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Free products of lattices

by
G. Gritzer, H. Lakser * and C. R. Platt (Winnipeg)

1. Introduction. The main result of this paper is 4 solution to the
“word problem® of the free product L of the lattices Ly, 4 € A. This means
that an algorithm is given which decides A << B in L for the lattice
polynomials 4 and B, of course modulo the structure of the lattices L;.

This theorem can be considered a structure theorem for free products.
Tts usefulness will be illustrated in several applications.

The basic idea is the introduction of “covers“. This goes back to
R. P. Dilworth [3], see esp. Theorem 2.2. The importance of this idea
was emphasized in [1], where extensions and simplifications of the results
of [3] were proved. )

This paper seems to stretch this method to its natural limit in this
setting.

An essentially new idea, namely the replacement of “elements as
covers” by “ideals as covers’’, surfaced in R. A. Dean [2] and was system-
atically exploited in H. Lakser ([5], [6]). The papers of H. Lakser ([5], [6])
contain many extensions of our joint results.

We will use A, v- for lattice meet and join, and A,V for infinite
meet and join. The lattices Ly, A € A, will always be assumed to be pairwise
disjoint. Set theoretic operations will be denoted by v, ~, —, U,(M.
The operational symbols for A and v will be A, V; these will be used
in the formation .of polynomials.

2. Construction of the free product. Given a set X we recall the def-
inition of the concepts lattice polynomial over X and length.

DEFINITION 1. (i) If # ¢ X then  is a lattice polynomial of length 1;
we write l(z) = 1. :

(ii) If A,, 4, are lattice polynomials of length l, & respectively,
then 4,V 4, and 4, A 4, are lattice polynomials of length Yo+ 115 1AV Ay)
=1(4yA4y) = U(4o)+1(4y). ’

* The work of the first two authors was supported by the National Research
Council of Canada.
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(ili) The only lattice polynomials are those obtained from a finite
sequence of applications of (i) and (ii).

Remark. The name “lattice polynomial” should not mislead the
reader; the axioms of lattices were not taken into consideration in the
definition. Lattice polynomials are formal sequences of symbols, com-
monly called “polynomial symbols” or “terms” used in the construction
of the first order language with two binary operation symbols. They
could also be identified with the elements of the “absolutely free algebra’”
generated by X. )

We note that 1(4) is a natural number and that I(4) =1 if and
only if A ¢« X. In the sequel we often prove theorems by induction on the
length of polynomials.

Now let Q= | J(Iy] AeA), and let us denote the set of lattice
polynomials over @ by P(§). For each 1e¢.4 we define the concept of
upper and lower A-cover.

DEFINITION 2. For each A ¢ P(Q) and each e, existence and
value of the upper i-cover, A®, and the lower A-cover, Ay, are defined
as follows:

(i) If A eI, then Ay and A® exist, and they are both equaﬂ to
A; A, A¥ do not exist for b A

(i) If A=BVC then A® exists it and only if B® and 0% both
(ﬂz_i_sj; and in this event 4@ = B®y¢® (the join is in I, of course).
Furthermore, 4y exists if and only if at least one of By, Cpy exigts;
Ag = By (respectively Cp) if only By (respectively C) exists, and
A(;,) = B(;,)VG(A) if both B(Z); Cy exist.

. (ili) If 4 =BAC then Ay, exists if and only it By and O both
exist and zin this event Ay = ByA Cp. AP existsif and only if at least
one of B®, (¥ exists; A9 — B® (respectively €%) if only B (respe-
ctively %) exists, and A® = BPA (9 if both BY, (P exist,.

. .Rema.rk. A® will turn out to be the smallest element of I, con-
taining the element represented in the free product by A, and dually
for 4. Note that AP 44 are always in L, and that if both exist then
.A(;) < A(l) in L)..

We state two lemmas that are useful in applications:

Ievva 1. If A € P(Q), 4, pe A and Ay, AY both emist then 1= u.

Proof. We proceed by induction on I(4). If I(4) = 1 then 4 eI,
for some ¥ ¢4 and 50 A=v=pu. If 4= BV ( then hoth B®, 0¥ exigt
and one of By, Cy; exists. Since I(B), 1(0) < 1(4) we find that A= u.
The dual argument applies if 4 = B C.

If 4 consists of only two elements we have the following comple-
ment to Lemma 1:
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LEMMA 2, If‘ A consists of wo elements, A = {A, u}, then for each
AcPQ), if Aw is undefined then A ewists, and dually.

Proof. This also follows by induction on I(4). If I(4d)=1 then,
since @ =Invw L, and Ag is undefined, 4 eI, and so A% exists. If
A= BV then neither By nor Cpy exist, and so, by induction, both
BY, ¢ exist; hence A“ exists. If A= BAC then one of By, Co,
say B, does not exist and so B* exists; thus .A® exists.

Remark. The hypothesis that A consists of only two elements is
essential. As an example, let 4= {0,1, 2} and let a; ¢ Ly for each ie /.
Then {(agVa1) A(aV as) A(a,V a,) has no upper or lower covers.

DeFINITION 3. For any 4, BeP(Q) we define by induction on
1(4)+1(B) the relation A C B to hold if and only if at least one of the
conditions (1) to (6) below holds:

(1) 4= B;

(2) there is a 1 e A such that 4®, By exist and 4% < By

(8) A= A,VA4,, where 4.C B and 4, C B;

(4) A= AyAA4,, where 4,CB or 4;C B;

(6) B= B,V B, where AC B, or AC By;

(6) B= ByAB;, where 4 C By and AC B,.

Set A~ B if AQB and B C 4.

LeEvmMA 3. Let ACB and Aed. If Ay ewists then By ewists and
Aw < Bg; if B ewists then A” emists and A® < B®,

Proof. Let 4 exist. If 4 CB follows by (2), then, by Lemma 1,-
A® < By and so Ay < A® < By. Otherwise we proceed by induction
on I(A)-+1(B) using. (3)—(6). The second half is proved in a dual manner.

THEOREM 1. (i) The relation C is a quasi-order (that is, C is reflexive
and transitive) and thus =2 is an equivalence relation.

(i) Given A ¢ P(Q) let <A denote the equivalence class of A under =,
andlet L = {{A)| A e P(Q)}. Definethe binary relation < onL by (AY < (B>
if and only if A C B. Then < is a partial order on L with respect to which L
s a lattice. Moreover, (A>V(BY = (AVB) and (AYA<{B)= (AAB).

(iii) For each Aed the mapping 2 Ly—L, given by @a(z) = {&d,
is @ 1-1 lattice homomorphism, and (g AeA); Ly is the free product
of the family (L] A e 4). .

(iv) For each A e A and A ¢ P(Q), Ay exists if and only if {z e L] <z}
Sy~ O and in this event Ay ="/ (@ el (&) <<4)), and dually
for A®,

Proof. The proof is essentially the same as that of Theorem 2.2 in [3].
We present only an outline of the proof.
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To show that C is a quasi-order we need only establish transitivity,
It AC B and BC C and if at least one of these relations is due to (2) of
Definition 3 we apply Lemma 3 and so A C ¢ follows by (2). Otherwige
we proceed as in [3], by induction on I(4)+I(B)+1(0).

Since C is a quasi-order it is well-known that ~ is an equivalence
relation and that < is a partial order on L. That (A>V<{B)= (4AVB)
follows from (3) and (5), and dually for <A>A{B). Thus L iz a lattice,

Clearly, given z, y e I, # < y in I if and only if 2 C v and so ¢, is 1-1.
That 2vy =2 2Vy can be proved using the fact that (xVy)m = 2vy and
thus (zvy)® < (£Vy)e. This fact and the dual establish that g, is a lattice
homomorphism.

To show that L is the free product of the I, it is enough to observe
that I is generated by the I, in the freest possible manner; two polynomials
were identified only if it followed from the lattice axioms that they be
identified. ' .

If one wants to proceed formally, then let K be a lattice and let
Jit In—K, Aed, be a family of lattice homomorphisms. The f; define
a map fo: Q=K and so we define F: P(Q)—K inductively by:

(a) if e then F(x) = fo(z);

(b) F(AVB) = F(A)VF(B);

(¢) F(AAB) = F(A)AF(B).

Now we have to show that F factors through ~ and that it defines
2 lattice homomorphism of L into K extending the f,. The formal compu-
tations are a special case of the computations in the proof of Theorem 4,
and are therefore omitted here.

Since Ap e Ly it follows from (2) that ApmC A if Ay exists. Also,
if there is an # ¢ L sueh that # C A then, by Lemma 3, A exists and
< Ap. This argument and the dual establish (iv).

To relate this result to the solution of the word problem in free lattices
(P. M. Whitman [8]) and to its generalization, the solution of the word
problem for the free product of chains due to Yu. I. Sorkin [7], we observe:

CoroLLARY. Let A’ C A be such that I, is a chawin for each Aed'.
Then (2) of Definition 3 can be replaced by the two conditions:

(2) 4, Bel;, 2ed’, and A < B; ‘

(2b) there is @ AeA—A" such that A%, By ewist and AP < By.

Proof. We need only show that it 4, B eP(Q), Aed’, A® < By,
and either A ¢ L, or B ¢ I;, then 4. C B can be derived from an application
of a rule of Definition 3 other than rule (2). ’

Assume that A ¢ Ly (the dual argument applies if B ¢ I,). Since
4 ¢ L, and A® exists it follows that [(A) > 1. Tf 4 — A4V A, then by (8)
and the transitivity of C, we get 44,4, CB and s0 4 C JZ? by (3). If
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A= AgA 4, then a,tlleast one of A’ and 4P, say AP, exists; if only 49"
exists then A?’.l: 4% < By and so 4,C B, and 4 C B follows from (4).
If both AE,A), AP exist then, sinee I, is a chain, we may assume that

AP < AP; thus 4® = 4P and A C B tollows by (4) as above.

Sorkin’s result now follows by taking A’ = 4 and P. M. Whitman’s
by taking A’ = 4, and L;=1 for all 1¢ 4.

For simplicity’s sake, we will henceforth identify 4 e L; with (4,
and thus the lattices i, A € 4 will be considered as sublattices of the
free product.

3. Applications. As an application of our methods we prove a theorem
of B. Jénsson [4]. Jénsson’s result, which holds for any class of algebras
satisfying the amalgamation property, is proved in [4] in an entirely
different manner.

THEOREM 2. For each 1e A let LY be a sublaitice of L, and let L* be
the sublattice of the free product of the L, generated by the Lf. Them L* is
the free product of the Lj.

Proof. In view of Theorem 1, (iv), we only have to observe that
if A eP(Q*), where @* = {J(Z}| 2¢4), then A® and Ay (if they exist)
are in L. Thus for 4, B e P(Q*), 4 CB does not change its meaning
when passing from @ to @*. Thus {<4)| 4 ¢ P(Q*)} = L* is by Theorem 1
the free product of the Lf, 1 e A.

One of the most important properties of the free generators of a lattice
is that they are join-, and meet-irreducible (P. M. Whitman [8]). (This
implies among other things the uniqueness of the free generating set.)
This was generalized by Yu. I. Sorkin [7] to free produects of chaing.
The next result shows that no further generalization is possible.

THEOREM 3. Let A consist of more than one element and let A’ C A.
Let L be the free product of (Ll A e A). Then L—| J(In] 4 e A’) is a sublatiice
of L if and only if L is a chain for each Ae A’

Proof. We observe, by Theorem 1, (iv), that if 4 ¢« P(Q) and 1e 4
then <A eL; if and only if A® < 4y.

Let 2 € A’ and let L, not be a chain. Thus there are z, y, and z =2y
in L, such that @, y, # are all distinct. Let x = A and let weL,. Let 4
= (mAW)Ve, B= (yAw)Ve; then Ap= By=2 4% =, and B =y,
Since A”, B® are undefined for all v 1 we conclude that {(4),
(B) e L—|J(L,| veA’'). However, (4 AB)(‘) = gAYy = 2= (4 AB)y. Thus -
(AYA (B} ¢ L;; consequently L— | J(L,| » € A’) is not a sublattice of L.

Conversely, let L be a chain for each A e A’ Let A e’y {(4),<{(B>eL
and (A>A(BY L. Then (AAB)Y, (A AB)g exist and (AAB) = (AAB)w.
Thus (4 AB)® < Aw, By, If only A exists then AP < Ay and so0
<4 eL,. T, on the other hand, both A®, BY exist, then since I is
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a chain, we may assume thatb A? < B?® and again (AAB)P = 4@
implying that (4) ¢ L. Consequently {45, (ByeL-—J (I/z! A e A") impliey
that (AYA(BY eL—J(Is| A ed’). In view of the principle of duality
the theorem is proved.

4. Sorkin’s theorem. In [7] Yu. I. Sorkin established a rather surprising
result: if L, K and Is, A € 4, are lattices, L is the free product of the I,
and if, for each Ae A, fii Li—K is an isotone map (but not necessarily
a lattice homomorphism) then there ig an isotone map f from L into K
extending all of the f;. Sorkin’s proof was rather long and involved; we
presenﬁ a very simple proof of this result.

Tet Q= |J (T ted) and let fo: @Q—K be defined by fo) = fiw)
if ©eL;. By induction on the length of the polynomials in P(Q) we
define F: P(Q)—K:

(i) if 4 e@Q then F(4)=fo(4);

(ii) if A = BV ¢ and A is defined for no 1 ¢ A then F(4) = F(B)v
vF(C); otherwise F(4) = \/ (fs(dw)| 2eA and Ay exists) VEF(B)vEF(0);

(iti) it 4 = BAC and A® is defined for no i ¢ 4 then F(4) =F(B)A
AF(C); otherwise F(4) = A (fiA?| 1eA and AP exists) AF(B)AF(0).

‘We observe that by Definition 2 A%® or Ay exist for only finitely
many 1 e, and thus the definition of F' makes sense.

We define f: L-~K by requiring that f(<{4>)= F(4). To establish
that f is well-defined and isotone we need only show that 4 C B implies
F(4) < F(B).

We first show that if 4 ¢ P(Q) and A? is defined then F(A) < f(4?)
(and dually). We proceed by induction on I(4). If I{4) =1 then A eI,
and so F(4) = f(A?). Tf A = BAC then F(4) = A (fu(4¥)] A¥ exists)
AF(B)AF(C) <f(A®). If A= BV then, by Lemma 1, if 4 exists
then z = A. If Ay exists then, since Ay < A® and f, is isotone,

fildw) < fA49) .
Now Bw, 0? exist and, by induetion,
F(B) <fuB®) <f4?), F(0)<fH(0P) < f14%).

Thus
F(4) = fiAw) vF(B)VF(0) < fi(4%) .

If Ay is undefined then, as above,
F(4)=F(B)VF(0) < fs(4¥).

We now show, by induction on I(4)+1(B), that if 4,B <P{Q)
and A C B then F(4) <T(B).
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If {(4)+1(B)=2 then A,BeQ and so ACB follows by (2) of
Definition 3; thus there is a 1€/ such that 4® < By and so

F(4) < fi4%) < fi(Bw) < F(B).

Now let 1(4)4-1(B) > 2. If A C B follows by rule (1) of Definition 3
the result is clear. If by (2), then the proof is identical with that above,

It 4 C B follows by (3), that is, A= CVD, where C,DCB, then
F(0)<F(B), F(D)< F(B)

If e 4 and Ay exists then, by Lemma 3, By exists and Ay < B
thus fildw) < fu(Bw) < F(B).
Consequently

Fd)=V (f;,(A(z))l Aed and Ay exists) VE(C)VF(D) < F(B).

If A C B follows by (4) then 4 = CAD and, say, C C B. Since 4C C
we find, by induction, that

FA)<F(O)<F(B)..

Since conditions (5) and (6) are the duals of (3) and (4) we have
gshown that A C B implies F(4) < F(B).

The mapping f: L—+K extends each fi since F(A) = fi(4) if A eL;.

We note finally that if f; is & v-morphism for each A e 4 (that is,
filzvy) = fu@) vfa(y) for each @,y e L,) then f is a v-morphism. Indeed,
if AVB has no lower covers then F(AVB)=F(4)vF(B) by definition.
On the other hand, if (4 V B)y exists from some i e A then at least one
of Ay, By exists. If only Ay exists then

FH{(AVB)@) = fi(dw) < F(4) .
If both 4@, By exist then

Hl(AVB)a) = fil AoV Bw) = fi(de) ViBw) < F(4)vE(B),
using the hypothesis that f is a v-morphism. Thus, in either case, .
V (f{(AVB)w)| 2 €4 and (AVB)y exists) < F(4)VF(B).

Consequently F(AVB) = F(4)vF(B) and so f is a v-morphism.
By the principle of duality, if fi is & A-morphism for each AeA
then f is a A-morphism. Thus we obtain the following result:
THEEOREM 4 (Yu. I. Sorkin [7]). If fi: In—~K is an isotone map for
each A € A, and L is the free product of the L, A € A, then there is am isotone
map f from L to K extending all of the fi. If fiis a v-morphism for all A e A
then f is a V-morphism, and dually.

Fundamenta Mathematicae, T. LXIX ‘ 17
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Finally, we note that the first gtatement of Theorem 4 (coneerning
isotone maps) is trivial from Theorem 1 if K has a zero. If K has a zero
define

fd»n =V (fi.(-A(;.))l le /1) .
f obviously satisfies all the requirements. If no Ay exists, then, of course,

4> =0.
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Non-existence of certain Borel structures

by
B. V. Rao (Calcutta)

This note conceptually simplifies the proofs and extends the theorems
of [1] and puts them in a more general setting.

Let (X, B) be any separable (countably generated and containing
singletons) Borel space, where to avoid trivialities X is- assumed to be
uncountable. Sets in B are to be called Borel subsets of X, Throughout,
B is fixed.

TeEOREM 1. For any o-algebra ¥ on X containing B, the following
are equivalent:

(i) Any one-one real X-measurable Sfunction on X coincides with
a B-measurable function on an uncountable Borel subset of X.

(ii) Any separable o-algebra S on X with BC SC X coincides with B
on an uncountable Borel subset of X, that is, on some uncouniable Borel
subset of X the restrictions of B and S coincide.

Proof: Given (i), we can prove (ii) by looking at the Marczewski
function associated with any countable generator for . Conversely,
given (ii), we can prove (i) by looking at the separable o-algebra induced
by the given function and B.

DEFINITION 1. A o-algebra ¥ on X containing B and satisfying
any one of the above two equivalent conditions is said to be a B-Souslin
o-algebra for X (with due respect to the work done by Souslin).

DEFINITION 2. A o-algebra Z on X is said to be B-mizing if Z con-
taing B and any uncountable Borel subset of X contains an element
of Z—B.

From the above definitions and Theorem 1, we have the following
theorem, which can be easily.proved by contradiction.

THEOREM 2. Let Z be amy B-mizing o-algebra on X. Let X be any
B-Souslin o-algebra containing Z. Then there is no separable o-algebra
on X containing Z and contained in 3. Consequently, no separable o-algebra
containing Z can be a B-Souslin o-algebra.

Remark 1. Throughout this paragraph let X be I the unit interval,
B its usual Borel o-algebra, Z = A the c-algebra generated by its usual
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