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analytic sots, and ¥ the class of Lebesgue-measurable sets or sets with
the Baire property. From well-known facts it is easy to verify that the
conditions of the above theorem are satisfied. Consequently, Theorem 1
of [1] follows from the above theorem. It also follows that there is no
separable o-algebra on I containing A and contained in O, the clags
of sets with the Baire property. We believe that Theorem 2 says something
more in the following fense: Fix any analytic non-Borel set 4 in I and
let 4, be the o-algebra on I generated by B and all the Borel isomorphs
of A. Then 4, is also B-mixing and hence the preceeding two special
cases of Theorem 2 are still valid with 4 replaced by 4,. However, we
do not known whether 4, is properly contained in 4. We do not know
whether any two analytic non-Borel subsets of I are Borel isomorphie.

The following theorem is a direct consequence of Theorem 2.

THEOREM 3. Asswme the hypothesis of Theorem 2. Let U be any subset
of X xX such that the vertical sections of U generate Z. Then U ¢ G XX
Here C is the class of all subsets of X,

Clearly, Theorem 2 of [1] is a simple special cage of the above theorem.

Remark 2. Assume the setup of Remark 1. If C is a B-Souslin
o-algebra, then there is no separable o-algebra containing A4. In fact,
there is no such algebra containing 4, in that case. Thus, in particular,
if one assumes the axiom of determinateness, then there is no separable
¢-algebra containing 4, on I. However, we do not know whether, con-
versely, the non-existence of a separable c-algebra containing 4 implies
that C is a B-Souslin ¢-algebra.

The author is thankful to Prof. Aghok Maitra for several useful
discussions and to Prof. Jan Mycielski for some useful correspondence
regarding the axiom of determinateness.

Note added in proof: Regarding non-isomorphic analytic sets see A. Maitra

and C. Ryll-Nardzewski in Bull. Acad. Polon. Sci. Sér. Sci. Math. Astr. Phy. 18
(1970) pp. 177-178.
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On uniform universal spaces

by
W. Kulpa (Katowice)

The aim of the paper iy to prove (Theorem 2) the existence of
a universal space for the class of all uniform spaces whose uniformities
have a dimension not greater than n and have a base of cardinality not
greater than y, consisting of coverings of cardinality not greater than T,
where » is & finite number,  and 7 are infinite cardinal numbers. A theorem
of Nagata [6] concerning a universal metrizable space of a given topo-
logical dimension may be regarded as a special case of our theorem
for y=n,.

The condition limiting the cardinalities of the coverings from the
base of the uniformities is necessary, because the class of uniform spaces
of a given dimension and a fixed cardinality of bases for uniformities,
such that each two spaces of the class are not uniformly homeomorphie,
does not form a set in- general. For example, the class consisting of all
discrete spaces (they have uniformities consisting of single-point-set
coverings) do not form a set.

The proof of the existence of this universal space is based on Theo-
rem 1, which presents a strenghtened form of a factorization theorem
from [3].

I wish to express my gratitude to Docent J. Mioduszewski for helpful
conversations during the writing of this paper.

§ 1. Preliminaries. A pseudouniformity U on set X is a family of
coverings of X guch that:

(1) U is directed with respect to star refinement,

(2) if Pe U and P S P, then P’ e U (P & P’ —this means that P is
a refinement of P’).

A subfamily B of U such that each P’ e U has a refinement P ¢ B
is said to be a base of T.

If a pseudouniformity U is such that:

(3) for each distinet point #’ and & from X there exists a PeU
such that o' ¢ st(a’, P),
then U is said to be a wuniformity.
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A pair (X, U) is said to be a pseudounifor.m (uniform) space.

A map f: XY is said to be wuniform with ?respe(?t to 2 pseu.do.
uniformity (uniformity) U on X and a pseudoumformi’lﬁy (uniformity)
von ¥, f: (X, U)=(¥, V) iff for each P eV we have f7(P)e U, where
f(P) means the covering {fHV): VeP} . o

It for a pseudouniformity U there exists a bgse (?f cardinality <y
congisting of coverings of cardinality <, then U is said to be of double
weight <(y,7); dweight T < (y,7)- o '

T a pseudouniformity U containg a base cons1st1ng- of . coverings
of order <n-1, then it is said to be of dimension <n, AnT < n.

§ 2. A factorization theorem. We shall show here a theorel-n and
some propositions, which are analogous to those of [3], where instead
of the weight appears the double weight. We ghall give proofs of these
propositions, but we shall omit some inessential details which do not
directly concern the double weight. .

ProPOSITION 1. FEet (X,U) be a pseudouniform space. Then there
eists o uniform map ¢ (X, U)—~(Xv,Uy) onto a wniform space (Xuv, Uy)
such that: :

dim¥, < dimU, dweightT, < dweightU
and
for each P e U there ewists a oP ¢« Uy such that g ((P)SP.
Proof. The family Xy of subsets of X
[@]= () {st(x, P): PeUy},

forms a partition of X. Let ¢: XXy, ¢(x) = [#] be the quotient map
onto the partition. For each P ¢ U the family ’

P = {Xy—q(X-V): VeP}

forms a covering of Xy of cardinality < cardP and of order < ordP.
We regard the family {,P: P e B}, where B is a base for U, as a base
for Uy.

PROPOSITION 2. For each two coverings P', P such that P’ > P there
exists a covering P'' such that
PPe>P'>P,
card P < cardP. amnd ordP" < ordP’.
Proof. Let ¢: P'—P be a map such that for each V e P’ we have

V Cop(V) e P. The existence of ¢ follows from the axiom of choice. For
each UeP, let ‘

Up=U{VeP: oV)=T}.
We define P ag P = {U,: UeP}.

On uniform wuniversal spaces ’ 245

ProPOSITION 3 (cf. Isbell [2] for the case where P ig finite). Let U be
a psewdouniformity. For each point-finite covering P e U there exists a covering
P’ e U such that P’ %— P, (where P’ > P means that P’ is a star refinement
of P), and ’
card P’ < cardP if cardP 4s infinite
cardP <8, if cardP <w,.

Proof. Tet @ be a covering from U such that @ & P. We define
*
an equivalence relation » on @ assuming that for each V, V' eQ

(VrV')«==(for each UeP, VC U ifft V'C 7).

Let [Q] mean the covering consisting of sets of the form
V1= U Vv,

It is obvious that @ &[Q] & P. The cardinality of [Q] is not greater
than card P, since card¢), being equal to the cardinality of the family
of all equivalence classes of 7, is not greater than the cardinality of the
family of finite subsets of P. In fact, let Py means the maximal family
consisting of elements of P such that V is contained in each element of Py.
From the definition of r it follows that each Py uniguely determines [V].
The family Py, V €@, is finite, since P is a point-finite covering.

Now we show that for each »e X, st(z,[Q]) C U, where U is an
element of P. In fact, st(z,[Q]) = U {[V]: ®e[V]e[Q]}. Let us take
for each [V], w € [V] € [@], & V' for which V'V, z ¢ V'. Since Q % P, hence
the sum of such V' is contained in some U ¢ P. From the definition of r it
follows that st(x,[Q]) C U. Now let us take a covering @’ ¢ U such that
Q' }; [Q]. It is easy to verify that the covering P’ =[Q’] is such that

P'& P and card P’ < card P.

*

In the case where P ig a finite -covering, the covering P’ obtained
as above is finite, not necessarily of the same cardinality as P. Thus we
have in this case P’ &> P and card P’ < K.

*

ProPOSITION 4. If U is o pseudouniformity with a finite dimension,
then for each P e U there ewists a covering P' e U such that

PSP, ordP' <1+dimU,
*
card P’ < cardP if cardP =5,
card P’ <8y if cardP <.

Proof. Let us take @ S P such that card@Q < card P (see Proposition
*
3). According to Proposition 2 there exists a P’ & @ such that ord P’
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<1+ dimT, card P’ < cardQ if P is infinite and cardP’ <, if Pis
g finite covering.

PROPOSITION 5. Let the dzmenswn of a pseudouniformity U be finite
and let B be a subfamily of U.

If cardB <y and B consists of coverings of cardinality <z, then there
exists a pseudouniformity T such that:

BCcUcCU,

dmT < dimT, dweightT < (v, 7).

In addition, if the coverings from B are finite, then the base for T con- -
sists of finite coverings and the assumption of finile dimension of U may
be omitted.

Proof. For each two coverings P”, P’ eB let us take a covering
P e U such that P % P’ and P % P”, ordP <1+ dim U and cardP <=

The covering P may be obtamecl by applying Proposition 3 to P'AP"
={V' A V" V' eP,V"eP"} Let us denote by B, the family of all such

coverings. Let us assume that families B, ..., B, are already defined.
Applying to | {Bi: i =1, ..., n} the above operation, we shall get Byy;.
The family | J{Bi: 4=1,2,...} is the base for the desired pseudouni-
formity 7.

Now we state a factorization theorem, a stronger one than Theorem 1
from [3]. The proof follows from Proposition 5 and Proposition 1.

TeroreM 1. If f: (X, U)—~(X,V) is a uniform map with respect lo
a pseudouniformity U on X and a wniformity V on Y, then there ewisis
a uniform factorization

X, (T,7)

(Z, W)

of f (i.e. f=h-g) with respect to a uniformity iW on Z such that
AmW < dimU  and  dweightW < dweightV.

PBo_PoerON 6. If U is a pseudouniformity such that dim U <n
and dweightU < (y, ), then there ewists a base B for U, such that card B <7

and B consists of coverings of order <n-+1 and cardinalities of these coverings
are not greater than t.
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Proof. Let B, be a base for U, such that card B, < y and B, consists
of coverings of cardinality <z. Applying to B, the countable operation
as in proof of Proposition 5, we get B.

PrOPOSITION 7 (ef. Isbell [2]). If U is a uniformity such that &imT < n,
and AweightU < (v, T), then there ewists a wniformity U*C U, inducing
the same topology on X as U, having a base consisting of finite coverings
of order < m--1, and the cardinality of the base is not greater than max(y, 7).

Proof. Let B bea bage for U consisting of coverings of order <n-+1
and of cardinality <7, and let card B < y.

For each .U ¢ P where P ¢ B let us form a covering consisting of two
elements; the first one is st(U, P) and the second one is the sum

"U{U U~ T =0, T P} The family

B*={U(P): UcPeB)

is contained in U, card B* < yr, and B* satisfies the condition from the
definition of uniformity, i.e. for each two distinct points 2’, #" there
exists a U(P) e B* such that #” e st[z’, U(P)].

Applying Proposition 5 to B*, we receive U*.

Let us note that the family of interiors of elements from coverings
belonging to a base of uniformity U on X forms a base for the topology
induced by U. From Proposition 7 follows

ProposITION 8. If U is a pseudouniformily on X such that dimT < n
and dweightU < (y, t), then there exists a compactification oX of X such
that

dimeX <n and weightaX < max(y,7).

An analogous proposition to Proposition 7 and Proposition 8 may be
found in Isbell’s book [2], but without the consideration of the double
weight. .

§ 3. Universal space. Now we shall construct a uniform space B(y, 7, n)

- with a uniformity having a double weight <(y,7). The uniform space

R(y,r,n) will be such that each uniform space (X,U) with dimU < #»
and dweightU < (y, 7) may be uniformly embedded into R(y,,n).

Let R(z,n) be a subset of a product of v copies of the segment [0,1],
such that each point belonging to R(z,n) has at most n-1 coordinates
different from zero. Let us define a metric ¢* on R(z,n) by

= D) {lp—pil: te T}

where card T =7, p = {ps}, ' = {pi} and . p, p' € B(z, n).
The space R(r,n) containg a dense subset D whose cardinality is z;
namely D is the set of all points whose coordinates are rational numbers.

1) o*(p, P
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We define on R(v, n) a base for a uniformity consisting of covering
Pi={8(p,27): peD}, i=1,2,.,

where 8(p,27") = {p' e R(v, n): o(p’;p) <27}

Thus cardP; < for i =1, 2, ... and the uniformity on R(z, n) defineq
above has a countable base.

PROPOSITION 9. Lef B be a base for a uniformity U on X such that
cardB <y and let B consists of coverings of cardinality <v and of order
<n+1.

Then for each covering P e B there exists a ymform map fr: (X,7T)
—R(v,n) and there ewists a uwiform covering P such that 34 P) > P

Proof. By assumption, there exists a- sequence {P;: 1=1,2,..}
of coverings belonging to B such that .

@) P=P 3P 3P 3.,
(3) card Py <7,

and

(4) ordP; <41, for i=1,2,..

From the well known theorem of the existence of a uniform pseudo-
metric (cf. Isbell [2] or Engelking [1]) it follows that there exigts a pseudo-
metric on X satisfying for each x e X

(5) $6(2, Poy1) C 8(x, 27 ™) Cst(w, P), n=1,2,..

Let p be a pseudometric on X satisfying (5). For each Ve P =P,
we define fr: X—[0,1] by

(6) - fr@) =gz, X-V).

The maps fr, V ¢ P induce & map fp: X >R (7, n) such that
(7 Iy fe(@)] = fr(z) .

The map fp has the following property:

(8) it o(w,y) < é, then o*fr(w),fr(y)] < 2(n+1)5.

In fact, since |o(w, 4)—o(y, 4)| < o(2,y) and each point #eX
belongs at most to n+1 elements of P, we have

oLfel@), feW)] = D, {Ifr(@)—Fr(y): V< P}
= 2{19($,X—V)~e(y,X~V)|: VeP, eV or yeV)

<D e(@,y): meV or y eV, Ve Py < 2(n+1)8 .
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From (8) it follows that fp:~ (X,U)~>R(z,n) is a uniform map. Now
we show that for the covering P = {§(p, §): p ¢ D} from the uniformity
on R(r,n) we have

) PP =P,

"From (5) and (2) it follows that S(z,27" ") Cst(z, Pry)CV,
where V' is an element of P, and hence 8(», 1) CV, where V ¢ P. Thus
fri{z) = e(®, X—V) > { for this V, and hence

(10) Clfel@), fril =t it yev,

(ity ¢V then fr(y) = 0 and o*(fr(@), fo(y)]= 2 |fri@) —fv(y)| > |fr (2)—Fr (y)]
= fr(z) > }). This means that

(11) fPHSLfple), 13 CV.
From (11) it follows that )
(12) for each p ¢ R(z, n) there exists a V ¢ P such that f2I8(p, HICV.

In fact, if p’, " ¢ 9(p, 1), then p*(p;p”') < 1 and it V e P is such
that S(w,3) CV and if fp(x)eS(p, %), then S(p, }) C8[fr(x), 1] and
according to (11), we get (12). Sinee S(p, %) is an arbitrary element of P,
thus the proposition is proved. :

‘We define the uniform space R(y,t,n) as the product of y copies
of the uniform space R(z,n).

Proposition 9 plays an analogous réle to Urysohn’s lemma.

PROPOSITION 10. Bach uniform space with uniformity of dimension <n
and of double weight < (y,t) is uniformly embedded into R(y,v,n).

Proof. The uniform maps fp: (X, U)—R(z, n), P belonging to a base
for U, of cardinality < y, induce a aniform map f: (X,T)~E(y,7,n).
The condition f5 (P) > P for some P pelonging to the uniformity on
R(v,n), ensure that f is a uniform embedding.

THEOREM 2. There exists a umiversal uniform space with a uniformity
of dimension equal to n and double weight equal to (v, ), i.e. such that each
space with o uniformity of dimension < n and double weight < (y,7) may
be uniformly embedded into that space.

 Proof. Let § be a set of spaces with uniformities of dimension < n
and double weight < (y,7) such that every uniform space having these
properties is uniformly homeomorphic to a space from 8. The existence
of such a set 8 follows, e.g., from Proposition 10. Let X be the sum of
spaces belonging to 8. Let us assume that the spaces are disjoint. The
uniformity U on X is such that a covering P belongs to U iff the covering
induced by P on each space contained in the sum is a covering from the
uniformity on that space. It is easy to see that dimU <. By Propo-
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sition 10, each space from § iy uniformly embedded in R(y, v, n). Theg
embeddings induce a uniform map f: (X,U)~R(y,r,n) such that it
Y <8, then f|¥: (¥, Ur)~R(y, 7, n) is the embedding mentioned hefope,
Applying Theorem 1 to the map f: (X, U)—~R(y, v, n), we get a factori.

zation (X, U);:—t: (Z,w) L E(y,v,n) into uniform maps, where dim W
<AdmU <2 and dweightW < (y,7). The map ¢|Y: (¥, Ur)->(Z, W),

being a inner factor of a umiform embedding, is also a uniform em-
bedding.

§ 4. Topological applications. If a completely regular space X is of
dimension < # (dimension always means here the covering dimension),
then dimp¥ <n (where BX is a Cech-Stone compactification). It
weight X < z, then X is topologically embedable into a Tychonov cube I7.
From Marde$ié’s theorem [4] we conclude that there exists a compactifi-
cation «X of X such that dimeX < n and weightaX < 7. Thus X hag
@ uniformity U inducing the same topology on X and such that dim T <n
and dweight U < (7, %). From Theorem 2 and Proposition 8 follows

CororrARY 1 {Pasynkov [8]). There exists a compact Hausdorff space
of dimension = n and weight = T, such that every completely regular space
of dimension < n and weight < T is topologically embedded into this space.

CoRoLLARY 2 (Nagata [6]). There ewists a metric space of dimension =n
and weight == such that every metric space of dimension <n and weight <z
may be topologically embedded into that space.

Proof. To prove this it suffices to know two facts: .

1° every metric space of dimengion < n and weight < = hag a uni-
formity T inducing the topology on X such that dim < » and dweightU
< (%, 7).

2° (Theorem V.1 in Nagata [5], . 126), if there exists a uniformity U
on X such that dimU <n and dweightU < (8%, 7), v arbitrary, then
dim X < n.

We know that if dweightT < (v, 7), then the weight of the topology
induced by U is < max(y, 7).

From the above facts it follows that if X is a metric space, then
dimX <n and weight X < 7, iff there exists a uniformity U inducing
the topology on X, such that dimU < n and dweight U < (8, 7).

Now it is obvious that Theorem 2 implies Corollary 2.
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