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Blaschke products for finite Riemann surfaces*
by

"BALMOHAN V. LIMAYE#* (Irvine, Calif.)

" 1. Introduction. The classical Blaschke products are used in facto-
rization theorems for certain classes of analytic functions on the open
unit disk. Since the open unit disk is the universal covering space for
any finite open Riemann surface, Blaschke products can be defined there
too, if one admits the so-ealled “multiple-valued” functions. Coifman and
‘Weiss-[2] removed this unpleasantness for the case of planar multiply-
connected domains by making use of an analogue of the complex Poisson
kernel. Here we treat the general case using the H®-space theory [1],
define a. Blaschke product in terms of the boundary behavior and the
divisibility property and give various necessary and sufficient conditions
for ity existence (Theorem 2.5). In general, we have to make use of the
cempactness of the group of reals modulo integers to obtain certain
convergent subsequences in proving the convergence of a Blaschke product.
In the case of planar multiply-connected domains, though, we point out
a canonical choice of the parameters involved which avoids this compli-
cation (Remark 2.6). Finally, we characterize the set of points on the
boundary across which a Blaschke product can be continued analytically
and prove the unigueness of a Blaschke product for a given sequence
of points in the Riemann surface.

2. Inner functions and Blaschke products. Let the finite open
Riemann surface E have p handles and its boundary X be the union of
¢ non-intersecting analytic curves Iy, ..., Iy. Set ¢ = 2p-+¢—1 and let
{y1y -+-» Yo} be a homplogy basis for the closed paths in R. Let 4(X)
be the-algebra of continuous funetions on X that can be extended analyt-
ically to R. A slight modification of Wermer’s proof ([3], Lemma 1)
shows that there exists a basis. {Z,,..., Z,} of the invertible elements in
A modulo- the exponentials in 4 such that

1
o f*d(loglzkn =0 for 1<j,h<o.
T ) . ;
'/]‘ ' -

* This paper is a part of the author’s doctoral dissertation, directed by Profes-
sor Norman L. Alling at the University of Rochester, New York 1968. o
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Also these Z, ..., Z, can be chosen to be analytic across X. We
choose a fixed point z, in R and consider the harmonic measure m on X
with respect to z,. For L < p < oo, let H”(dm) denote the closure of 4
in I? (dm), where the closure is taken in the norm topology for 1 << p < o0
and in the weak-star topology for p = oo. It is well known that H*(dm)
can be identified with the space of all bounded analytic functions on E in
a natural way. Following [1], we call a function fin H®(dm) an inner
function if there exist real numbers ¢;, ..., ¢ such that |f] = |Z,| ... |Z|*%
a.e. din on X. A function f of the form f = ¢Z]" ... Z;*, where ¢is a complex
constant of absolute value 1 and m,, ..., m, are integers, is called a. trivial
inmer function. We shall say that an inner function f satisfying a certain
property is essentially unique if any other such function differs from f by
a factor of a trivial inner function. If f is an inner function, we denote
by f the corresponding bounded analytic function on R.

Definition 2.1. Let (an), be a sequence of points in B with repeti-
tions allowed. A Blaschke product for R with respect t0 (@), is an inner
function B such that B has zeros ab (@n)n and if g is in H*(dm) and § has
zeros at least at (ay),, then g/B is also in H* (dm).

We first show rather easily that if e is any point in E, then there
exists an essentially unique Blaschke factor B for B with respect to a
such that B isin 4 (X). Without loss of generality we can assume that the
point & does not lie on any of the closed paths y1, -.vy ¥o. Let G(-, a)
be the Green’s function for R with singularity at e, and let

4 =—1—f*da, j=1,...,0.
27

7

Consider the continuously . differentiable function

u =) alog|Z;
J=1

on X. It U is the harmonic extension of u to R, define 7 = U—G. Then
there exists a function B in A (X) such that |B| = expF. Since ¢ =0
on X, this implies |B| = |Z4]%...|Z:% on X. Moreover, B has a zero
only where F' — —oo, that is, at e, and this is a simple zero. It is casily
seen that B is a required Blaschke factor. If B, is any other such factor,
then B/B, is invertible in A. Since {Z,, ..., Z,} is a basis of the invertible
elements of A modulo the exponentials in 4, 'it follows that B/B, is
a trivial inner function and we are done. The following technical lemma
is the ermeial first step in forming infinite products of the Blaschke
factors. S :

e © k
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. LevMA 2.2. Let (fo)n be a sequence of wnmer fumctions in A(X) such
that if

[fal = 1247 L 1 Z" % on X,
then MYaj, < oo for j=1,...,0. Also assume that fa(20) = by # 0 and
that II |b,| converges. Let
. ba
I =T

Then the partial products of the infinite product IT f, converge to a function
in H2(dm).

1
Proof. Let By = [] fn. We will show that (B;); is a Cauchy sequence
in H2(dm). n=t
For a o-tuple (B4, ..., Bs), define
€ = Cpyeniy) = SUD 1Z (@) ... 12, ().

Also, define
1

§i1 = Z Un e

A=1

Then, by hypothesis, s;; converge as ! tends to infinity, for each
i=12,..,0

Clearly, |Bj| = |Z,|... |Z,[*! a.e. dm on X. We abbreviate this
by writing |Z|*. Since each Z; is continuous and non-zero on X, there
exist J and M such that 0 < 6 <1 < M and 6< |Z;(z)| < M for every
j=1,..,0and v in X. If —Q<s;;<@Q for every j=1,...,0 and
l=1,2,..., where @ is a positive number, it follows that

¢ = min(M "9, §°9) < |By| < max (M9, 679 = (.
Let now, m >1. We have
[ 1Bi—Buldn < ¢, [ |Bi—Bul* 12|~ tdm
X X
= o, | [ 1B |21 1 dmt [\ Bl \Z] " mdm
X P4
—2Re [ Bu/Bidm+ [ \B,,,P(]Z\-”zﬁ1Z|-28m)dm]
pe p-¢
= O3y [1+1—2Re (B [Br) (20)]+ Cae, [ (121~ —1)dm
i PR

= 2055, [1— Re(Bou/B)) (20) 1+ a5, [ (|ZPCn0—1)dm.
X


GUEST


172 B. V. Limaye

Now,

Re(Bn[Bi)(20) = Relf},, (20) - fm(20)] = [biyal ... [b| = [] (Bl
141

N==.

Since [] |ba| converges, 1—Re( m/Bl) (2o) tend to zero as m-and 1
tend to infinity.
Algo ¢ < 09, < (" and f (122 6Em—s0) )cl'm tends to zero as m and 1

tend to infinity, by the bou;nded convelgence theorem. Thus (B;) is
a Cauchy sequence in L?(dm)and all B, are in H*(dm). Hence B; converges
to a function in. H2(dm). 5

Definition 2.3. A boundary strip S for a finite open Riemann surface
R with boundary X =I5 v ... v I, is an open subset S of R such that
8 is the disjoint union of ¢ open subsets Sy, ..., S, of R, each 'S; con-
formally equivalent to an annulus {20 < s,-< !zl < 1} under ‘a-map
®;, I'; being one of the boundaries of S; and the continuous extension
of @; mapping I; onto || = 1. We call &;s boundary wuniformizers for
the boundary strip S. It follows from classical funemon theory that such
boundary uniformizers exist. )

If (ay), is & sequence of pomts 1n the open unit disk, then the usual

Blaschke ploduct for (a,n)n exists if and only if 21—— |t < co.
" RBirice RS =t '

Ay —

Gy, 2)-= —log

8 1—a,2 e
S

this eonchtlon is equivalent ‘to 26‘—(0&", 0) < oco. It is importaﬁt t0 note

that this is also a necessary aJnd sufficient condition for the exmtence
of a bounded analytic functlon on the open unit disk having zeros at
least at (a),. Consider now the annulus K = {2|0°< ry <'2] < 1}, and
& sequence of points (), in it satisfying 73” < |a,|. A generalization
of Jensen’s theorem shows that if f is a bounded ana;ly’mc finction on K

having zeros at a,, then 21 &} < oo. More importantly, we hgwe
M=l

the following easily proved lemma;: .

LEMuA 2.4. Let f be o resl-valued continuous function on the closed
annulus K = {2|0< 7, < |o| < 1} such that f(2) = 0 for |2| = 1.

() If f has a bounded radial derivative in K and if (ay), is any se-
quence of points.in K satisfying 3 1—|ay| << oo, then I |f(an)| < oco.

(i) If f s mm, negative and harmonic in K such that f(z) 5= 0 for
[l = 7q and if. (ay)y is any sequence in K satisfying Df(ay) < oo, then
2 1—la,] < oo.
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TEEOREM 2.5. Let (a), be a sequence of poinis in B—{z}. Then the
following are equivalent:
(1) There ewists a bounded analytic function f on E having zeros at
least at (@p)n-
(2) There exists o Blaschke product B fm R with respect to (G-

(3) ZG a“,zo)<oo

4) If 8 =8;v...u 8, is a boundary strip for E, and Diy..., P
are boundary uniformizers, then

21_ lqji(a'j,n)l < 090,

where (0)n)n = (Gn)a ~ S; for each j = ]:, cees @ .

Proof. (2) = (1) by taking f= B; (1) = = (4) by considering 1.1he
bounded analytic functions fo @;' on the annuli {zls; < || < 1} and notlmg
that their zeros are @;(a;,). To show (4) = (3), notice that Go®; is
a continmous real-valued function on {z]8; < |e} <1}, it vanishes on
|2| = 1 and has a bounded radial derivative in {zls; < lel < 1} -Hence,
by Lemma 2.4 {i), for each j =1, ..., ¢,

ZlGO@i d’i(ain ‘ = ZG(“’]-M zu) < oo.
N=1
Tt remains to show that (3) = (2). For ea,eh , let by bae @ Blascl{}{e
factor for R with respect to the point ay, and let [k, = |Z,[%7 ... [Z,]""
on X. Then for z in B— {an},

ha(2)] = explaynlogl Z,(2)|+ ...+ anl0g|Z(2)| —G (2, @)].

. . .
Let ,now 7= Z’a“. Let Ny, ..., N,z be integers such that

0< -r”—N,z\l for j =1,...,0 and 1=1,2,... and 8; =7~ Njz.
By compactness a,rgument there exist convergent subsequences (sjz,)
for each j = 1,..., 0. Define .
ln
fo = hy 2~
I=lp—3+1

Wﬁel"e Zx stands for ZNLk i TN, “Then

b "ln

- X a-(MN-Np1)
ful = 1ZfB = \zpn
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m . oo

say, on X. Observe that 261 » = TiL,— ijzﬂ =g, , and henco Z‘sm

n= N n=1

..., 0. Also, as above, .
Z G(zoy afl ]

=lp_1+1

converges, for cach j =1,
Ifa(20)] = exp [10g |2 (20)] d1.0+ .- - +108 Z (20)] 65—

Since Y G(z, @) < oo by (3), it follows, if b, = fn(z.,), that b, 0

and that [] {b,| converges. Let

&
' b !
fo= Ib:1 fn and By = nu fr-

Then, by Lemma 2.2, the sequence (By), converges to o function B
in H*(dm). Since a subsequence of (By), converges pointwise a.e. dm
to B and since each Bk is an inner function, B is also an inner function.
It is also clear that Bk converge uniformly on compaect subsets of R to B
Tt is to be noticed that B has a zero of order Pn ot ay, if and only if a, is
repeated p, times in (a,);. To see that if g is any function in H*®(dm)
having zeros at least at (a,),, then g/B is in H™(dm), define §, = ﬁ/f?k
and notice that ¢ < By < C"on X for some constants ¢ and ¢. The maxi-
mum modules principle then gives the required resuls.

Remark 2.6. The construction of a Blaschke product with respect
t0 (@n)n in ‘Theorem 2.5 depended ow choosing a Blaschke factor k, with
respéct a, for each n, where |h,| = [Z,|"" ... |Z,|%" on X for some real
numbers o p, ..., t,,. The difficulty lay in choosing these a;,’s 50 that
D ajm < o0 for each j =1, ..., 0. This we overcame by using the com-
pactness of the group reals modulo integers to get convergent subse-
quences. If B is a planar Riemann surface, then we do not have to go
through the above complicated procedure, for a canonical choice of iy'8
is possible. Let the boundary X of B have g components I, .. , Iy a8
usual, 8o that ¢ = ¢—1. Let w; be the harmonie function on B w X such
that w; =1 on I} and w; = 0 on X —I (sometimes called the harmonic
“measure for I';). Then

wf(z)=~—— [raa(¢,z).

5;11:,

E8=8uv..uf8,isa bounda,ry strip for R, make the following
choices for a;,. If a,eS, 1 <k<g—1, then o5, = —awj(a,) for 1<j
Sq—1,k#j and g = —og(e,)+1. I aneSy, let g5, = —w;(an)
for 1<g< ¢—1. Then there exists a Blaschke factor hy, with respect
, 0 a, such that |h,| = |Z,|"» ... |Z,/%" on X, and since w;+...4w, =1,
by Lernma 2.4 (i), Z’a,,,<ooforeach]—1 vy g—1 = o

icm°
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3. Analytic continuation and uniqueness. We first make some remarks
about the analytic continuation of an arbitrary inner function f across
a point # of the boundary X. We claim that f can be continued analytically
across « if and only if f is bounded away from. zero in-a mneighborhood
of #. Let U be 2 neighborhood of # in R'w X such that for every y in
RAU, ]f(y)l = 6 > 0. Since f is an inner functlon, Ifl =1Z42 ...\ Z,]%
a.6. dm on X for some real numbers aj, ..., ;. The harmonic funetion

u =log|fl— } a;log|Z|
j=1

has non-tangential limits zero on X ~ U and f, Zy,y ..., Z, are bounded
away from zero in R ~ U. Hence « can be extended harmonically across .
Sinee Z,, ..., Z, are analytic across z, it follows that f can be continued
analytically across #. Conversely, if fhis analytic across o, it must be bounded
away from zero in a neighborhood of # if f is to be bounded away from
zero a.e. dm on X.

ProroSITION 3.1. Let (a,), be a sequence of points in B and let B be
a Blaschke product for B with respect to (a,), as constructed in Theorem 2.5.
Let E denote the subset of X consisting of the accumulation pomts of (@) e
Then B can be continued analylically across a point x in X if and only if @
is mot in H. Moreover, the Blaschke product B for R with respect to (@),
18 essentially unique.

Proof. If x is in E, then B is not bounded away from zero in any
neighborhood of x, and hence B cannot be continued analytically across
@. Conversely, let # be not in &, and let ¥ be a neighborhood of zin B w X
not contaumng any Gy. Smce B is a Blaschke product for (a,,),,, by

.5, ZG(zo, ay) < oo. Define

= Ze(z, )

Then it can be shown that (ug), is uniformly boundeéd in a smaller
neighborhood U of # in B « X. Since, with the same notation as in (3) = (2)
of Theorem 2.5, for each z in R~ U,

Theorem 2

for 2 in V and k¥ =1,2,...

|B(2)] = lim|By(2)],
k>0

where
k

|By(2)| = exp [i‘(logyz (2)] Z ) ZG(z a.n)]

j=1 N1

!
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it follows that ([]§k|)k is uniformly bounded away from zere in U. Hence
B is bounded away from zero in U and can be continued analytically
aCcross . :

If B, is any other Blaschke produet for E with respect to (a,),, then
B|B, and B,|B are both in H*(dm). Then B[B, is an inner function that
is bounded away from zero on R and hence it can be continued analytically

across all of X. Thus B/B, is an invertible element in A(X) and must

be a trivial inner function. }

Having shown the existence and uniqueness of Blaschke produects
for finite Riemann surfaces, we would only remark that ‘‘singular
functions”’ and ‘‘outer functions” can also be defined in this case and

the factorization of bounded analytic functions into Blaschke products, .

singular functions and outer functions accomplished in the usual manner,
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Uber die Limitierbarkeit unbeschriinkter Doppelfolgen

von

MICHAEL STIEGLITZ (Stuttgart)

1. Einleitung. 8. Mazur und W. Orlicz haben im Jahr 1933 ([5], S. 33)
folgenden interessanten Satz fiir Einfachfolgen mitgeteilt:

Limitiert eine permanente (zweidimensionale) Matrix eine beschrinkte
divergente Folge, so auch eine unbeschrinkte. (Einen Beweis findet
man zB. bei Darevsky [1], 8. 98). Wie Zeller 1951 ([8], S. 482]) und
Mazur-Orliez 1954 ([6], S. 151) zeigten, gilt der obige Satz auch fiir kon-
vergenztreue Matrizen.

EBs fragt sich, inwieweit dieses Ergebris auch in der Limitierungs-
theorie der Doppelfolgen Giiltigkeit hat, wenn man der- Untersuchung
vierdimensionale reguldr-konvergenzirewe Mairizen zugrunde legt (*). Dabei
wird unter einer reguliir-konvergenztreuen Matrix eine Matrix verstanden,
die jede regulir-konvergente Doppelfolge — das sind (im Pringsheimschen
Sinn) konvergente Doppelfolgen mit konvergenten Zeilen und Spalten —
wieder in eine reguléir-konvergente Doppelfolge transformiert. Fiir
diese Klasse von Matrizen gilt der dem obigen Ergebnis fiir Einfachfolgen
entsprechende Satz:

Transformiert eine regulir-konvergenztreue Matrix eine beschrinkte,
nicht regulér-konvergente Doppelfolge in eine regulér-konvergente Doppel-
folge, so auch eine unbeschrinkte.

2. Definitionen und Hilfssiitze. Im folgenden werden Doppelfolgen
komplexer Zahlen x,, (g, v = 0,1,...) mit # = (z,) bezeichnet und zur
Abkiirzung

@, = lima,,, ©,=Ilmz,, o =lmnz, (@»=20,1,...)
P00 H—>00 B, ¥->00
sowie
llo] = sup |w.l
0<<p,v<oo

() Von einer wortlichen Ubertragung des obigen Satzes, d. h. von einer Ubertra-
gung auf vierdimensionale konvergensireue Matrizen kann abgesehen werden, da eine
(im Pringsheimschen Sinn) konvergente Doppelfolge unbeschrinkt sein kann. Ohne
Beweis sei bemerkt, da eine konvergenztrene Matrix nichf notwendig reguldr-konver-
genztreu ist, und umgekehrt.
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