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von Rellich [9] folgt, daB die Friedrichssche Erweiterllng von A—u, kB
kontinuierliches Spektrum besitzt. Also ist auch C(4) # @, wenn 4
eine beliebige selbstadjungierte Erweiterung von A bedeutet. Damit
ist Satz 3 vollstindig bewiesen.
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Determinant system for composite
of generalized Fredholm operators

by

A. BURACZEWSKI (Warszawa)

1. Introduction. The main purpose of this paper is to give a general
formula for the determinant system for composite of two generalized
Fredholm operators provided their determinant systems are kmown.

Let £ and X be two fixed linear spaces over the real or complex
field §. The letters x,y, # will denote elements of X, the letters o, nC
elements of £ and the letters a, b, ¢ numbers of F. Every mapping into
& will be called a functional. Following Sikorski [3], we assume that
and X are conjugate, i.e. there exists a bilinear fumnetional defined on
Qx X whose value at a point (v, #) is denoted by wz and which satisfies
two conditions: : :

(a) if ww =0 for every weR, then z = 0;

(a') if wz =10 for.everylr zeX, then o = 0. o

If oz =0, then w,» are said to be orthogonal. In the following 9%
will denote the class of all bilinear functionals on 2 xX such that:

(b) For every fixed w<X there exists a y<X such that odw = oy
for every wef (this unique element y will be denoted by Ax).

(b’) For every fixed weQ there exists an 5eQ such that wdz = gz

for every zeX (this unique element » will be denoted by wA).
) Thus, every bilinear functional A< ean simultaneously be. inter-
preted as the endomorphism ¥ = Az in X and the endomorphism 7 = wA
in . Ais & ring with the following definition of multiplication: if
A, A,¢W, then by 4,4, we understand the bilinear functional o (4,.4,)z
= (wd;)(4,®). Tt is evident that the product 4,4, interpreted as an
endomorphism in X (in Q) is the composite of the endomorphisms 4,, 4,
in X (4,, 4, in Q). The bilinear functional I such that wlz = waz, will
be called the identity bilinear functional. By definition, Iz = » for each
zeX and ol = w for each wef. .

If », and w, are fixed, then the. bilinear functional K defined by
the formula wK2 = w2, w,v is called one-dimensional and is denoted
by @, w,. Any finite sum of one-dimensional bilinear functionalsis called
a finite-dimensional bilinear functional.
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2. Some definitions and properties of Fredholm functionals. For any
AN we introduce the following notation:

V() = {0d: 0@}, Z(4)={0:0d =000},
Y(4) = {dz: X}, = {w: Ao = 0, xeX}.

The following definitions and basie properties of generalized Fredholm
bilinear functions will be used, which ean be found in [2]. A bilinear
functional (endomorphism) A% is said to be a generalized Fredholm
bilinear functional if:

(c) AimZ(4) =m', dimZ(4) =n";

(ey) the equation Az = z, has a solution # if and only if wxzy, =0
for every weZ (4); :

“(e,) the equation wA = o, has a solution w if and only if w,z = 0
for every zeZ(4). ’

The integers r = min(m’,n’) and d = »'—m' will be called the
order and defect of A, respectively. A bilinear functional B is said to be
& quasi-inverse of A if ABA = A and BAB = B.

Instead of using the notation D,, Dy, ..., Dy, ..., a8 in [2], for the
determinant system of order r and defect d, we shall use this notation:

1)

DG, Df, .., Dt L it izo,
and
D?_d,_Dl_d_'_l,...,D?:d_,_",... 1fd<0,

i ; D1y very O
or, more briefly, {D7} in both cases, D, (wl’ )y @n
1 .y Hm

(n-Fm)-linear functional 1)" at a point (wy, ..., wn, 2y, ey Tm) e 2" X X™,
(1) (cf. [2]) Bwery gemeralized Fredholm operator A of order v and
defect d has a determinant system also of order v and defect d.

) being the value of

Moreover, if {Di} and {D} are determinant systems for A, then there.

ewists a constant & =0 such that {Dp} = {kDj}.

(i) Let {Dm} be a determinant system for the gemeralized Fredholm
bilinear functional A, r =min(m',n'), d = w'—m' being the order and
defect of A, respectively. Lot 0y, ..., N and Yy, ..., Ymo be points such that

5= :;;‘("717 veey 77%’) £0.
Yis oooy Yo
Then the elements Ly, ..., Ly and 2, ..., 2, determined by the formulae

T & ,
(2) Liw = ——D'Qu( v ’ "In) for every meX
. Yiy ooy Yicasy 8y Yigry oovy Y :
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and )
1 o [Ty e s M1y Oy Nisay oeny e
3) Wz = -IS—DZ,‘,( PR e for every weQ
Yig o v vv e oo s Ymr

Jorm complete systems of solutions of wA =0 and Ax = 0, respectively.
A bilinear functional B, defined by

(4) wBr = %D:Lﬂ (w, P vera %')
m! yl? e 4 fl/m'
s a quasi-inverse of A.
Moreover
m’ nt
(8) AB =I— Yyl and BA= I— Yz,
=1 g=1

where miyy = Su and mpey = 8y (i, k =1,...,m'3p,5 =1,...,n).

(iil) Zet L1y onvy Cme and 2y, ..., 2, be bases of & (A) and Z(A) respec-
tively, and let Be%[ be any quasi-inverse of A. The sequence {Dy} defined
by the formulae

n (D11 +eey On . ,
(6) Dy, = 0(n = mix(d,0),...,n" —1; m = n—d),
DByy eyl
i
D17 «vv @12 [ ST {1%m
o D1y eeey Onr
(7 A I E e - 1,
vy Ly
trren T D2y OneZpe | | Lo By o e Lo O
and for k=1,2,...
g [ Oy oy Dot
R
Ly eoeyTmeyk )
wp, By, ... oy By, o o
— 1’ K+17 ") T Phtme
= 2 SEOPRGOG [+« < ¢ ot - e D‘m ( )
bq Pag 19 ==y Lagpom,

©p, By ...y
s a detsrmma,m system for A, where 5’ is ewtended over all permutations

P=(P1; s Pryn) and q=(gy,..., Qk.rm’ of the integers 1,...,k+n'
and 1,..., k-+m', respectively such that ‘
Pr<Pe <o <Pry DPrg1<-:o0 < Pryn,
Q1< G < ... < (g, Qk+1<'--<QIc+m'-

The determinant system {Dp} for A defined by (6) (7) and (8) does
not depend on the choice of B.

(9)
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It is easy to verify the relationship between two arbitrary quasi-
inverses B and C of A4,

n

(10) ¢ =B+2%‘¢H+ZW‘Q+EZ(Uiiﬂi)szf’
iz = P

where 0;¢%(B) (i =1,...,7n") and %e¥(B) (j =1,..., m').
I now recall the formula for the generalized expansion of a classical
determinant which will be used below:
(11)
;...

Qs oo Olpynkqn Opp1 s Opglo| | gy gt - LT, Xy

.Where 2 is extended over all permutations p = (p, s evey Diyn) Of the in-

tegers li -+ey k+n such that p; < pe < ... < By Diog1 < Proga < <. < Prgns

We shall use the following notation throughout the paper. 4, and 4,
will denote fixed bilinear generalized Fredholm operators of orders
#" = min(m', #'), " =min(m’’, n"’) and defects &' = n'—m’' and g~
= n"'—m’’, respectively. Let {Dp} and {Tp} be determinant systems
for A, and 4,, respectively. Using formulae (2) and (3) we can find a bagis
2y eny 2 OF Z(4y), a basis £5, ..., Ly of Z(4,), a basis 2, ..., 2. of
Z(4,) and a basis &1 ..., &ne of Z(4,). We have the following

Lmvva 1. Let B, and B; be arbitrary quasi-inverses of Ay and A,,
let2,, ..., 25 and Ly, ..., Ln be bases 0f Z(Ay) ~ Y (4,) and Z(4,) ~ ¥(4,)
respectively. Then the elements,

(12

_B ’ B ’ 17 ‘ 17
2%y ooy Bafimy 21, .00y U,

517 LRRE] C:n’; C;.,BU ey C%L”B;

are solutions of the equations A, A,z =0 and w4, A, =0, respectively.
It is easy to show that every solution of AAd,z =0, wAd4,=0

is a linear combination of the elements given by formulae (12), (12'),

resp. Furthermore, there exist elements 3, ..., 7y and 47, .. ., Y Such that

(12;)

n me
Bidy =T~ Mawi, A,B,=I— i,
=1 i=1

where yig) = 8y (i,§ =1, ..., ), 89} = 8y (i,j =1, ..., m"). Tt follows
immediately from these formulae that MiAsBog) = 8y (i,f= 1,...,®)

17 17 . . §
L A1 Byyii= 6y (3,§ = 1,...,m") and, since no solution of the homo-
: gez;ec_ms Fredholm equation belongs to the range of its quasi-inverse,
the linear independence of the elements '(12) and (12) has been proved.

icm

©

(14)
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Since d{4,4,) = d(4,)+d(4d,) = @'+ 4"y [1], we have the relationship
7 +n —(m+m’) = d’—}-ql” from which one obtains #’'—7’ = m’ — 7.
Putting s = n'—%" we easily assert that

(13) 7 = 7(d,4,) = min(m*, n*),

where 7" = n'4n' —s and m* = m'+-m'"—s,

Since 7' = dim(Z(4,) ~ ¥(4,)), m" = dim(% (4,) ~ ¥(4,)) and s
= W' —% = m"—m", we can denote by w,, ..., w, and Py, -y s linearly
independent solutions of 4,4 =0 and wd, = 0 respectively, such that
wid Y (4,) and 9;¢¥(4,) for j =1,...,s. We also assume that v, ..., v,
and wq, ..., ws form a biorthogonal system, i.e.

Piw; = Oy (B,7=1,..,9).

Since y;¢%(4,) and w¢¥(4,), j=1, ..y 8, We can easily prove
that there exist points #3,...,7%5eQ2, 9i,..., ypeX and 7}, ..., 7hme®,
Y1y s Y e X such that »j, ..., 7y, are orthogonal to all gy, ..., -, and

5 = D:;'(’?}: ceey "75'71111;'--":"3) %0,
Ylse o oo v v, Yo

6” — T"" 77’115 ........ ,77;: ;&0
™ Yis oooy Uy Wy onny Ws

With the above assumptions we have the following
Levya 2. If By and B, are quasi-inverses of A, and A, respectively,
defined by

1 , @, Ny ... 'r;i, Wiy aeny P
(15) (*)B1\'17=_/-D;Ln'—:11( ’77’17 9 Moy Wiy -v oy 's>
8 I o s Yme
and .
1 " w,nf, ........ ,17,'{
15’ 0By = — T2 P "
v( ) 2 8 TN D Yy ey Yy Wy ey )

then ByB, is a quasi-inverse of A 4,.

In the same manner as in (ii) we can obtain complete systems -of
linearly independent 'solutions i, ...,lm of wd, =0, 2,...,2, of
Az =0 and &5, ..., mr of 0dy=0, 27, ..., %, of A,z = 0. Therefore,
by (5), we obtain :

m’

(16) A 4,B,B, =T Yyitim 3 Ayl -t By
' i=1 i=1

Since &7, ..., &, are orthogonal t0 wy,..., w;, We can easily verify
. ‘e lt T :
that £, ..., £ <@ (4y). :
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[&]
(=3
[

Hence multiplying (16) on the right-hand side by A142, we ob.tain
A AsB,B A A, = A A,. Since the determinant systep:m is determined
up to o constant scalar, it can be easily shown, by virtue f’f (7), that
4 = w (J=1,..8). Hence multiplying (16) onthe left-hand side by}?zBl,
then applying (5) to B, 4, and remembering that y; (i=1,...,m" ) are
orthogonal to all 7 (j=1,...,%) we obtain B,B, A, A,B,B, = B,B,.
This completes the proof. :

3. Proof of the main theorem. }

TusoreM. Lei {D%} and {Tm} be determinant systems for A, and A,
of order ' = min(n’, m"), #"" = min(n"', m") and defects d' and d'', respecti-
vely. Let Cy and C, be arbitrary quasi-inverses of A, and A, and lot wyy oony s
and 1wy, ..., w, be compleie systems of solutions of wAd, =0 and A2 =0
respectively such that v; ¢¥ (4,), w;¢ ¥ (4,) and pw; = 65 (1 = 1,2, ..., 3),
where s = n'— Am(Z(4,) ~ ¥(4,)) = m''—dim (% (4,) ~ ¥(4y). The se-
quence {Su} defined by the formulae

S;(an,..., wn) =0 (” - max:(d'-[—d”, 0),.”,77/1 —!-%”—S——l;
Lyrgeeey Tm

‘m = n—(d+d")

and, for n=n'-+-n'"—s,

Wiy eeey O
an S"m(

Byyeeny Tm

wp, Cgyovvy @ Cyy 1y ooy @

N0’ 18 Dy 21 3 W V28 P 1 ¥s

= ngnp sgnq])m_m,if+3( ‘ «
.G qy s s e e e e e ) wqm—m"-(—s
o (@ ey e e e e e e e s Wy
><1ﬂz,( —n’+1 g ",
lwqm—m”+s+1’ saey 0160%, Wiy eeny Wy,

where ) 1s extended over all permatations p = (Pyy ..., Pu) ond q = (¢, +-.
v
-os Qm) Of the integers 1, ..., n and 1, ..., m, respectively, such that
P, <P <... <Prw, Prngr < oor < Paj
01 < Qs <... < Qm_mrysy Um-meysp1 < o0 <
is a determinant system for A, A, which depends neither on 0, and C, nor
on the poinds 1y, ..., P and Wy, ..., Ws.
Proof. Let B, and B, be quasi-inverses defined by (15) and (15")
for 4, and 4,, i.e. BB, is a quasi-inverse for 4,4,. Since the determinant
system is determined up to a constant factor k = 0, we can assume that

the determinant systems {Dy} and {T%} for 4, and A4,, respectively
are defined in a similar way as in (iii). ‘

(18)

=] © ,
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By (ili) and Lemmsa 1 the sequence {Sp} defined by

(19) Sm=0 for n =max(d4d",0),...,n +n"—s—1,
W1y erey Ops
* 1y 3y P
(20) ;S‘,”,,( )
Lyy ovey Boppe {ar .
1y mena S [ {1y, oy {1 %ms !
H
. o o g
w1 Be21y .oy 01 Bozy,, w12, ooy @8] |, , i
_ ) | !Zm,wl, ey oy Lo
B S -
. : Byzy, ... B,
One By -y Ops Bos,, 02y ...y Wpnttyn G BBy oy O Batime
HEw g e
and for k = 17 2, . [C,,—.V.B1w1; ey Cﬁ,,Bpmm*
Wiy eeey Oprs
sk [Py 3 Onrrk
(21) :S%tk( )
DLyg eeny mmt+k
0p By By @y, -y wp, By B1g, | ® ®
§ D, 10 D,
.: Sgnp sgnq ---------------- }S;;:,( k+1 k+n‘)
- i Lq 3 eeey Tg
».a | 0, Bs B %y y .y wp, By Big, k1 Lani

is a determinant system for 4,4, of order » = min(n* = o'} n" —s,
m* =m'+m'—s) and defeet d'+d’’, where 2’ is extended over all

X
permutations p = (py, ..., Pryne) and g = (g1, ..., grom) of the integers
1,...,k+n" and 1,..., k--m" respectively such that

P <Po<.oeo < Dry Pri1 <Priz< oo < Dhpms;
O < s <...<{(g Tror1 < Qepe < ovo < Qryme.

Let 0y be any other quasi-inverse of 4, defined as follows:

(22)

n m* v m
(23) Gy = Byt D d-oit D up b+ 3 D (i Aup)e g,
i=1 =1 i=1 =1

where B; is given by (15), o;e#(B,), ¢=1,...,% and wujeY(B,),
j=1,...,m' Thus it is easy to see that

(24) wli=0 (i=1,...,8).
~ Now let ¢, be any fixed quasi-inverse of 4,, i.e.
[ m’ it met
(28)  Co= Byt D&y + Dt 4+ D Y 4,04 ¢
i=1 j=1 i=1 j=1

where B, is given by (18"), of ¢#(B), u; ¢¥(By), i =1,...,n" and
j=1,...,m". We also assume that C%,,H. =y ¢ =1,...,8 In general,
0,0, is not a quasi-inverse of 4,4,, yet we ean take C; and C, in place
of B; and B, in (20) and (21).
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Thus bearing in mind that i, ..., 2, are orthogonal w0 all &y ...y L
and & (= .,®") are orthogonal to all 2y .eey 2y We assert that
formuls (20) rema,ms the same.

As far as (21) is concerned we notice that 0,C, =B Bl—l—K ‘where
K is a finite- dn:nenswnal operator which we may write as

m' m'
K= LBZ% Qz—!"zzq, @n+"+ v 8§ 51/_[—28’”'/-{-’& C%Bl
=1

Thus, replacing B, B, by 0,C,, writing the second factor as the product
in which there is no need to replace B, by C, and B, by O, (since its value
remains the same) and then using (11), we conclude that the term K can
be removed so that we shall come back to the same formula (21). Our
main purpose is now to express the determinant system {Sn}, for 4,4,
defined by (19), (20) and (21), in terms of the determinant systems {Dn}
and {Tn} for 4, and A4,, respectively.

Starting from (20) with C, and C, in pla.ce of B, and B,, remember-
ing that ;2 & =10y (4,5 = ,8), and by (11), we obtain

e Oy S

x [D1g < ey Onr
S
Byy ey Tone

/
’ e | Gy ey C1g
- @y, a2y, ey 0 Cotr a1y om0y 51%y,
= ) sgnpsgnq -

/ ;
P.q [ Cy2yy.nny Opgzs Ca2n

;
é-m’mqu cevy Cm’mqm,

. 1 _ i a1 a1
| mpﬁ.+lzl 3 ooy Prryp1@me Cl Olwqm'+17 ceey Cl Olmqm*

B P N D (PP P PR
Wpx 81 geeey  Wp «Zay gﬁ’ola;qm +17 Cm ‘Olwqm
. ,
mplozzl, s 0p; Caty
Cy2 Wy, 047,
N . o U2R1y - 0oy Wpg, Ua By
= 2, sgnp sgnq ' ,
.4 P1Rry oeey PrRw
r
PsB1y eory Yoy
" 1
$igyy veny é‘lmqm prn,“zl 3 eeey Oogy ) Bair
D S S X
‘o ; . 7 2
) Cm,xqu ceny Cm,wqm, Dy B1y sy Wp By
N
- i vE o " "
} & Ol‘l’qmrﬂa sl Ola’qm‘y Lwyy ey, Liws
X‘ ...........................

i e "
o { I, I3 "
Lm C’ll'gm,+1, ey Cmn(;lxqm*, Cmer Wiy vony s

& © -
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Hence, by (7),

@6) o (col, R com)
m*

Dyyoey Don

= qunp-sqnq_D”,;;, (wﬂlc’z’ coen O, Oy pay ooy s )X
9.0 Z .

X.Tn ( R R N R ,wpn.)7

18g, 113 wvns C1gpes Way ey s

where > is extended over all permutations p = (py, ..., Pne) and
%.q
q = (q1y -~y gur) TESpectively such that

@ P <Pa <. < Pw, Prrg1 < ooo < Ppss
G<@<...<gw, Oy < ooo < Qopne
This proves the theorem for n =2 =7 +n", m = m* = m +m".
Starting from (21) with C; and C, in place of B; and B, and using
formula (26), we obtain for k=1, 2, ..

_ ® w5 CoC1 %5 ooy wslczc’lmgk
sl [P1ycery Onxyk
(28) Asﬂ,;}‘,*_k = 2 FVIT1700% 3 U PP X
By eney By o < — -
"+ ke W5, 0018y 5 .oy 05, CoCy 2y,
c o, C
Spepi 02y 2oy Wy o Usy Wiy enny Ps
x X sgni-sgni Dl ( s i x
T wt,H_“ C e e e e e e e ey xtk-l—]'m‘
" lebigy? Tt PO
Xm”(@ z o Oy w ws)’
1 k+7m’+1’ L k+im’+17b Rt ¥ sy Ws

where summations ) and ) are extended over the same permutations

3,t 1,i
s,t and 1, as in (22) and (27). Let p, f be arbitrary permutations (of the
integers 1,..., k+#% 4" and 1,..., k47 respectively) of the form

P = (D1 .-y Prgign)s D1 <oor < Drgiwy Prgiwsr < - oo < Phoywtans
f = (fly ---7f7c+ﬁ')7 fi <o <fk7fk+1 <. <fk+ﬁ"

By putting ss=p, (I=1,...,k), Sy = Dy t=1,...,7),
Sktignyy = Prgiwvqr (=1, ..., n"), any permutation

(29)

(30) (819 -+ s Sk Skyigs o vs 3k+iﬁ:4:n»')

of the integers 1, ..., k7%’ appearing in (28) ean be expressed in terms
of permutations p and i, i.e.

(31) (pfp cooy Phgaqer Drisgrr oo pk+ﬁ'+n") -
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Conversely, any two permutations p and f defined by (29), uniquely
define (31) which, in turn, is nothing but the permutation (30). Similaxly,
on defining permutations q and g (of the integers 1,..., ¥+ m'4+ "
and 1, ..., k+m/, respectively) :

G = (qus ooy Popmgmr)y Q1 <-oo < Qogpmey Qopmrgr < oor < Qg yiwry

(32) Q=(917"'7gk+m'); gl<'-'gk;gk+l<--~<gk+m'g
any permutation (fy, ..., t, foiss - tk+im'+7n~) appearing in (28) can be
written as

(.‘Ialy ooy Qogy g,y Qegmeg 1y e oy Qk+m'+'ri")7
where o

O, =1 =1,..,%), Qoppy = by, 1 =1,...,m'),
Goympr = iy (0 =1, @),
Since the corresponding +1 coefficients satisty the equality
sgnssgni = sgnyp-sgnf,
sgntsgnj = sgnq-sgng,
the sum (28) can be written as
. Wiy euny Opx
(33) S::@ﬁ( b e *k)
Dyy eeny Dyr 1 1

wpflCzClwqgl,f ceey wpflC'gOlmqgk

- 2 sgnpsgng 2 SEO BENG |- - v v e e e dx
b he wpkaﬂlmq,,l, ceey wp;kCzﬁlai‘qgk

« D%’(a)pfk_l_lﬁ’a,‘.. . wpkar;,O'g, Py eeny %) v

g [ CPriwarr s ) Pogym e
X L | - ]
Olmqk+m,+1, wevy Crlbtp oy iy Wy .. L0

where the permutations p, q and f: g are the same as in (29) and (32).
The expression in thé square brackets can be written, by virtue of (8),

(24) and the definition of the permutations f,g as

Dﬂ'-i—’gc(wploi’ ooy Oz, Cay Pry sy g )
et .
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icm®
_ Furthermore, due to skew-symmetricity of Ty, the quasi-inverse
C; of 4, can be replaced by any quasi-inverse ¢, of 4,, since, by (23),
0; can be written asg

s s m’
— Rl ’ . ’ ’
Or=Cit Y w5t 3 N (owidyuws-g.

=1 i=1 j=1

Thus the sum (33) becomes

(34) Stk (wl’ o w“"‘k)

Lyy eeny d;‘m¢+k

= Y sgnp-sgnq Ttk (%102, i Omgi G Y oo v )x
pq

B e 9 Onzey o g
X Ty .
1 rs <oy 01m4ﬂ1’+77,,"+]c! Wiy ---
Finally, by putting #*+k =n, m*+k = (0" =7 +n", m* = m'+
+m', B =n—s, W = m' —s), we obtain formula (17). This completes

the proof.
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