), then

rint W = {fo: @¢ W and 0 <t <1}.

In particular, we have rint@ = {z eQ: sup |ma(z)] < 1}; that is, the
radial interior of @ is smaller than the pseudointerior and the radial
boundary is bigger than the pseudoboundary of Q.

6.2. PrRoPOSITION. If A,C 4,C A,C... are members of 3w such that
each pair (Anyi, An) 5 homeomorphic to (Q, Qoaa) and W=cl UI.A,,,
then (An) is a Fw-skeleton. In particular, if 0 etint W, then the sgquence
(X —1fn)- W) is a 3p-skeleton.

Proof. By Lemma 4.7, the sequence (4») has property (4.12). Hence,
by Proposition 4.4, it is a %w-skeleton. The second statement follows
from the first one and from Proposition 2.6.

The next result gives an improvement of Keller-Klee Theorem 2.5.

6.3. COROLIARY. Under condition (6.1) there is a homeomorphism k
of W onto @ such thai h(rbd W)= bd Q. )

Proof. Without loss of generality we may assume that 0 erint W.
Then it is enough to apply Proposition 4.3 to the skeletons ((1 —1/n)-W)
and ((1—1/n)-Q). ,

6.4. COROLLARY. The radial boundary of Q. i8 “homeomorphic to the
Hilbert space T .
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Proof. The set 0= {o=(o(n)) eP: Y ulomP <1} is compact
n=1
convex and symmetric with respeet to 0. Its radial boundary rbd ¢
= la: Y w?o(n)* =1} is an ellipsoid and is homeomorphic to the unit
n=1

sphere § of I* under the map: (¢(n))—(na(n)). By Klee [21], IIL. (3.1),
we have §~1. Hence rbd ¢ ~1? and by Corollary 6.3, we get the assertion.

From the last result it follows that rbd ¢ is homeomorphic with P,
the pseudointerior (not pseudoboundary!) of the Hilbert eube. In fact,
a stronger statement holds.

6.5. PROPOSITION. Under condition (6.1) the pair (W, rbd W) s
homeomorphic to (Q, P).

In view of Corollary 6.3 it is enough to establish this fact for W = Q,
and this has been done by Anderson [3], of Toruticzyk [27].

6.6. CoROLLARY. Ewery locally conven core space 48 homeomorphic
with Q\P, the pseudoboundary of the Hilbert cube. :

Proof. By Proposition 6.5, Q\ P~rintQ. The space rint@Q is evidently
homeomorphic to the core space ¥ = {= «RY sup |2(é)| << oo}. By Corol-
lary 5.6, every locally convex core space is hoineomorphic to ¥.

The next proposition presents examples of &3-skeletons.

6.7. PROPOSITION. The sequences (&n), (Ln)y (Ms) are 83-skeletons
in Q, where
Ei={weQ: mfe)=—1for i>n}, IL,= {re@Q: m(z) =0 for i >n},

Mp= (1—1jn)-Ly for n= 1,v2,

Proof. The argument is similar to that of Proposition 4.6 and is

the same for all the three skeletons. Liet (T1) be any of these skeletons.

Given 2 set A e 83, its cover U and an index m. By Remark to Lemma, 4.7,
there exist an index p and a map 7: 4~Q which is limited by U and

such that .
7'(A)C?p, rw)=x for mednT,.
Since 4 €83, there is a homeomorphism ¢: Af?I"*l for some % < oo,
nto

Let g(2) = (gy(2), gol), ..., Je-1(2)) and let 4: 4R be a zero function
of the set 4 ~ K,,. We define

© k-1
k(o) = (@) + e2(0): (opsat Y gia) vy

(recall that v; is the Jth unit vector in Q).

icm°
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For every 0 < z< 1, the above h is a well defined homeomorphic
embedding of 4 into @, and clearly, h(z)= (@)= for 2¢ A N Ty,
and h(4)C Typir. For e=0, h(2)=r(x), if ¢>0 is sufficiently small,
then the map h preserves the property of being limited by 9. This
completes the proof.

The symbol ) X denoting the weak product of spaces with the
base point 0 has been introduced in Preliminaries; here we shall also con-
sider the weak product of intervals [—1;1] with the bage point —1:

2* I={zeQ: (i) = —1 for all but finitely many values of i}.

6.8. COROLLARY. Under the motation of Corollary 5.8, we have 31
~ I~ T~Y R Xy, where J = (—1; 1) 4s the open interval, and 3 Q
~Q XXy~Q xX;~X,. The spaces Xy, X,,Q, P, and X, x ' represent dif-
ferent topological types. -

Proof. Let (Ky),(La), (Ms) be the skeletons of Proposition 6.7,
Then Koo = 3" I, L= 21, M= 3 R. Hence, applying Proposition 4.3,
we get 2* I~DI~D J. The homeomorphism Y J~23 R is obvious,
and ) R~X, has been established in Corollary 5.6.

To establish the second series of homeomorphisms, we put for
n = 1, 2 g eee

An={o= (2()) ¢ Q": 2(i) = 0 for i >},
Dﬂ: (1—1/’”)Q, Oﬂ—_“QX-Dn’ BnZQX-Mn,

where (M) is the skeleton of Proposition 6.7. By Proposition 6.2 the

sequence (D) is a 3-skeleton in Q. Clearly, (4,) is a 3-skeleton in Q‘N’,‘f
and (C,) and (B,) are 3-skeletons in @ x . Since the spaces @, Q x¢

and @V are mutually homeomorphie, the desired conclusion follows from

Proposition 4.3 and from the relations: A~ Q, Bo~Q xX,, Coo~Q X

X.X,,, DWNXJ.

It remaing to prove the last statement of the proposition. We observe
that among the spaces X,, X,, @, I*, X, x I* sigma-compact are only X,
@, X,; the Hilbert cube @ is the only compact one. The spaces X, and X,
are differentiated by the property that every compact set in X, is a coun-
table union of members of §C, while the space X, contains subsets homeo-
morphic to.@, which are not representable as countable unions of sets
from &C. The space I* as a complete metric space is an absolute G, and

I* x X, naturally embedded in I* x I is mot of type @s (if X is a Banach

space, then the only dense linear G set in X is the whole space X, see [24]).
This completes the proof. .

Fundamenta Mathematicae, T. LXIX 13
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In the tables below we summarize the results of the Cartesian multipli-
cation 3\% the spaces considered and of the action of the functors >
and (-)".

Ko | X | X | X1 Q| T | R|I[0,1)
X | X X |X | X |X|Xx | x| X
X | X | X | XL | X | X, | X | X | X,
X | x|Xx|X|x,|X|X|X| X
X |X | X |X |X |X | X | X | X
Q@ | X | X | X |X.|0Q | @ QxR @
X | X | X | X, I,[0;11) [0;1),[—1, 1),R|
X |xlx|x | x| x . X, '
| Xz | Xz | X | Xy Q Q X

We have denoted by X an arbitrary infinite-dimensional separable
Fréchet space; X, = X,x X, Xr=X3,Q"=Qx[0,1). It can be shown
t}}al? different symbols appearing in the tables represent topologically
distinet spaces, except the open guestion:

ProBrEM 1. Is X7 homeomorphic to X,?

} The entries ) X = X, and 2 X, = X. do not follow from Corollaries
5.8 and 6.8, but can be derived from some generalized skeletons based
on Torufezyk’s Estimated Extension Theorem, Theorem 3.4.
The following problem is related to Corollary 6.8:
PR(‘T}IJEL]{, 2. Lei:; M be a pointed metric space, i.e. a compact metric
space with a base point. Is it true that it M is a finite dimensi
retmct, then 3ot 3 7t : ensional absolute
Now we shall discuss applications related 4o homo ¢ i
consisting of finite sets. goneons collections
] ;A spz(bice 1:X isbsaid to Dbe locally homogeneous at the point z, if the
Pomt &, admits a basis of open neighbourhoods [ i
llowing property. ‘ each of which has the
(%) for every y ¢ U there is an f « Authy X such that flw) =y.

The set of all the points of local homo i i
bo denoted by - geneity of the space X will

iom®
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From the above definition the following is clear:

6.9. PROPOSITION. If X is a complete metric space such that X~ is
non-empty, then the class Fx of all finite subsets of X~ is a homogeneous
collection in X. If (2:)721 is any sequence of elements of X~ such that the
set {mi}im1 98 dense in X, then the sequence of sets ({m}i-i) is an Fx-skel-
eton in X.

A space X iz said to be locally homogeneous if X" = X. Since local
homogeneity is a local property, it passes from a model to any manifold
built on this model. Hence, every Buclidean manifold, more gemerally:
every. Fréchel-space-manifold (without boundary), is locally homogeneous.
We also easily check that if M is a Fréchet-space-manifold with a boundary
and, say, the boundary of M is C,then M" D M\C (in the finite-dimensional
case: M~ = M\0).

M. K. Fort [14] has proved that if Y. =, l;v M, is an infinite countable
product of connected compact Euclidean ﬁaa,nifolds with a boundary,
then ¥, is homogeneous, i.e. for every two points y,, y; € ¥, there exists
a homeomorphism %, e AuthY; such that hy(y,) = ;. Analysing Fort’s
proof, we easily check that the map h, can be connected with the identity A,
by an isotopy

{6.2) {(P)osisr -

This fact enables us to prove .
6.10. PROPOSITION. If My, n=1,2,... are compact connected Buclidean
manifolds with a boundary, then the space ¥ = P M is locally homogeneous.

eN
In particular the Hilbert cube Q is locally h«;mogmeous.

~ Proof. Any point 2, ¢ ¥ has a basis of closed neighbourhoods each
of which is homeomorphic to a product ¥; XDy, where ¥, is of a form
P M; and D, is the closed unit ball in the Euclidean n-space

i>m

(n = dim My+ ... +dm M),

and obviously m and n vary with the neighbourhoods of the basis. (This
fact is evident for the points 2, having, for all ¢, the ith coordinate not
on the boundary of M., and, by the homogeneity of ¥ it is true for an
arbitrary point @, ¢ ¥.). Now it remains to show that, for given points
Yos ¥ € ¥y and 2, e int Dy, there is a homeomorphism f e Auth(¥, xDn)
such that f(y,,0) = (¥1,%) and f(z,2)= (z,2) for all (z,2)e ¥1X 8,
where 0 is the centre of D, and Sn = Dy\int.Dy. The required map f can
be defined by means of isotopy (6.2) as follows:

f(@,2) = (hi(@), 9(2) »
13%
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where |z = d(z,0) and ¢ e AuthD,, with g(0) = % g(2) = 2 for z¢ 8,.
This completes the proof. We observe here that an alternative proof of
the statement concerning the Hilbert cube follows directly from the
Estimated Extension Theorem 3.1 and also from Proposition 3.9.

Combining the facts stated above with Proposition 4.3, we get

6.10. CoROLLARY. If X is one of the spaces:

(a) a separable complete metrizable Fréchet-space-manifold without
a boundary,

(b) & Hilbert-cube-manifold,

(e) an infinite countable product of connected compact Buclidean mans-
Jolds with a boundary,
and K, L are countable dense subsets of X, then the pairs (X, K) and (X, L)
are homeomorphic.

If X is a complete metrizable Fréchet-space-manifold with a boundary
and the boundary of X is C, and K, L are countable dense subsets of X\C,
then the pairs (X, K) and (X, L) are homeomorphic.

This resulf, in the case where X is a Huclidean space, has been
obtained by Fréchet [15]; in case (b) it has been obtained by Fort [14].
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7. Homeomorphisms of linearly gradated spaces

Let X be a linear metric space and let (X,). be a sequence of closed
linear subspaces of X. The sequence (X,) is called a linear gradation

of X, if nk;jl Xu is dense in X; (X,) is called an I-d gradation (= linear-

o0
dimensional gradation), if | } X, is dense in X and, moreover, dimX,
=nforn=1,3,.. " '

Let (X,) and (Ys) be linear gradations of linear metric Spaces X
and ¥, respectively. A homeomorphism H: ¥ - ¥ ig said to be gradation
preserving, if H(X,)= Y, for n — 1,2,.. .

A pair (X, (X)) consisting of a linear metric space X and it linear
gradation (X,) is called a linearly gradated space. Two linearly gradated
Spaces are said to be homeomorphie, if there exists 2, gradation preserving
homeomorphism between them.

The linearly gradated linear metric spaces appear naturally in several
problems of functional analysis (for instance in approximatioh theory,
perturbation theory of linear operators, in bagic constructions of co-
homology and eohomotopy functors on the Lerey-Schauder category,
¢f. Geba and Granag [16]). Therefore the question of homeomorphism
of given linearly gradated 8paces seems to be worth considering.
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There are natural éradations of 1 and 2R which are defined as

follows. Let us put, for n=1, 2, ...,

h={zel 2(i)=0for i>n}, R"={wecR": a(i)=0 for i>n).

Clearly the sequences (I3) and (R™ are 1-d gradations of the spaces Iy
and R, respectively.

We have ample information on I-d gradations of &,-dimensional
linear metric spaces. Restating in this languague some results of Klee
and . Long [23], and Bessaga [5] we get

7.1. PROPOSITION. Let {Xo, (X)) be al-d gradation of an ,- dimensional

locally comvex linear metric spaces X, = U1X" and let
=

(%) no linear subspace of X, bevlinea'rly homeomorphic to 3 R .

Then the linearly gradated space (X,, (X)) is homeomorphic to (&, (&)

Observe that condition (¥) is always satisfied in the case where X, is
a normed linear space. Next observe that condition (%) is also necessary
for the linearly gradated spaces (X,, (X»)) and (i, (i) to be homeo-
morphic. Namely, we have

7.2. PROPOSITION. Let (X, (Xy)) be an 1-d gradation of am x,-di-
mensional locally convex linear metric space. X = LJX,,. Suppose that the

linearly gradated spaces (X, (Xn)) and (Iz, (Iz)) are homeomorphic. Then
no linear subspace of X, is linearly homeomorphic to 3, R.

The proof of this proposition:is based mpon an unpublished result
due to R. D. Anderson, which we include here with his permission.

7.3. LEMMA. Let h: Y R—P be a function such that for each n the
restriction of h to R 4s a homeomorphism and h(R™) C Ly for some in-
dex m(n). Then h is not comtinuous.

 Proof. Let, for n=1,2, ...

Ln={me2R: %(1) =0 fbr all i#n}.

Clearly L, C R™ Since L, is not compact, the assumption on % implies
that the set h(L,) is unbounded. Hence, for each =, there IS an @n ¢ Ln
such that [[k(2a)] > . Thus the sequence (h(,)) does not converge to
any element of I’, while, by the definition of L, , the sequence (z,) con-
verges to the zero vector of the space 3 R. This completes the proof.

Proof of Proposition 7.2. Let u: Y R—X, be a one-to-one
continuous linear operator. Suppose that there exists a gradation preserving

.
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homeomorphism, say H: X,—~Ip. Then the map k= Hu satisfies the
assumption of Lemma 7.3. Hence h is discontinuous, which is a contra-
diction.

COROLLARY T.4. The linearly gradated spaces (7, (In) and (3R, (R")
are not homeomorphic.

The following problems seem to be open.

ProBLEM 3. Let (X,) be an 1-d gradation of a linear metric (locally

convex) space X, = G X,. Is then true that the homeomorphism between
n=1

linearly gradated spaces (X, (X») and (XR, (B") implies the linear '

‘homeomorphism of the spaces X, and Y R ‘

ProBLEM 4. Give a complete topological classification of 1-d gradated
spaces (X, (X»)) such that X, = ”LJIX,, and X, is a locally convex linear
metric space. -

Now we pass to the discussion of homeomorphisms of 1-d gradate
Fréchet spaces. The analysis of the proof of the Kadec theorem on
homeomorphism of Banach spaces with bases [18], [19] gives the following:

PRroPOSITION 7.5. Let X be a Bamach space with a basis (e;). Let By de-
note the n-dimensional space spanned by vectors ey, 65y ..y €5 (N =1,2,..).
Then the linearly gradated spaces (X, (Bn)) is homeomorphic to the gradated
space (7, (I2)).

‘We recall that a sequence (e,) of elements of a linear metric space X is
a basis for X, if for each # in X there is a unique sequence of scalar (1)

d
such that £ = 3 'tse,. '

There are”séveral problems related to Proposition 7.5.

PRrOBLEM 5. Let (X,) be an 1-d gradation of a Banach space X. Are
the linearly gradated spaces (X, (X)) and (% (I7)) homeomorphic?

In particular, we do not know whether the linearly gradated space
(C{I), (2)) is homeomorphic te (%, 13)) where O(I) denotes the space
of all real-valued continnous functions on the interval I = [—1,1] and 9,
denotes the x-dimensional subspace of O(I) consisting of all polynomials
of degree <n—1 (n=1,2,..).

It is also not clear how to generalize Proposition 7.5 to the case of
Fréchet spaces with bases.

ProBLEM 6. Let X be a Fréchet space with a basis (e4). Suppose that
(¥%) no linear subspace of X is linearly hemeomorphic to RY.

Does it imply that the linearly gradated space (X » (Bs)) is homeomorphic
to (1%, (Iz)), where B, denotes the space spanned by the vectors e, ey, ..., a¥
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Observe that condition (%) is necessary. Indeed, if a Fréchet space X
with a basis (e,) does not satisfy (%), then there is a subsequence (m(m)>,
such that the space E consisting of all finite linear combinations of the
elements of the sequence:(emm)n=1 is linearly homeomorphic to the space
2 R (cf. [8], Lemma 4). Hence, by Proposition 7.2, the linearly gradated

space (G}En, (E4)) is not homeomorphic to the space (1%, ). Con-
e

sequently the linearly gradated space (x, (Ba)) is not homeomorphic
to the space (I°, (I5)). ~

It follows from a construction given in [9], Lemma 1, cf. also [6], 7.2,
that the answer to Problem 6 is affirmative for nuclear Kothe
Sequence spaces and, equivalently, for nuclear Fréchet spaces with
bages, cf. [25]. k
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