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Hence, by (3.1),

1
slo9) = lim o+ > 5 ol > o)+ 1)

‘We summarize the obtained result in the following

THEOREM. If G is the discrete subgroup of the affine group of the real
line as defined in section 1, e a positive number and & and y the hermitian
elements in 1,(G) defined im section 3, then

ev(@+y) > v(@)+(y).
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Restrictions and extensions of Fourier multipliers*
by

MAX JODEIT, Jr. (Chicago, Il.)

Introduction. In this paper we derive certain relations between
spaces of Fourier multipliers defined on RY, Z~, TV (definitions and
notation are given in section 1). The main result, Theorem (3.7), is for
N=1:if 1 <p < oo and {m,} is a multiplier sequence of type (p, p),
then the piecewise constant function m(z) = m; (k is the greatest integer
< #+14) is a multiplier of type (p, p) for Fourier transforms. In the case
1< p< oo, the piecewise linear continuous extengion of a sequence
of type (p, p) is a function of type (p, ») (see (3.6)).

Sections 2 and 4 contain mostly known results, for which we offer
alternate proofs. With one exception the results are due to de Leeuw [3].
Theorem (4.3) is due to Igari [2]: The relations between MZ(RY) and
M3(T") are given in section 2, and restrictions to Z” and R™ of elements
of MZ(R™) are treated in section 4.

Among the applications of these results are

(i) the Mareinkiewicz multiplier theorem for the line follows from
the sequential version (section 4),

(i) a function m defined on R , continuous except at 0, and homo--
geneous of degree 0 (m(lm) = m(x) for 1 > 0) is in M’;(RN } if and only
if its restriction to Z is a sequence of type (p, p) (section 4).

Questions raised by Professor R. Coifman and Mr. David Shreve
led to this work, which has also profited by a comment of Professor
Calderén.

1. Preliminaries. We first set down for reference some conventional
notation. RY denotes real IV -space, %,y denote points of RY , with coor-
dinates @y, ..., By Yuy -y Yx. 2] = (@ +...F o) 2y = 29+ .+
—}—wNyN.ZN < RY is the set of points n with integer coordinates. If
8 = RY, acR,then al = {as: seS}, and if zeR", thenw-+ 8 = {&+s : 88}
T%, the Cartesian product of N copies of the unit circle in the complex

* During the preparation of fthis paper the author was partially supported
by the National Science Foundation under NSF grant GP 8855.
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plane, is identified with R¥[2xZ", and functions on T are identified
with periodic funetions, or with functions defined on 2x@), where
Q = {weR": |m| < 1} o T

For 1< p < oo, Lp(TN) is identified with I”(2w@Q), the spa,ee‘of
(equivalence classes of ) Lebesgue measurable functions fon 2rQ f(.)r which
f |f(z)?de is finite; ||fllzpemg denotes the p-th root of the integral.
mQ

P = IP(RY) is defined similarly; ||fll, denotes the p-th root ofN Vi .(ac)l" dx
(integrals without limits are taken over all of RY). P is IP(ZV) W._11Jh the
counting measure; |lollr = (3 ") (summation with no index is over
all neZN).

For p = co, we define L (2n@), L, I in terms of essential suprema

We next give definitions, and recall basic properties of multipliers

Definition. Let1< p, ¢ < oo. A sequence {MylnzN s & multiplier
(sequence) of type (p, q) if 3 my0,6™" is the Fourier series of a funetion
in I4(2nQ) whenever I c,6™ is that of a function in L” (2=Q). The Fourier
coefficients ¢, of f are defined by

on = @)Y [ (@) " dn.
2R

For more information see [6], Chap. IV, see. 11.

Notation. M2Z(Z") denotes the linear space of multipliers of type
(p, ). For m,m’, ete. in ME(Z™) we let K, K', ete. denote the linear
maps assigning to feI”(27Q) the function in I7(27nQ) having the Fouricr
coefficients {my,c,}, {Mncs}, ete.

Remarks. By the closed graph theorem, each of these operators
is bounded. We norm M3 (Z%) by letting [jm/|| denote the operator norm. of K.

The space of multipliers then becomes a Banach space. On applying
K to ™%, for each ne<Z”, we see that m is & bounded sequence. By the
Parseval theorem, M(Z") =1®. In cage 2 |my] < oo, we have Kf(z)
= @) [ E(z—y)f(y) dy.

It is well-known that every bounded operator of type (p, ¢) which
commirtes with translations, corresponds to some me MZ(Z"), and eon-
versely. This is true for such operators on I and ¥ as well, but identi-
fication requires the use of tempered distributions. We are interested
primarily in finding functions which are multipliers on R”, and coincide
on ZV with a given multiplier sequence. We will restrict attention to
bounded functions, and to the cases when p,q are related as follows:
1<p<g<oo with p=¢ <ocoor pand ¢ < oo(g = q/(g—1)). It may
be shown that the following definition gives ME(RY) ~ L™, ag defined
in [1].

Definition. An essentially bounded measurable function m defined
on RY is a multiplier of type (p,q) on RY if (and ouly if) there exists

e ©
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a constant ¢ such that whenever feI' ~ L, mf is the Fourier transform
(in the L%sense) of a function KfeL? such that |Kflly< Clifll,. We let
|lm]] denote the norm of the continuous extension of K (the context will
indicate to which space m belongs). Here, f(w) = f ) e*i’"”dy.

Definition. Let {k,} be a sequence in Z". The formal series
m (@) ~ Dk,e"™ iy a multiplier of type (p, q) on TV if there is a constant
C such that for every finite sequence ¢el”,

(;” ;kn‘mcmlq)”q <0 (2 wnlzr)llp‘

Notation. M%(TN); |lm]] denotes the norm of the operator.

Remarks. The converse of Holder’s inequality shows that & = {k,}
is in?® ~ T4 so the inequality of the definition holds for any cel”. If p > 2
or ¢ <2, the Hausdorff-Young theorem shows that m is a function in
I (27Q), where r = max(p, ¢'), with n-th Fourier coefficient k_,. If we
regard the trigonometric polynomial f(z) = ene™™” as the Fourier
transform of the finite sequence ¢, we see that m (z)f(z) is the Fourier trans-
form of the sequence dy = Y 'kn_mCm-

m

Properties of multipliers. For the moment we let M7 denote any
one of the spaces just defined. By use of duality, the appropriate dense
subspaces, and Parseval’s formula it can bhe shown that M; = L, and
that ME = MY, if p, ¢ < oo (we will not have occasion to use this result
when p = ¢ =1). The Riesz interpolation theorem now gives M5 = M3
= I®. (M} € L® ean be shown directly.)

‘We will repeatedly use the following properties of multipliers. Proofs
can again be made using duality, ete. '

(1.1) I mgue Mg, |lmy) <O, and my —m pointwise and boundedly
a8 k — oo, then me M and [m| < 0.
(1.2) If me M7 (and is & bounded function), and kheL! (or I'), then the

convolution m=*he M5 and [m=h| < ||m| |Al;. In the ™ case,
the convolution is taken without the factor (2z)".

The following abbreviations will be used in the proofs:

. N
(1.3) 812:90 = nsinzw,-/wﬁ, zeRY,
7=1
=4 1 1
(14) r@ =[] —2—(1—51%-1) tao(@), @B,

7=1
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where y, denotes the characteristic function of the set §. In general, 4
will denote a generic constant depending only on the space dimension.
Finally we mention certain homomorphisms of ML(RY), ML(ZY),
those of the form m — moT, where T is affine in the appropriate sense.
One uses the operator K corresponding to m if To = Az, is an
affine transformation of RBY, me ME(E™) ~ L™, to geb

lmo T = |det A7 |m].

We will use translations and dilations.
In the case of Z7, , {mn_no} has the same norm as m. We will also
nse the transformations defined for a fixed positive integer & by

M — {Mpn}nezN = M
and

m —m”, where m, =0, unless k|n;, for 1<i< N,

in which case we set my, = M-
(1.5) LeMMA. If me MI(ZY), so do m/,m", and ||m'|| < |m]| = [m"||.
Proof. For feIf (2nQ) let Sf(x) = f(km),

z+42nn
I3 )

110 =" > 1

o<k

Then 8f(#) ~ 66", Tf(z) ~ Yemé™ . Also TSf = f, |IT| =1,
and 8 is an isometry of I”(2nQ), 1 < p < oo, for

[18f@)f do = [ 1f(@)Pde-%".
2nQ 2ankQ
Now if we let K, K', K" denote the operators corresponding to the
sequences m, m’/, m'' we can apply them to trigonometric polynomials,
to obtain K’' = TKS, K" = SKT. Hence XK', K" are bounded, [m'|
< |lmfl, |m”|| < |lm]. Since now K = TK"S, we also have |m| < |m"|.

2. Periodic multipliers. In addition to de Leeuw’s result that the
periodic elements of ML(RY) can be identified with those of MZ(TY),
we prove that a multiplier on RY with support in a closed cube ean be
extended periodically to a multiplier on R”.

(2.1) TrmoREM (do Leeuw). If m is periodic on R, then me ME(RY)
if and only if m is in MB (T™) as a function on T. The norms are the same.

Proof. Suppose me M?Z(TN ), with norm A. Then in particular m
is bounded. Let

B, = @)™ [ m(a)d™ds.
2nQ

icm°®
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We know from the definition that {K,}<I”. Suppose feL”. Set
Ef() = D Knf(z—m).

Since [IfIf = [ |f(@+n)Pdw, {f(z—n)} <l for almost all z. Thus
0

KEf is defined almost everywhere as the sum of an absolutely convergent
series, and

[\Ef@)Pdw = | Z)Z’Kmf(m-n—m)[”dm
Q n m
< [ 47 ) |f(a+n)" dz = AP\l
Q

We must show that (Kf)* = mf for feL' ~ L. Let s;(z) = 2jr(2jz)
(r is the “roof” function (1.4), whieh has integral 1). Let

o) = > si(@+2mn)

denote its periodic extension. For large j,

grm(@) = [ ojly)m{e—y)dy
X 2mQ

= fs,-(y)m(w——y)dy = s;*m(z) —>mx) a.e.

The convolution o;*m is then over TV,s;*m over RY. By (1.2),
op*me ME(TY) and |jo;*m| < |hm|| = A. f

Let K; denote the operator on I” corresponding to o;*m,

K;f(z) = 26‘7‘,-1;an(99—— n),

where s;, = sin’n/2j/(n/2j)* is (2m)" times the m-th Fourier coefficient
of o; (the factor occurs because o;*m is (27)" times the usual convclution
on T"). The absolute convergence of the series for Kf(«), and the con-
vergence boundedly of s;, to 1 give that K;f — Kf pointwise.

Since feI' ~ L® and 84| < oo, Wwe can interchange integral and
sum. to obtain "

(Ef)N) = X 85 nEne ™ f(0) = (55 2m) (@)f (a).

The right-hand terms form a Cauchy sequence in LZ It follows
that K;f converges in L* and that the limit is Kf, as desired.
Next suppose m is periodie, in ME(RY), with norm B. Let

f(@) = D) emzol@—n) 9@ = D dnyo(a—n),

and
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where ¢, d are finite sequences. Then

|@m)~ [(Ep" | [Ef(@)g(w) o]

< Blflbligh = B el |diw .

a)g" (s) da| =

But

om)™ [ 05f)" o = @) 3 ons [ mio) za(o)te’® " dm

mn,n

. in? 2
— 2 omd,,(27r)‘N fm(w)ei(n_m) wy w)_/_ de = 2 omdnKn_my

m,n mQ ((w + 27y /9) mn

sin*n(w—n)
Z (n(m——n))z =1

since

n

Thus me M5(TY) and |m| <
(2.2) Remark. In [5], Tltchmarsh proved that the kernel sequence
{(n+1%)""} gives a bounded operator on I” for 1 < p < oo. The multiplier
in M7(T%) corresponding to this is a multiple of the periodic function
defined for [¢] < =,
' m(t) = ie™Pygn?.

Hence me ML(R). Now positive dilations leave this space invariant,
and since

lim m (%),
k-0

isgnf =

we apply (1.1) to get the continuity of the Hilbert transform from. that
of a discrete analog.

(2.3) THEOREM. Let m in ML(R™), p < ¢, be a bounded function with
support in {w: |o;] <} and morm O. The periodic extension of m is in
ME(T™) with norm bounded by AC.

Proof. We need to show that the restriction to Z¥ of

K@) = @a)™ [m(y)e”>ay
is a kernel of type (p, q) M
Let
Bo(@) = ) euzqlo—n), - = [fl
Then N

1Belzn = lollps  1Bflla < Ifl 0

icm°®
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If ¢ is & finite sequence, then

ffK(w y)Ec(y)dydw~EcmffK(n m-+x—y)drdy

Q4n
= 2 Omkn_m
m

A direct computation shows that

(PEEBc), =

= [mier Ty (o (19)

21Q (ylz )2
Now let geCP be 1 on 2=Q and 0 outside 3@, and put

(z/2)*

M) = 9@) s

b is then the Fourier transform of an L' function with norm A, so mh
has norm no larger than A€, with kernel K, satisfying (PK,Fec),
= ' K(n—m)0n. Thus

m

(2[ S E@w—m) cm‘q)”“g AC (_2 lcnl”)m’.

(2.4) COROLLARY. If 1 < p < oo, then the Banach algebras MH(T™)
and 7,0 ME(RY) are isomorphic.

3. Extensions from Z7.

(3.1) TEOREM. If p <

N
®” Sin? (o — ;)
2’ m,,,(!;] (e (s — ms))? )

@5 in M3 (B™), and its norm there is no larger than a constant multiple of the
norm of m.

Proof. Let K denote the operator determined by m. That is, for
feI”(27Q) and periodic,

q and me M3(Z"), then the function

Kf(z) ~ Z’mncno" z,

en = (@n) Y f flz)e ™ dw.
anQ

For neZ” let |n| = |nq|+...+ |ny), and pub

0y .2
= Emnr' 1e™®,

K, () 0<r<1.
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Then by (1.2),

([lem™ [Ka—pfwi] ) <o( [17@Fa)™,
mQ amQ

2nQ
where € is the norm of m in M4(ZY).
Let S(z) denote the periodic funetion equal to r(4w/w) (4/m)N in
27Q (cf. (1.4)). The Fourier coefficients §, of § ‘arc non-negative and
38, = (2/n)". Now

(32) 8@ E,(4z) = (3 Sa_pm,r) ™,

0 by (12)

63 ( [| [soEufe—yf o< [ifor.
27 2m 0

Define K, () on B~ to be §(x)K,(4x) in 2=Q and 0 elsewhere. For
fin I?(R") let f, be the periodic function equal to f(w+mn) in 2nQ. Note
that for zeng,

Exflatmn) = [ 8(y) K, (4y)fale—y)dy.

2}

If we now raise this to the ¢ power (in absolute value), integrate
overlqn:Q, apply (3.3) and sum over n, we get, using the sub-additivity
of ¥4,

17 f|i2q < 24P 6P [ |f () dc.
Thus Kje MERY) and has norm < 2¥74¥(. Finally (using (1.1))

sin?m(z—n)

s !

K (do) = ™, -
’ 2 " (mlz—n)?
which converges pointwise to the desired limit as r — 1.

_ The function § used in the proof of (3.1) was chosen so that the multi-
plier obtained from m would be an extension.

(3..4) _CEOROLLARY. Let 8 have support in =0 and suppose its extension
by periodicity from 2=Q has an absolutely convergent Fourier series. Then

Emné(m— n)

is in MERY) when me ME(ZY), and its norm is bounded by AM ||m)j, where
M is the sum of the moduli of the Fourier coefficients of S.

To prove this, form K, as before and appl y i y
s nd apply the preceding argument
o 8(2)K,(#) (cf. (3.2)). & e

icm°®
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(3.3) TamorEM. Let R(x) = (1—|@]) ..« (1—|zn]) in 2@ and O else-
where in RY. If me ML(ZY), where q=p, then Bm(w) = Y m,RB{z—mn)
is in M2(R"), and |Rm| < A|m]. B
Proof. Since R is a product of functions of one variable, it is enough
to give the proof for ¥ = 1. We will apply (8.4) to a dilation of the in-
verse Fourier transform of R. Consider )

. 2 sin22z
T m (2w’

8(z)

let 8 = xrgrqS in 7k+2nQ be periodie of period 2w Now

ki) .
S 1 (f) 2 sin?2z ;..
T = 5 - £
2 22)?
e T 29
(k) . .
1 2cos4s  2sindr 3 sin®2w —inz g
= — - - 6 2
win? z? - 28 2 4o
(g

if n 0. Hence it is elear that
(¢}
(A4+8) (1402

By (3.4) the norm of X'm,Si(z—mn) is O(1/14+%9)|m], so

Zmﬂé'(w—n) = ZmnR(mZ%)

is & multiplier. To complete the proof we note that the sequence m’, with
My, = My if 4|n and 0 otherwise, has the same norm as m.

(3.6) Remark. For ¥ =1, Rm is the continuous piecewise linear
extension of the sequence m to a function on R. For N >1, note that
if all the m, at the vertices of a cube with side one have the same value,
Rm(x) hag that value inside the cube.

(3.7) TEROREM. If me ML(Z"), with p<g, and 1 <p < oo (or
1< g< oo0), then

Bm(a) = Y mugela—n) |

is in ML(R™) and [|Bm|] < A'|ml||, where A’ depends on p (or g) and N.

Proof. The proof for N =1 and (3.6) are used to prove the theorem
for N >1. If me M%(Z), the sequence m' with m, = my,; if % is even,
and zero otherwise, has the same norm as m, so if m'’ is defined by
my = My~ my_1, |m”|| < 2|m|. By (3.5) the continuous piecewise linear
extension Rm', of m' is in M3 (R); Rm" (w) = m, if 2n< o< 20+1,
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By (2.4) the function y of period 2 which is 1 for 0 <@ <1 and 0 for
—l<a<0.is in MI(R)if 1 <p < oo (which we may assume without
loss). Thus f = yRm' belongs to M} (R) and |[fl| < Aplml. Now f(2) = m,
if 2n < & < 2n+1, for each n, and f(z) = 0 almost everywhere else. Since
Em(z) = f(2/2)+f(1+2/2) ae. the theorem follows.

4. Restrictions to Z°, R".

(4.1) TEEOREM (de Leeuw). If m, = limmy(n), where mye ME(RY)

k-0

< 0, then me MB(Z™) and |m|| < AC.
Proof. Let K; denote the operator corresponding to my;, and take

fl@) = 3 ,6™% to e a trigonometric polynomial. We will choose functions
gs such that

(4.2)

is continuous ot each neZ” and |my|

Foly) = sV Y g5 (y+ 27m) Ki(gaf) (y + 2mom)

is a good approximation for Y my(n)e,e™".
Put §(w) = 2~ (2n)"r(sw), s >0 (see (1.4)). Wo have

suppds = (4/)Q,
suppds +s < 2@ for s large enough,

§50) = 2m)",  foxdis (0) = (2m)"" (4/35)"
< gsle) <2Vs™7,
It follows that for s large enough
i Js(m) =0 = Fexfs(n) if m %0,
Dgs(@+2mm) =1.
Now )

2 (U-+2mm)

Foly) =V Y goly+2mm) @2m)~ [ iy () (gf)" (@)
= SNZ one™? 2 @)™ [ go(y + 2mm) =T a0 (01 ) G, () das

— oV A
§ Z Cn e ”f(27c 2J\Tzl’g‘.,(m ) 6" ™ my, (w4 1) G () dov,
by the Poisson sum.matmn formula. If s is la.rge, then

> Gelm—2)6"™j,(@) = g,(—2)g,(a),
80

Fo(y) = (4/3)N2mk(n )6n €Y L

—|—sN2 c,,em'”f [ (3 + 1) — mae (1) ] (27) = G, () s

icm®
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The second term is bounded by
(4/3)7 D loal sup |ms () —mie(m)]
Te(4/5)Q f
which may be made small by taking s large enough: Hence
( [] 3 mtmens™ [ ay)"” <o)+ @)™ ( [ 1F.) a)".
2R 2nQ

Set

r\ 1/

Ars = sUD (Z gsly+2mm)’) !
We use Holder's inequality in (4.2) to get
OAp sAps”f”Lp(er)

But g,(0)” < go(0)" g5 (0) < (2757 0u(0), 80 Apody, < (205",
and it follows that the norm of {my(#n)} is dominated by ( /9) c.

COROLLARY. The Banach algebra ME(Z™) is isomorphic to a subspace
of MH(RY), 1< p < oo.

Remark. The proof of (4.1) shows that M”(RN) ~ O is trivial if
q4<p.

(4.3) TeEOREM (Igari). If m is bounded on RY, continuous almost
everywhere, and the sequences

my = {m(kn)}
q) with
lim ing BV~ YD)y | < €
B0

WFellroemg) <

are in ML(Z™) (p <

then me ML(RY) and |lm] < AO
sin?n(z/k—mn)

Proof. Let
mif@) = ' m(kn) =~ e

By (3.1) [mi] < AC for a sequence of % tending to 0, and iy ()
converges to m(z) if » is a poinb of continuity of m.

This theorem may be used to derive the Marcinkiewicz raultiplier
theorem for functions defined on R, from the corresponding themem for
sequences [4, 6]. For the sum of lm(‘)" n+1))— m©@'n)| over 2°<n
< 91 is bounded by the variation of m on (277%%, 2~7+F+1),

(4.4) TaEOREM (de Leeuw). If me M3 (RN ) is regulated, the restriction
Rym of m fo B is in M”(RM) and |Bym|| < A |jml.

Proof. This is a consequence of (4.1) and of

(4.5) LEvMA. If me ME(ZY), the restriction Rym of m to Z™ is in
MHZ™) and, ||Byrm] < |mi).

Studia Mathematica XXXIV.2 15
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To use this we let

mo(@) = o [ m(y)dy;
v jz-vi<e

¢ is chosen so that m,(z) — m(z) for each . Then |jm| < |lml|, so by (4.1)
and the lemma, the sequences {m, (kn)}n.z3f have norms in ME(Z") bounded
by Ax|ml. The continuity of m, and (4.3) yield [|Rum| < Ay Ax|m|
and the theorem.

To prove the lemmsa we let K be the operator corresponding to m,
Bf (21, ..., ay) = f(@1, ..., Bx_1), Where feIP(TV') and

VPf(wl,...,wN~1)=(2-r:)“1 [f@g, ey ay_a,)dt ae.

for feIP(TV). B has norm (2=)/?; an application of Jensen's inequality
ghows that P has norm (2x)~Y”. The composite PKE is the operator
corresponding to Ry_,m, and so on.
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