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Fixed points, index, and degree
for some set valued functions

by
Harold Bell (Cleveland, Ohio)

A topological space X is said to have the fixed point property if
every continuous self mapping of the space leaves some point fixed,
ie. if f: X >X is continuous then & = f(a) for at least one a ¢ X.

A continuous function f: §"—8" has degree % if for a “sufficiently
close” simplicial approximation of f, say a, and some simplex § in the
range space of a the set of simplexes in the domain space that map onto

8 is {4, 4,,.., 4} and k:Zo(At), where o(4¢) is the orientation
of f restricted to 4;. -

A continuous function f: §”—R"" has index % with respect to the
origin in R™™, 0 if 0 ¢ f(8™) and the degree of g(z) = f(2)/|le|l is %. f has
index % with respect to a point p « R*™" if g(¢) = f(¢) —p has index k with
respect to 0. }

It is the purpose of this paper to expand the above interrelated
ideas with the nse of semi-closure operators. The reader is referred to [4]
for proofs of the theorems for the continuous cases which will be as-
sumed here.

By a semi-closure operator on a topological space X we mean a seb
valued function T that assigns to every subset 4 of X a closed subset T (4)
of X for which (1) ACT(4) for ACX, and (2)if AC T(B) then
T(4)C T(B).

Examples:

(1) C(A)= the convex hull of A for X convex metric.

(2) T(A)= A = the closure of A.

(3) X is a continnum and T'(4) is the intersection of all subcontinua
of X that contain 4.

(4) X is a continuum, p ¢ X, and T(4) = X if p e 4, T(4) is the clo-
sure of the complement of the component of X —A containing p if péd.

Fixed point theory seems to have its origin in the intermediate value
theorem of elementary calculus. We notice that the intermediate value
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theorem is dealt with easily with the purely topological notions of conti-
nuity and connectivity. However, the sufficiency of continuity and
connectivity to deal with fixed points seems to end here. In fact all known
proofs that the m-cell has the fixed point property for n > 1, resort to
some form of discrete and indeed finite mathematics. The inductive step
common to all proofs of the Brouwer fixed-point theorem, (as can be
found in [9] for example) is “If a set with n+1 elements in mapped into
o set with n elements then either 0 or 2 proper subsets are mapped onto.”.

A statement of the Brouwer theorem that would be more inclined
to remove some of the mystery of the proof would be “Let X be the
first %--1 non-negative integers and let f: X"->X" for some positive
integer %. Then there is a unit cube D such that any cube that contains
f(D ~ X™) intersects D.”

The apparent lack of cohesiveness between the idea of fixed points
and the techniques used in the proofs becomes more apparent with the
continuing production of counter examples to conjectures that attempt
to use spaces that have the fixed point property to build new spaces
with the fixed point property. Many of these counter examples are
discussed in [2]. The purpose of this section of the paper is to suggest
a way to broaden the approach to fixed point theory so as to incorporate
most of the existing theory into a new theory that places the theory
closer to the proofs and at the same time avoids some of the standard
counter examples. '

DErFINITION. Let T be a semi-closure operator on a space Z and let
ft X—~>Z. Then f,: X 2% ig defined by Fol@) = N {TLF(U)): & eint T}
If A is a set 'we denote | J{f,(#): © e A} by f(4). A space X has the fixed
point property with respect to a semi-closure operator T if for f: X -X
‘there is at least one € X for which ¢ f(2). A function r: X4 is called
a semi-retraction if ACX, r(w) =42 for v ¢4, and r is continuous at
each a e A. A i3 called a semi-retract of X.

THEOREM (Eilenberg and Montgomery). Let f be an upper semi-
contimuous set valued function defined on a compact convex subset X of R™.
If f(z) is an acyclic subcontinuuwm of X for each » € X then f has a fized
point. )

THEOREM. Suppose X has the fized point property with respect to a semi-
closure operator T and A = T(4A) is a semi-retract of X. Then A has the
fized point property with respect to T.

Proof. Let f: A—A. Then fr: X4 C X has a fixed point #,. Since
-r is continuous at z, we have f(x5) D [f(r)] ().

Leyuma. Let T be a semi-closure operator on ¥ and let f: X—Y. f,, is

upper semi-continuous if each @ ¢ X has a neighborhood U for which T ( f( U))
18 compact. '
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Proof. Suppose fr(2) CV for some open set VC Y. Let U, be
a neighborhood of z for which T[f(U,)] is compact. Then

B = (fz(®) ~ (X=V) = N{(TIf(T A T))) ~ (Y—V): zeintT}.

Since (T[f(U ~ Uyl) » (Y —V) is compact for 2 eint U there is a finite
get of neighborhoods U such that

NUTf(T AT~ (T-V): TeW)=0.

It U= N {U~ Uy UeW} then (T[f(U)]) ~ (¥ —V)= 0. We now have
T[f(U)]C V. Therefore, f.(U,) CV.

TeroREM. Let T be a semi-closure operator on a compact space X C R®
such that T(A) is acyclic for A CX. Then X has the fized point property
with respect to T.

Proof. Let r: R"—X so that |r(z)—a| is minimal for z ¢ R". r is
clearly a semi-retraction.

Applieations:
(1) Let X be a treelike continuum and let 7'(4) be the intersection

of all subcontinua of X that contain A. Then X has the fixed point
property with respect to T'. ‘

(2) Let X be the 2-simplex in R? and let T(A4) be the intersection
of all compact subsets of X that contain A and have connected comple-
ments in R2

The interest here is in the class of functions that preserve connected
sets. That is, if f(4) is connected when A4 is connected then there is an
2 € X such that every compact set that contains the image of a neighbor-
hood of # and does not separate R? contains . O. H. Hamilton in [6]
proved that if X is the n-cell and f: X —X is such that the graph of con-
nected sets is connected then f has a fixed point. However, the image
of connected sets being connected does not guarantee a fixed point
even in the case n = 1. :

(38) X is a compact, convex subset of R". T'(4) is the closed convex
hull of 4. This is easily equivalent to the Kakutani fixed point theorem.

DEFINITION. Let 7' be a semi-closure operator on a space X and let U
be a collection of subsets of X. Two functions f, g: ¥ X are said to be
Lomotopic with respect to T and °Us if there is a function F: ¥ x[0,1]—X such
that F[(y, 0)] = f(y) and F[(y,1)]= g(y) for y ¢ ¥ and F,[(y, s)]is con-
tained in some Uy,q ¢ W for (y, s) € ¥ x[0, 1]. If W = {U} we shall say f
and g are homotopic with respect to U. We write f~,g where W or U is
understood. We write f~g¢ to mean f and g are homotopic in the usual sense.

LEMMA. f~,.g is an equivalence relation on {h:h: ¥Y—~X and haly)
eUyeW for yeXY}.


GUEST


216 H. Bell

DermNitoN. For n a fixed positive integer and p e« B*™' define
Hi={f:f: S">R""" and p ¢f,(S")} where C(4) is the closed convex
hull of 4. Here U= {R"*'—{p}}. -

Liswma. If feHY then there is a geHy such that g 4s continuous
and chg.

Proof. Let U be an open cover of 8" for which p ¢ O[f(V)] for
V eU. Let 6 be a simplicial decomposition of §” for which each n-cell
n B is contained in some V ¢ U. Let ¢ be the map obtained by restricting f
to the vertices of G and extending this restriction linearly on each n-cell
of B. g~cf by Pz, 5)] = (g@))s+(1—8)f (@).

LevMA. If f, g < HY are continwous then f~yg iff f~g in R™*—{p}.

Proof. Trivially if f~g in R"—{p} then f~g. If f~ g with
homotopy F: 8" x[0,1]—E""" then let G be a simplicial decomposition
of 8" x[0,1] for which p ¢ C[F(8)] for § e B. Then restrict F' to 8" x
%x{0,1} vV where V is the set of vertices of ©. Then re-extend F to
8" %[0,1] so that each § €6 is mapped into C[F(S)].

DerINITION. If f~,g ¢ Hy and g is continuous we define the index
of f to be the index of g with respect to p.

Lemwma, f~og iff f and g have the same index. ‘

DeFinNiTioN. Let K" = {f:f: §*—>8" and 0 ¢f,(8")}. Let C' be the
semi-closure opérator on 8" defined by O'(4) = {z/lklj: z ¢ C(4)}if 0 ¢ C(4)
and C'(4)= 8" if 0¢ C(4). For f e K" the degree of f is defined to be
the index of f with respect to ¢/ and E"*'—{0}.

Liswuma. If W is the collection of proper subsets of 8™ then f~ g with
respect 10 U is an equivalence relation on K™

LEMMA. f e K"—>f~u,g for some continuous function g.

LemMA. f~i.g iff f and g have the same degree.

THEOREM. For f e K" the following are equivalent:

(1) The degree of f is zero.

(2) fr~eg for some constant function g.

(3) There is an extension of f to then n--1 unit ball, B*™, F such that
0 ¢FJE™Y), ie. Folx) is defined for ©e B™

ConJECTURE. Let f: §"->8" have degree k # 0. Let Dy= {w e 8™
cardinal f3(@) < [k|} (fo'(@) = {2: @ e[ (2)}). If ACD; and @ = f () »
N y) for @, y e A and z =y, then

(1) the interior of A is emply;

(2) the dimension of 4 < n—2.
(2) is of course stronger than (1).
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In the case where f is continuous, light, interior and locally sense
preserving (1) is known (see [8]).

In the case where f is continuous and n = 2 4 is finite (see [1]). In
fact if Dz is defined to be the maximum of %-cardinal fg,l(m) and 0 for
e then MZ; D, < 2(Jk]—1). The proof used in the continuous case

contains the proof for the case fe K%
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