A. Hulanicki

Hence, by (3.1),

$$v(x+y) = \lim_{k \to \infty} \|(x+y)^{2k}\|^{1/2k} \geqslant \frac{1}{2} \|x\| > \frac{1}{\varepsilon} \left(v(x) + v(y)\right).$$

We summarize the obtained result in the following

THEOREM. If G is the discrete subgroup of the affine group of the real line as defined in section 1, ε a positive number and x and y the hermitian elements in $l_1(G)$ defined in section 3, then

$$\varepsilon v(x+y) > v(x) + v(y)$$
.

References

- J. W. Jenkins, An amenable discrete group with a non-symmetric group algebra, Notices of the Amer. Math. Soc. 15 (1968), p. 922.
- [2] C. E. Rickart, General theory of Banach algebras, 1960.
- [3] A. Zygmund, Trigonometric series, vol. I, Cambridge 1959.

INSTYTUT MATEMATYCZNY POLSKIEJ AKADEMII NAUK INSTITUTE OF MATHEMATICS OF THE POLISH ACADEMY OF SCIENCES

Reçu par la Rédaction le 4, 3, 1969

Restrictions and extensions of Fourier multipliers*

b

MAX JODEIT, Jr. (Chicago, III.)

Introduction. In this paper we derive certain relations between spaces of Fourier multipliers defined on $\mathbb{R}^N, \mathbb{Z}^N, \mathbb{T}^N$ (definitions and notation are given in section 1). The main result, Theorem (3.7), is for N=1: if $1 and <math>\{m_n\}$ is a multiplier sequence of type (p,p), then the piecewise constant function $m(x)=m_k$ (k is the greatest integer $(x+\frac{1}{2})$) is a multiplier of type (p,p) for Fourier transforms. In the case $1 \le p \le \infty$, the piecewise linear continuous extension of a sequence of type (p,p) is a function of type (p,p) (see (3.6)).

Sections 2 and 4 contain mostly known results, for which we offer alternate proofs. With one exception the results are due to de Leeuw [3]. Theorem (4.3) is due to Igari [2]. The relations between $M_p^p(\mathbb{R}^N)$ and $M_p^p(\mathbb{T}^N)$ are given in section 2, and restrictions to \mathbb{Z}^N and \mathbb{R}^M of elements of $M_p^p(\mathbb{R}^N)$ are treated in section 4.

Among the applications of these results are

- (i) the Marcinkiewicz multiplier theorem for the line follows from the sequential version (section 4),
- (ii) a function m defined on R^N , continuous except at 0, and homogeneous of degree 0 $(m(\lambda x) = m(x) \text{ for } \lambda > 0)$ is in $M_p^p(R^N)$ if and only if its restriction to Z^N is a sequence of type (p, p) (section 4).

Questions raised by Professor R. Coifman and Mr. David Shreve led to this work, which has also profited by a comment of Professor Calderón.

1. Preliminaries. We first set down for reference some conventional notation. R^N denotes real N-space, x, y denote points of R^N , with coordinates $x_1, \ldots, x_N, y_1, \ldots, y_N$. $|x| = (x_1^2 + \ldots + x_N^2)^{1/2}, x \cdot y = x_1 y_1 + \ldots + x_N y_N$. $Z^N \subseteq R^N$ is the set of points n with integer coordinates. If $S \subset R^N$, $a \in R$, then $aS = \{as : s \in S\}$, and if $x \in R^N$, then $x + S = \{x + s : s \in S\}$. T^N , the Cartesian product of N copies of the unit circle in the complex

^{*} During the preparation of this paper the author was partially supported by the National Science Foundation under NSF grant GP 8855.

plane, is identified with $R^N/2\pi Z^N$, and functions on T^N are identified with periodic functions, or with functions defined on $2\pi Q$, where $Q = \{x \in R^N : |x_i| < \frac{1}{2}\}.$

For $1\leqslant p<\infty$, $L^p(T^N)$ is identified with $L^p(2\pi Q)$, the space of (equivalence classes of) Lebesgue measurable functions f on $2\pi Q$ for which $\int\limits_{2\pi Q}|f(x)|^pdx$ is finite; $\|f\|_{L^p(2\pi Q)}$ denotes the p-th root of the integral. $L^p\equiv L^p(R^N)$ is defined similarly; $\|f\|_p$ denotes the p-th root of $\int\limits_{2\pi Q}|f(x)|^pdx$ (integrals without limits are taken over all of R^N). l^p is $L^p(Z^N)$ with the counting measure; $\|e\|_{l^p}=(\sum |e_n|^p)^{1/p}$ (summation with no index is over all $n\in Z^N$).

For $p = \infty$, we define $L^{\infty}(2\pi Q)$, L^{∞} , l^{∞} in terms of essential suprema We next give definitions, and recall basic properties of multipliers

Definition. Let $1 \leq p, q \leq \infty$. A sequence $\{m_n\}_{n \in \mathbb{Z}^N}$ is a multiplier (sequence) of type (p,q) if $\sum m_n c_n e^{in \cdot x}$ is the Fourier series of a function in $L^q(2\pi Q)$ whenever $\sum c_n e^{in \cdot x}$ is that of a function in $L^p(2\pi Q)$. The Fourier coefficients c_n of f are defined by

$$c_n = (2\pi)^{-N} \int_{2\pi Q} f(x) e^{-in \cdot x} dx.$$

For more information see [6], Chap. IV, sec. 11.

Notation. $M_p^q(Z^N)$ denotes the linear space of multipliers of type (p,q). For m,m', etc. in $M_p^q(Z^N)$ we let K,K', etc. denote the linear maps assigning to $f \in L^p(2\pi Q)$ the function in $L^q(2\pi Q)$ having the Fourier coefficients $\{m_n c_n\}, \{m'_n c_n\}$, etc.

Remarks. By the closed graph theorem, each of these operators is bounded. We norm $M_p^q(Z^N)$ by letting ||m|| denote the operator norm of K.

The space of multipliers then becomes a Banach space. On applying K to $e^{in \cdot k}$, for each $n \cdot \epsilon Z^N$, we see that m is a bounded sequence. By the Parseval theorem, $M_q^a(Z^N) = l^\infty$. In case $\sum |m_n| < \infty$, we have $Kf(x) = (2\pi)^{-N} \int K(x-y)f(y) dy$.

It is well-known that every bounded operator of type (p,q) which commutes with translations, corresponds to some $m \in M_p^q(Z^N)$, and conversely. This is true for such operators on L^p and l^p as well, but identification requires the use of tempered distributions. We are interested primarily in finding functions which are multipliers on R^N , and coincide on Z^N with a given multiplier sequence. We will restrict attention to bounded functions, and to the cases when p,q are related as follows: $1 \le p \le q \le \infty$ with $p = q < \infty$ or p and $q' < \infty$ (q' = q/(q-1)). It may be shown that the following definition gives $M_p^q(R^N) \cap L^\infty$, as defined in [1].

Definition. An essentially bounded measurable function m defined on \mathbb{R}^N is a multiplier of type (p,q) on \mathbb{R}^N if (and only if) there exists

Definition. Let $\{k_n\}$ be a sequence in Z^N . The formal series $m(x) \sim \sum k_n e^{-in \cdot x}$ is a multiplier of type (p,q) on T^N if there is a constant C such that for every finite sequence $c \in l^p$,

$$\left(\sum_{n} \left| \sum_{m} k_{n-m} c_{m} \right|^{q} \right)^{1/q} \leqslant C \left(\sum_{n} \left| c_{n} \right|^{p} \right)^{1/p}.$$

Notation. $M_n^q(T^N)$; ||m|| denotes the norm of the operator.

Remarks. The converse of Hölder's inequality shows that $k=\{k_n\}$ is in $l^{p'} \cap l^q$, so the inequality of the definition holds for any $c \in l^p$. If $p \geqslant 2$ or $q \leqslant 2$, the Hausdorff-Young theorem shows that m is a function in $L^r(2\pi Q)$, where $r=\max(p,q')$, with n-th Fourier coefficient k_{-n} . If we regard the trigonometric polynomial $f(x)=\sum c_m e^{-im\cdot x}$ as the Fourier transform of the finite sequence c, we see that m(x)f(x) is the Fourier transform of the sequence $d_n=\sum_m k_{n-m}c_m$.

Properties of multipliers. For the moment we let M_p^q denote any one of the spaces just defined. By use of duality, the appropriate dense subspaces, and Parseval's formula it can be shown that $M_2^p = L^\infty$, and that $M_p^q = M_{p'}^{p'}$, if $p, q' < \infty$ (we will not have occasion to use this result when p = q = 1). The Riesz interpolation theorem now gives $M_p^p \subseteq M_2^p = L^\infty$. $(M_1^1 \subseteq L^\infty$ can be shown directly.)

We will repeatedly use the following properties of multipliers. Proofs can again be made using duality, etc.

- (1.1) If $m_k \in M_q^q$, $||m_k|| \leq C$, and $m_k \to m$ pointwise and boundedly as $k \to \infty$, then $m \in M_q^q$ and $||m|| \leq C$.
- (1.2) If $m \in M_p^q$ (and is a bounded function), and $h \in L^1$ (or l^1), then the convolution $m * h \in M_p^q$ and $||m * h|| \le ||m|| ||h||_1$. In the T^N case, the convolution is taken without the factor $(2\pi)^{-N}$.

The following abbreviations will be used in the proofs:

(1.3)
$$\frac{\sin^2 x}{x^2} = \prod_{j=1}^N \sin^2 x_j / x_j^2, \quad x \in \mathbb{R}^N,$$

(1.4)
$$r(x) = \prod_{j=1}^{N} \frac{1}{2} \left(1 - \frac{1}{2} |x_j| \right) \chi_{4Q}(x), \quad x \in \mathbb{R}^N,$$

where χ_s denotes the characteristic function of the set S. In general, A will denote a generic constant depending only on the space dimension.

Finally we mention certain homomorphisms of $M_p^q(\mathbb{R}^N)$, $M_p^q(\mathbb{Z}^N)$, those of the form $m \to m \circ T$, where T is affine in the appropriate sense.

One uses the operator K corresponding to m if $Tx = Ax + x_0$ is an affine transformation of R^N , $m \in M_p^q(R^N) \cap L^\infty$, to get

$$||m \circ T|| = |\det A|^{1/q - 1/p} ||m||.$$

We will use translations and dilations.

In the case of Z^N , $\{m_{n-n_0}\}$ has the same norm as m. We will also use the transformations defined for a fixed positive integer k by

$$m \rightarrow \{m_{kn}\}_{n \in \mathbb{Z}} N = m$$

and

$$m \to m''$$
, where $m''_n = 0$, unless $k | n_i$, for $1 \leqslant i \leqslant N$,

in which case we set $m''_n = m_{(1/k)n}$.

(1.5) LEMMA. If $m \in M_p^q(Z^N)$, so do m', m'', and $||m'|| \leq ||m|| = ||m''||$. Proof. For $f \in L^p(2\pi Q)$ let Sf(x) = f(kx),

$$Tf(x) = k^{-N} \sum_{0 \le n, < k} f\left(\frac{x + 2\pi n}{k}\right).$$

Then $Sf(x) \sim \sum c_n e^{ikn \cdot x}$, $Tf(x) \sim \sum c_{kn} e^{in \cdot x}$. Also TSf = f, ||T|| = 1, and S is an isometry of $L^p(2\pi Q)$, $1 \leq p \leq \infty$, for

$$\int_{2\pi Q} |Sf(x)|^p \ dx = \int_{2\pi kQ} |f(x)|^p dx \cdot k^{-N}.$$

Now if we let K, K', K'' denote the operators corresponding to the sequences m, m', m'' we can apply them to trigonometric polynomials, to obtain K' = TKS, K'' = SKT. Hence K', K'' are bounded, $||m'|| \le ||m||$, $||m''|| \le ||m||$. Since now K = TK''S, we also have $||m|| \le ||m''||$.

- **2. Periodic multipliers.** In addition to de Leeuw's result that the periodic elements of $M_p^n(\mathbb{R}^N)$ can be identified with those of $M_p^n(\mathbb{T}^N)$, we prove that a multiplier on \mathbb{R}^N with support in a closed cube can be extended periodically to a multiplier on \mathbb{R}^N .
- (2.1) THEOREM (de Leeuw). If m is periodic on \mathbb{R}^N , then $m \in M_p^p(\mathbb{R}^N)$ if and only if m is in $M_p^p(\mathbb{T}^N)$ as a function on \mathbb{T}^N . The norms are the same.

Proof. Suppose $m \in M_p^p(T^N)$, with norm A. Then in particular m is bounded. Let

$$K_n = (2\pi)^{-N} \int_{2\pi Q} m(x) e^{in \cdot x} dx.$$

We know from the definition that $\{K_n\} \in \mathcal{I}^{p'}$. Suppose $f \in \mathcal{L}^p$. Set

$$Kf(x) = \sum_{m} K_m f(x-m)$$
.

Since $||f||_p^p = \int_Q \sum |f(x+n)|^p dx$, $\{f(x-n)\} \in l^p$ for almost all x. Thus Kf is defined almost everywhere as the sum of an absolutely convergent series, and

$$\int |Kf(x)|^p dx = \int_Q \sum_n \Big| \sum_m K_m f(x+n-m) \Big|^p dx$$

$$\leq \int_Q A^p \sum_n |f(x+n)|^p dx = A^p ||f||_p^p.$$

We must show that $(Kf)^{\wedge} = m\hat{f}$ for $f \in L^1 \cap L^{\infty}$. Let $s_j(x) = 2jr(2jx)$ (r is the "roof" function (1.4), which has integral 1). Let

$$\sigma_j(x) = \sum_n s_j(x+2\pi n)$$

denote its periodic extension. For large j,

$$\sigma_j * m(x) = \int\limits_{2\pi Q} \sigma_j(y) m(x-y) dy$$

$$= \int s_j(y) m(x-y) dy = s_j * m(x) \to m(x) \quad \text{a.c.}$$

The convolution $\sigma_j * m$ is then over T^N , $s_j * m$ over R^N . By (1.2), $\sigma_i * m \in M_n^p(T^N)$ and $\|\sigma_i * m\| \leq \|m\| = A$.

Let K_i denote the operator on L^p corresponding to $\sigma_i * m$,

$$K_j f(x) = \sum_n s_{j,-n} K_n f(x-n),$$

where $s_{j,n} = \sin^2 n/2j/(n/2j)^2$ is $(2\pi)^N$ times the *n*-th Fourier coefficient of σ_j (the factor occurs because $\sigma_j * m$ is $(2\pi)^N$ times the usual convolution on T^N). The absolute convergence of the series for Kf(x), and the convergence boundedly of $s_{j,n}$ to 1 give that $K_j f \to Kf$ pointwise.

Since $f \in L^1 \cap L^{\infty}$ and $\sum_n |s_{j,n}| < \infty$, we can interchange integral and sum to obtain

$$(K_{i}f)^{\wedge}(x) = \sum_{n} s_{j,-n} K_{n} e^{-in \cdot x} \hat{f}(x) = (s_{j} * m)(x) \hat{f}(x).$$

The right-hand terms form a Cauchy sequence in L^2 . It follows that $K_i f$ converges in L^2 and that the limit is K f, as desired.

Next suppose m is periodic, in $M_p^p(\mathbb{R}^N)$, with norm B. Let

$$f(x) = \sum c_m \chi_Q(x-n)$$
 and $g(x) = \sum d_n \chi_Q(x-n)$,

where c, d are finite sequences. Then

$$\left| (2\pi)^{-N} \int (Kf)^{\wedge}(x) \, \overline{g^{\wedge}}(x) \, dx \right| = \left| \int Kf(x) \, \overline{g}(x) \, dx \right|$$

$$\leqslant B \, ||f||_{n} \, ||g||_{n'} = B \, ||e||_{l^{p}} \, ||d||_{l^{p'}}.$$

But

$$(2\pi)^{-N} \int (K_j f) \, \hat{\bar{g}} dx = (2\pi)^{-N} \sum_{m,n} c_m d_n \int m(x) |\chi_Q(x)|^2 e^{i(n-m) \cdot x} dx$$

$$= \sum_{m,n} c_m d_n (2\pi)^{-N} \int_{2\pi Q} m(x) e^{i(n-m) \cdot x} \sum_{\nu} \frac{\sin^2(x+2\pi\nu)/2}{((x+2\pi\nu)/2)^2} dx = \sum_{m,n} c_m d_n K_{n-m},$$

since

$$\sum_{n} \frac{\sin^2 \pi (x-n)}{(\pi (x-n))^2} \equiv 1.$$

Thus $m \in M_p^p(T^N)$ and $||m|| \leq B$.

(2.2) Remark. In [5], Titchmarsh proved that the kernel sequence $\{(n+\frac{1}{2})^{-1}\}$ gives a bounded operator on l^p for $1 . The multiplier in <math>M_p^p(T^1)$ corresponding to this is a multiple of the periodic function defined for $|t| < \pi$,

$$m(t) = ie^{it/2} \operatorname{sgn} t.$$

Hence $m \in M_p^p(R)$. Now positive dilations leave this space invariant, and since

$$i\operatorname{sgn} t = \lim_{k \to 0} m(kt),$$

we apply (1.1) to get the continuity of the Hilbert transform from that of a discrete analog.

(2.3) THEOREM. Let m in $M_p^q(\mathbb{R}^N)$, $p \leq q$, be a bounded function with support in $\{x: |x_i| \leq \pi\}$ and norm C. The periodic extension of m is in $M_p^q(\mathbb{T}^N)$ with norm bounded by AC.

Proof. We need to show that the restriction to Z^N of

$$K(x) = (2\pi)^{-N} \int_{2\pi O} m(y) e^{iy \cdot x} dy$$

is a kernel of type (p, q).

Let

$$Ec(x) = \sum c_n \chi_Q(x-n), \quad (Pf)_n = \int_{Q+n} f(x) dx.$$

Then

$$\left\| Ec \right\|_{L^p} = \left\| c \right\|_{l^p}, \quad \left\| Pf \right\|_{l^q} \leqslant \left\| f \right\|_{L^q}.$$

If c is a finite sequence, then

$$(PKEc)_n = \int\limits_{Q+n} \int\limits_{Q+n} K(x-y) Ec(y) dy dx = \sum\limits_{m} c_m \int\limits_{Q} \int\limits_{Q} K(n-m+x-y) dx dy$$

 $= \sum\limits_{m} c_m k_{n-m}.$

A direct computation shows that

$$k_n = (2\pi)^{-N} \int_{2\pi Q} m(y) e^{in \cdot y} \frac{\sin^2 y/2}{(y/2)^2} dy$$
 (cf. (1.3)).

Now let $g \in C_0^{\infty}$ be 1 on $2\pi Q$ and 0 outside $3\pi Q$, and put

$$h(x) = g(x) \frac{(x/2)^2}{\sin^2 x/2}$$
.

h is then the Fourier transform of an L^1 function with norm A, so mh has norm no larger than AC, with kernel K_1 satisfying $(PK_1Ec)_n = \sum K(n-m)c_m$. Thus

$$\left(\sum_{n} \Big| \sum_{m} K(n-m) c_{m} \Big|^{q} \right)^{1/q} \leqslant AC \left(\sum_{n} |c_{n}|^{p} \right)^{1/p}.$$

(2.4) COROLLARY. If $1 , then the Banach algebras <math>M_p^p(T^N)$ and $\gamma_{\sigma_{TO}} M_p^n(R^N)$ are isomorphic.

3. Extensions from Z^N .

(3.1) THEOREM. If $p \leq q$ and $m \in M_n^q(Z^N)$, then the function

$$\sum m_n \left(\prod_{i=1}^N \frac{\sin^2 \pi (x_i - n_i)}{\left(\pi (x_i - n_i)\right)^2} \right)$$

is in $M_p^q(\mathbb{R}^N)$, and its norm there is no larger than a constant multiple of the norm of m.

Proof. Let K denote the operator determined by m. That is, for $f \in L^p(2\pi Q)$ and periodic,

$$Kf(x) \sim \sum_{n} m_n e_n e^{n \cdot x},$$

$$c_n = (2\pi)^{-N} \int_{2\pi Q} f(x) e^{-in \cdot x} dx.$$

For $n \in \mathbb{Z}^N$ let $|n| = |n_1| + \ldots + |n_N|$, and put

$$K_r(x) = \sum m_n r^{|n|} e^{in \cdot x}, \quad 0 < r < 1.$$

Then by (1.2),

$$\Big(\int\limits_{2\pi Q}\Big|\left(2\pi\right)^{-N}\int\limits_{2\pi Q}K_r(x-y)f(y)\,dy\Big|^q\,dx\Big)^{1/q}\leqslant C\Big(\int\limits_{2\pi Q}|f(x)|^p\,dx\Big)^{1/p},$$

where C is the norm of m in $M_p^q(Z^N)$.

Let S(x) denote the periodic function equal to $r(4x/\pi)(4/\pi)^N$ in $2\pi Q$ (cf. (1.4)). The Fourier coefficients S_n of S are non-negative and $\sum S_n = (2/\pi)^N$. Now

(3.2)
$$S(x)K_r(4x) = \sum_n \left(\sum_r S_{n-4r} m_r r^{|r|} \right) e^{in \cdot x},$$

so by (1.2)

$$(3.3) \qquad \Big(\int\limits_{2\pi Q}\Big|\int\limits_{2\pi Q} S(y)\,K_r(4y)f(x-y)\,dy\Big|^q\,dx\Big)^{p/q} \leqslant 4^{Np}\,C^p\int\limits_{2\pi Q}|f(x)|^pdx\,.$$

Define $K'_r(x)$ on \mathbb{R}^N to be $S(x)K_r(4x)$ in $2\pi Q$ and 0 elsewhere. For f in $L^p(\mathbb{R}^N)$ let f_n be the periodic function equal to $f(x+\pi n)$ in $2\pi Q$. Note that for $x \in \pi Q$,

$$K'_r * f(x + \pi n) = \int_{2\pi Q} S(y) K_r(4y) f_n(x - y) dy.$$

If we now raise this to the q power (in absolute value), integrate over πQ , apply (3.3) and sum over n, we get, using the sub-additivity of $t^{p/q}$,

$$||K'_{r}*f||_{Lq}^{p} \leq 2^{N} 4^{Np} C^{p} \int |f(x)|^{p} dx.$$

Thus $\hat{K}'_{r} \in M_p^q(\mathbb{R}^N)$ and has norm $\leq 2^{N/p} 4^N C$. Finally (using (1.1))

$$\hat{K}'_r(4x) = \sum_n r^{|n|} m_n \frac{\sin^2 \pi (x-n)}{(\pi (x-n))^2},$$

which converges pointwise to the desired limit as $r \to 1$.

The function S used in the proof of (3.1) was chosen so that the multiplier obtained from m would be an extension.

(3.4) COROLLARY. Let S have support in $\pi \bar{Q}$ and suppose its extension by periodicity from $2\pi Q$ has an absolutely convergent Fourier series. Then

$$\sum_{n} m_{n} \hat{S}(x-n)$$

is in $M_p^q(\mathbb{R}^N)$ when $m \in M_p^q(\mathbb{Z}^N)$, and its norm is bounded by AM ||m||, where M is the sum of the moduli of the Fourier coefficients of S.

To prove this, form K_r as before and apply the preceding argument to $S(x)K_r(x)$ (cf. (3.2)).

(3.5) THEOREM. Let $R(x) = (1 - |x_1|) \dots (1 - |x_N|)$ in 2Q and 0 elsewhere in \mathbb{R}^N . If $m \in M_p^q(\mathbb{Z}^N)$, where $q \ge p$, then $Rm(x) = \sum_n m_n R(x-n)$ is in $M_q^q(\mathbb{R}^N)$, and $||Rm|| \le A ||m||$.

Proof. Since R is a product of functions of one variable, it is enough to give the proof for N=1. We will apply (3.4) to a dilation of the inverse Fourier transform of R. Consider

$$S(x) = \frac{2}{\pi} \frac{\sin^2 2x}{(2x)^2},$$

let $S_k = \chi_{\pi(k+Q)} S$ in $\pi k + 2\pi Q$ be periodic of period 2π . Now

$$\begin{split} S_{kn} &= \frac{1}{2\pi} \int\limits_{(k-\frac{1}{2})\pi}^{(k+\frac{1}{2})\pi} \frac{2}{\pi} \frac{\sin^2 2x}{(2x)^2} e^{-inx} dx \\ &= -\frac{1}{\pi^2 n^2} \int\limits_{(k-\frac{1}{2})\pi}^{(k+\frac{1}{2})\pi} \left(\frac{2\cos 4x}{x^2} - \frac{2\sin 4x}{x^3} + \frac{3}{2} \frac{\sin^2 2x}{x^4} \right) e^{-inx} dx \end{split}$$

if $n \neq 0$. Hence it is clear that

$$|S_{kn}| \leqslant rac{C}{(1+k^2)(1+n^2)}$$
.

By (3.4) the norm of $\sum_{n} m_n \hat{S}_k(x-n)$ is $O(1/1+k^2)||m||$, so

$$\sum m_n \hat{S}(x-n) = \sum m_n R\left(\frac{x-n}{4}\right)$$

is a multiplier. To complete the proof we note that the sequence m', with $m'_n = m_{n/4}$ if 4|n and 0 otherwise, has the same norm as m.

(3.6) Remark. For N=1, Rm is the continuous piecewise linear extension of the sequence m to a function on R. For N>1, note that if all the m_n at the vertices of a cube with side one have the same value, Rm(x) has that value inside the cube.

(3.7) THEOREM. If $m \in M_p^q(Z^N)$, with $p \leqslant q$, and $1 (or <math>1 < q < \infty$), then

$$Em(x) = \sum m_n \chi_Q(x-n)$$

is in $M_n^q(\mathbb{R}^N)$ and $||Em|| \leq A' ||m||$, where A' depends on p (or q) and N.

Proof. The proof for N=1 and (3.6) are used to prove the theorem for N>1. If $m \in M_{\mathcal{D}}^{n}(Z)$, the sequence m' with $m'_{n}=m_{n/2}$ if n is even, and zero otherwise, has the same norm as m, so if m'' is defined by $m''_{n}=m'_{n}+m'_{n-1}$, $||m''|| \leq 2||m||$. By (3.5) the continuous piecewise linear extension Rm'', of m'' is in $M_{\mathcal{D}}^{n}(R)$; $Rm''(x)=m_{n}$ if $2n \leq x \leq 2n+1$.

By (2.4) the function χ of period 2 which is 1 for 0 < x < 1 and 0 for -1 < x < 0 is in $M_p^p(R)$ if $1 (which we may assume without loss). Thus <math>f = \chi Rm''$ belongs to $M_p^p(R)$ and $||f|| \le A_p ||m||$. Now $f(x) = m_n$ if 2n < x < 2n + 1, for each n, and f(x) = 0 almost everywhere else. Since Em(x) = f(x/2) + f(1+x/2) a.e. the theorem follows.

M. Jodeit

4. Restrictions to Z^N . R^M .

(4.1) THEOREM (de Leeuw). If $m_n = \lim_{k \to 0} m_k(n)$, where $m_k \in M_p^p(\mathbb{R}^N)$ is continuous at each $n \in \mathbb{Z}^N$ and $||m_k|| \leq C$, then $m \in M_p^p(\mathbb{Z}^N)$ and $||m|| \leq AC$.

Proof. Let K_k denote the operator corresponding to m_k , and take $f(x) = \sum c_n e^{in \cdot x}$ to be a trigonometric polynomial. We will choose functions q_* such that

(4.2)
$$F_s(y) = s^N \sum_{s} g_s(y + 2\pi m) K_k(g_s f)(y + 2\pi m)$$

is a good approximation for $\sum m_k(n) c_n e^{in \cdot y}$.

Put $\hat{g}_s(x) = 2^N (2\pi)^N r(sx)$, s > 0 (see (1.4)). We have

$$\operatorname{supp} \hat{g}_s = (4/s)\,\overline{Q},$$

 $\operatorname{supp} \hat{g}_s * \hat{g}_s \subseteq 2\overline{Q} \text{ for } s \text{ large enough},$

$$\hat{g}_s(0) = (2\pi)^N, \quad \hat{g}_s * \hat{g}_s(0) = (2\pi)^{2N} (4/3s)^N,$$

$$0 \leqslant g_s(x) \leqslant 2^N s^{-N}$$
.

It follows that for s large enough

$$\hat{q}_s(n) = 0 = \hat{q}_s * \hat{q}_s(n) \quad \text{if } n \neq 0.$$

and

$$\sum_{n}g_{s}(x+2\pi n)\equiv 1.$$

Now

$$\begin{split} F_s(y) &= s^N \sum_m g_s(y + 2\pi m) (2\pi)^{-N} \int m_k(x) (g_s f)^{\wedge}(x) \, e^{ix \cdot (y + 2\pi m)} \, dx \\ &= s^N \sum_n c_n e^{in \cdot y} \sum_m (2\pi)^{-N} \int g_s(y + 2\pi m) \, e^{ix \cdot (y + 2\pi m)} m_k(x + n) \, \hat{g}_s(x) \, dx \\ &= s^N \sum_n c_n e^{in \cdot y} \int (2\pi)^{-2N} \sum_m \hat{g}_s(m - x) \, e^{iy \cdot m} m_k(x + n) \, \hat{g}_s(x) \, dx, \end{split}$$

by the Poisson summation formula. If s is large, then

$$\sum \hat{g}_s(m-x)e^{iy\cdot m}\hat{g}_s(x) = g_s(-x)\hat{g}_s(x),$$

80

$$egin{split} F_s(y) &= (4/3)^N \sum m_k(n) c_n e^{in\cdot y} + \ &+ s^N \sum c_n e^{in\cdot y} \int [m_k(x+n) - m_k(n)] (2\pi)^{-2N} \hat{g}_s(x)^2 \, dx \, . \end{split}$$

The second term is bounded by

$$(4/3)^N \sum |c_n| \sup_{x \in (4/8)Q} |m_k(x+n) - m_k(n)|$$

which may be made small by taking s large enough: Hence

$$\left(\int\limits_{2\pi Q} \left| \sum m_k(n) \, c_n \, e^{in \cdot y} \, \right|^p \, dy \right)^{1/p} \leqslant o(1) + (3/4)^N s^N \left(\int\limits_{2\pi Q} \left| F_s(y) \right|^p dy \right)^{1/p}.$$

Set

$$A_{r,s} = \sup_{y} \left(\sum g_s (y + 2\pi m)^r \right)^{1/r}.$$

We use Hölder's inequality in (4.2) to get

$$||F_s||_{L^p(2\pi Q)} \leqslant CA_{p',s}A_{p,s}||f||_{L^p(2\pi Q)}$$

But $g_s(x)^p \leqslant g_s(x)^{p-1}g_s(x) \leqslant (2^N s^{-N})^{p-1}g_s(x)$, so $A_{p',s}A_{p,s} \leqslant (2/s)^N$, and it follows that the norm of $\{m_k(n)\}$ is dominated by $(3/2)^N C$.

COROLLARY. The Banach algebra $M_p^p(Z^N)$ is isomorphic to a subspace of $M_p^p(R^N)$, $1 \le p < \infty$.

Remark. The proof of (4.1) shows that $M_p^q(\mathbb{R}^N) \cap C$ is trivial if q < p.

(4.3) Theorem (Igari). If m is bounded on \mathbb{R}^N , continuous almost everywhere, and the sequences

$$m_k = \{m(kn)\}$$

are in $M_p^q(Z^N)$ $(p \leqslant q)$ with

$$\liminf_{k\to 0} k^{N(1/p-1/q)} ||m_k|| \leqslant C,$$

then $m \in M_p^q(\mathbb{R}^N)$ and $||m|| \leq AC$.

Proof. Let

$$m_k'(x) = \sum m(kn) rac{\sin^2\pi (x/k-n)}{(\pi (x/k-n))^2}$$
 .

By (3.1) $||m'_k|| \leq AC$ for a sequence of k tending to 0, and $m'_k(x)$ converges to m(x) if x is a point of continuity of m.

This theorem may be used to derive the Marcinkiewicz multiplier theorem for functions defined on R, from the corresponding theorem for sequences [4,6]. For the sum of $|m(2^{-j}(n+1))-m(2^{-j}n)|$ over $2^k \le n < 2^{k+1}$ is bounded by the variation of m on $(2^{-j+k}, 2^{-j+k+1})$.

(4.4) THEOREM (de Leeuw). If $m \in M_p^p(\mathbb{R}^N)$ is regulated, the restriction $R_M m$ of m to R^M is in $M_p^p(\mathbb{R}^M)$ and $||R_M m|| \leq A ||m||$.

Proof. This is a consequence of (4.1) and of

(4.5) LEMMA. If $m \in M_p^p(Z^N)$, the restriction $R_M m$ of m to Z^M is in $M_p^p(Z^M)$ and $||R_M m|| \leq ||m||$.

To use this we let

$$m_{\varepsilon}(x) = c \varepsilon^{-N} \int_{|x-y| < \varepsilon} m(y) dy;$$

c is chosen so that $m_{\varepsilon}(x) \to m(x)$ for each x. Then $||m_{\varepsilon}|| \leq ||m||$, so by (4.1) and the lemma, the sequences $\{m_{\varepsilon}(kn)\}_{n \in \mathbb{Z}^M}$ have norms in $M_p^p(\mathbb{Z}^M)$ bounded by $A_N ||m||$. The continuity of m_{ε} and (4.3) yield $||R_M m|| \leq A_M A_N ||m||$ and the theorem.

To prove the lemma we let K be the operator corresponding to m, $\mathbb{E}f(x_1,\ldots,x_N)=f(x_1,\ldots,x_{N-1}),$ where $f \in L^p(T^{N-1})$ and

$$Pf(x_1, \ldots, x_{N-1}) = (2\pi)^{-1} \int_{-\pi}^{\pi} f(x_1, \ldots, x_{N-1}, t) dt$$
 a.e.

for $f \in L^p(T^N)$. E has norm $(2\pi)^{1/p}$; an application of Jensen's inequality shows that P has norm $(2\pi)^{-1/p}$. The composite PKE is the operator corresponding to $R_{N-1}m$, and so on.

References

- L. Hörmander, Estimates for translation invariant operators in L^p-spaces, Acta Math. 104 (1960), p. 93-140.
- [2] S. Igari, Lectures on Fouries series in several variables, Notes, 1968, Dept. of Mathem., Univ. of Wisconsin, Madison.
- [3] K. de Leeuw, On L^p-multipliers, Annals of Math. (2) 81 (1965), p. 364-370.
- [4] J. Marcinkiewicz, Sur les multiplicateurs des séries de Fourier, Studia Math. 8 (1939), p. 78-91.
- [5] E. C. Titchmarsh, Reciprocal formulae involving series and integrals, Math. Zeitschrift 25 (1926), p. 321-347.
- [6] A. Zygmund, Trigonometric series, I and II, New York 1959.

Recu par la Rédaction le 12, 3, 1969