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Convergence of monotone nets in ordered topological vector spaces*
by

CHARLES W. McARTHUR (Florida)

1. Introduction. The main guestion dealt with in this paper is “When
does a bounded or an order bounded monotone net in an ordered topological
vector space converge?”’ A definitive answer to the question is provided
by Theorem 1 for order bounded monotone nets in locally convex spaces
if the order is provided by the positive cone of a total biorthogonal system.
A vpartial answer to the question is given by Theorem 5 for monotone
bounded sequences in certain conjugate spaces. Results on the relationship
of regularity of cones to normality of cones are presented in Section 4.

All vector spaces in this paper will be assumed to be over the real -
tield unless otherwise stated. An ordered vector space is a real vector space
E equipped with a transitive, reflexive, antisymmetric relation < satis-
fying the following conditions:

(a) T »,9,# are elements of B and <y, then stz y+2

(b) If @,y are elements of ¥ and 4> 0, then <y implies ir << Ay.

The positive cope E in an ordered vector space F is defined by
K = {n<E: 9 <o} It has the properties: K+Kc K,iK < K for each
1>0, and K ~ (—EK) = {6}, where 6 is the zero vector. A get K with
the above three properties is called a cone. If K is a cone in a real vector
gpace B, then a relation < is defined on Bby o<y if y— o <K with respect
to which F is an ordered vector space with positive cone K. If » and y
are elements of an ordered vector space and # < y, then the order interval
between © and y is the set [#,y] = {z<B: 2 <2<y} A set in an ordered
vector space is order bounded if it is a subset of an order interval. When
an ordered vector space is.also a topological vector space, the resulting
structure is an ordered topological vector space. A neb {Za}aca in an ordered
vector space is increasing (decreasing) if . < % (@ < @) when a<p.
The positive cone K of an ordered topological vector. space is regular
(sequentially regular) if each order bounded increasing net (sequence)
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in K converges to an element of &. The positive cone K of an ordered
topological space is fully regular (fully sequentially regular) if each in-
creasing and topologically bounded net (sequence) in K converges to an
element of K. The positive cone of an ordered topological vector space
iy normal if there exists a local base ¥" = {V} of neighborhoods for the
topology of E with the property that for each Vev, V =) {[z, y]:
%,y eV} For a locally convex ordered topological space it is known ([13],
p. 215) that K is normal if and only if there is a generating family £ of
seminorms for the topology such that if pe# and 6 < o <y, then »(2)
< p(Y)- -

If B is a linear topological space, a pair of sequences {@y fi}ticw, Where
{m} = T and {fi} = B (the topological dnal of B), is called a biorthogonal
system if fi(w;) = dy. For a biorthogonal system {w;,f;} let K = {wel:
fi(#) 2 0, all iew}, and observe that K is a cone if and only if {f:} is total
over B. Thus if {m;, f;} is a biorthogonal system with {f:} total over 7,
the positive cone of {m;, f;} is defined to be the above set K. If a biortho-
gonal system {w, f;} has the property that for each zekK = {yel: fi(y)

>0, all jew}, @ =‘§fi(m)m¢, then . {w;, f;} is said to be a basis on K.

Observe that if {z;, f;} is a basis on K, then {f;} is total over B assuming

that ¥ is a Hausdorff space. If a biorthogonal system {x;, f;} for a Haus-

dorff space ¥ has the property that for each wel, v = Zc’o fi(z)@;, then
t=1

{®i, fi} 18 called a Schauder basis.

2. Lemmas. A number of facts needed for the proof of the first main
theorem-are of interest in themselves and are presented below as lemmas.

LEMA 1. A cone K in a locally convex Hausdorff space B is weakly
sequentially regular <f and only if it is sequentiolly regular.

,  Proof. Suppose <o, <oy <... < @, and K is weakly sequentially.
regular. Let 2, =, and z, = Tp—tp1, n=2,3,... y
& subseries of the series ) ;. Observe that

i1 :

: m M1
ﬂgz%gz <@y for m=1,2,..
=1 =1

The assumed weak sequential regularity of K implies the existence
of a weak sum in K of the subseries 2, #n;- In particular, the series }? %
T=]

< i=1
has a weak sum @ <K and by the theorem of Orlicz-Pettis [7] # is the sum

of the series 2, le., o =1i '

Let > 2, he’
L=l
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A proof of the next lemma may be found in-[12], 3.1, pp. 90, 91.

LeMMA 2. If {%a}oeu 5 & net which is increasing (decreasing) in a topolo-
gical vector space B ordered by a closed cone K and if x, is & cluster point
of {Fataca, them m, = supa, (@ = in;fwa), The supremum (infimum) s
UNLQUE. )
LevmMA 3. If (B,9) is a topological vector space ordered by a closed
cone K and if C is o compact subset of (E,9), the supremum (é%fimum)
of each increasing (decreasing) net in C exists and the net converges to it with
respect to 7.

Proof. Let {#.}c.sa De an increasing net in C. Since ¢ is compact,
the net has a cluster point #, in ¢. By Lemma 2, @, = sga 2,. It follows
that 2, is the only cluster point of {#,}ea in C. It is well known that if
a net has a unique cluster point in a compact set, it must eonverge to
that cluster point.

o0
LmvMA 4. If 3 @ is a series in a locally convex Hausdorff space B
i=1
over the real or complex numbers such that for each permutation = of the
n
set of positive inlegers o the sequence { 3 Guitne 18 Cauchy, then for each
i=1

bounded set B of the Banach space (m) of real or complex bounded sequences
with supremum norm the set

S(B,#) E{Z biw;: b = {b}eB and 0'59'}

48 totally bounded in B, where F is the family of finite subsets of w.
Proof. By hypothesis there exists M > 0 such that ||p]| < M if beB.
First it will be shown that if new, then :

8u(B,#) ={ Y bim: b= (b} B, o = [1, 2]}

ie0
is totally bounded in E. Since 8, (B,#) is a subset of the finite-dimensional
subspace spanned by @, s, ..., &, it is totally bounded in ¥ if and only
if it is bounded in E. If feE' and beB and o = [1, n], then

|#( 20

so Su(B, %) is weakly bounded and hence bounded.
Now let U be a neighborhood of § and V be a closed balanced, convex
neighborhood of 0 such that V47V <= U. The hypothesis on 3 #: implies
e &

that it is Moore-Smith Cauchy, i.e.; Vtvhgfeﬂexists New (depel_ldent on V)

<[l Y 1f @)l < M 3 1f (@) < +oo,
i=1

=1
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such that if o and ¢ ~ [1, N] = @, then 2 @;e(1/4M) V. Let p denote
the Minkowski functional of V. If beB a.nd oeF and o~ [1,N] =

then, by [8],
P (2 biac@-) < 4M§}g)p (Z cci) <1,

80 Z biw;e V. Since Sy(B,#) is totally bounded, there exist elements

feo

YiryYzyooos Ym in B such that

Sx(B,%) = U Wit 7).

If then ZbiwieS(B,ﬁ’), let 0y =0~ [1,N] and o, = ¢ ~ [N-1, o).
ieo
Then for some j,l<j<m, Z biasey; -+ V. Since 2 biwieV, it follows
that 3 baie(y;+V)+V < y+ T, =
LevMA 5. Let {a;,fi} be a biorthogonal system with {f;} tolal for
a Hausdorff topological vector space B. Let S be a subset of B with the prop-

erty that Z film)w; converges to % for each weS. If H is ordered by the positive
cone K of {wz, fi} and B zs a non-empty subset of 8, then sup B ewists in S
if and only if the series i=21 (ig.gp fi(m))m,mcomewges to an element of S. Also
inf B ewists in S if and only if the sem‘esé; (i]gfﬁ () @; converges to an element

of 8. The sums of these series are the supremum and infimum of B respecti-
vely.
Proof. If

= ) (intf;(a))a,

i=1 %eB
the biorthogonality of {w;,f;} implies that f;(z) = mffL

weB. Algo if ' < o for all zeB, then f;(2') < fi(») for znll weB, i.e., fi(e)
< gﬂ(w) = fl(z), 80 2’ < 2 and hence 2z = infB. Conversely, if z = infB

exists in 8, then

%), so z<w if

g = Zfi(z)%'-

el
Since 2z == inf B, f;(2) < inffi(m). Indeed, equality must hold for each

iew. Otherwise for some 4, fmo < mfﬁ(w Define 2’ <H by

¢ =D fDat (inf, (@) -

L2
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Clearly, fi()=fi(2) for all iew, 80 2< 2. Also f;(?") < ijﬁfi(m),
80 2’ < @ for all @B and it follows that 2’ < 2 and hence, gince K is a, cone,
2 — #. This however is not so since f; (2’ ) # fiy (2)-

3. Regularity of cones of biorthogonal systems.

TEEoREM 1. Lt B be a locally convew Hausdorff space and {m, fi}
a biorthogonal system for B with {fi} total. Let B be ordered by the positive
cone K of {wi,fi}. Then the following statements are equivalent:

(i) For each weK and each bounded sequence {bi} of non-negative -
real "/mmbers the series Z‘ bif;(x)m; converges.
i=1

(ii) [6, ] is compact for each weK (i.e. [0, %] is complete and totally
bounded for each xe<K).
(iif) [0, ] is weakly compact for each zeK.
(iv) K 4s weakly regular.
(v) K is sequentially weakly regular.
(vi) K is regular.
(vii) K is sequentially regular.
(viti) [0, 2] is o(E, B')-sequentially complete and bounded for each
rekK.
(ix) The supremum of each order bounded subset of K exists and is an
element of K.
Moreover, when the above equivalences are in effect, each order bounded
o(B, B') Couchy net in B converges strongly to an element of B.

Proof. To show that (i) implies (i), assume (i) and let weK. Let

{2 bifi( a;)ah geF and beB}

iec

where B is the unit ball of the space m of bounded sequences of reals
with supremum norm. Since 2 fi()m; is unconditionally convergent, it

follows, by Lemma 4, that § zmd hence § is totally bounded. Since [0, =]
i a subset of §, it is a,lso totally bounded. It sutfices now to show that if
weK and (i) holds, then [0, #] is complete. For such an 2 let {Yo}oea DO

a Cauchy net in [0, #]. Let a; = hmfm(ya ) and let ¥y = Z‘ a;a;. This series

converges since 0 < 9, < « implies 0 a; < fi(») and hence for each tew
there exists by, 0 < by <1, with @ = byfi (), 80

2 @iy = Zb'b 3 ()

i=1
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converges by the hypothesis (i). Next let b be that number between ¢
and 1 such that fi(y.) = bifi(w), and let »° = {b;—bf),. Note that
118°1 Es.up[b,--—b‘;fgz, acd. Let U be a neighborhood of 6 and 7

a closed, convex, balanced neighborhood of ¢ such that V--V < .
Since Z‘ fi(x)z; is unordered convergent, there exists a positive integer
t=1
N such that if ce# and o~ [1, N] =@, then 43 film)@)e V. Let p
Teo
be the Minkowski functional of V. Then [8], if o A [1,N] = @,
?( 2 ti—tis@)a) <2pisup (3 fiw)m) < supp (¢ hi@a) < 1,
%o oCe e a'ca a0’
so it follows that ) .
00 el .
(2 40— Zfi(ya)wi) eV
i=n T=n
if » > N. Since g, = limfi (¥o) and the summations are finite, there exists
aged such that if o> a,, then
N N
D wm— D fuyweV,
1=l =1
50 y—y,e U if o> o, and hence [8, ] is complete.

'It is .obvious that statement (ii) implies statement (ii). That statement
(i) implies statement (iv) is a consequence of Lemma 8. Note that since

E = () {o: i@ > 0)

?,nd each f; i§ continuous, it follows that K ig closed and that since {f}
is .1.3017911, K is- & proper cone. That (iv) implies (v) is obvious and (V) antd
(vii) are equivalent by Lemma 1. To see that (vii) implies (i) let weX
and let {b;} be a sequence of non-negative real numbers such that } = sup bl

< +oo. Using the biorthogonality of {@:, fi}, e

0.< D) bifs(0) ey < 1w
=1 . :
?or eac.h new. It (vii) ].1.olds, then (i) clearly follows. That (vi) implies (iv)
is obvious and fuhat (ii) implies (vi) is given by Lemma 3. The above
?.;‘ngl)lments constitute a proof of the equivalence of statements (i) through
It is clear that (iii) implies (viii) since if (e i
. c y 2] is o(H, B') compact
it is O‘(ﬁ'}, B') complete and o(H, B'y totally bounded and h,ence U(EPE')
sequentially complete and o(#, I')-bounded and hence bounded. i\TOW

icm°
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agsume (viii), let ®<K, and let {b;} be a sequence of non-negative real
numbers such that A = supd; << 4-oco. Since [0, 2] is bounded and

(B, E')-sequentially complete, [0, Az] is also. Using biorthogonality
we have for arbitrary ce#, 0 < Z’ bif;(2)2; < Az. Thus {2 bifi(m)a;: o eF}

is a subset of a bounded set, so is bounded. It follows that
D) Ibifi(@)f (@) < o0
i=1

for each feF'. Thus for any inereasing sequence of indices n; < n, <<...

m

oo < Ny, < ... We have that {2 bnifni(m):vni}' is a ¢(E, B')-Cauchy sequence

=1 00
in [0, 2#] and hence each subseries of > b;fi()w; has a weak sum in
=1

=

[0, 2z] so the series itself converges to an clement of [, ix] by the Orlicz-

Pettis theorem [7].
Finally, assume (i) and let B be a subset of K such that z < 2 for

all z¢B and some ze K. Let a; = supf;(x),4 = 1,2, ... Thus 0 < &; < fi(2)
. xeB

for iew, 8o a; = b;f;(2), where 0 <b; <1, icw. Thus

[\48

ww; = D bifi(2)w;
i=1

%

converges by (i) and by Lemma 35,

supB = Zm' W%,

=1 .
i.e., (i) implies (ix). Conversely assume that (ix) holds. Let z<K and {b;} -
be a sequence of non-negative real numbers such that 2 = supb; < -oo.
Letting e
Yn = Zbif'ﬁ(m)wiy Mew,

T=1 .
by biorthogonality it follows that 0 <y, < Az, n<w. Hence, by (ix),
@ = §upY, exists in K, so, by Lemma 5,

New

New

a= D 'sup(f;(yn)a;.
j=1

. Bince 0 < fi(yn) < fi(¥n) < fi(A®), §, new, it follows using biortho-
gonality that supfi(y.) = bify(®), so
n

¥ = ._}_,?bffi(m)mia
P

iLe., (ix) implies (i).
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To verify the last statement of the theorem let {2c}ucs e a (¥, H')-
Cauchy net in E sach that there exist 2y, 2eH with {#utaed = 21, 2],
Trom (iii) [2,, #,] is weakly complete, so there exists 2e[”y, 25] Such that
{za} converges to z for the o (B, B')-topology. Now since [2,, #,] i8 strongly
compact, by (ii), {z.} has a strong cluster point in [z, 2,]. This strong

cluster point must also be a weak cluster point, so it must be z. Thus {2} '

has the unique strong cluster point z in the strongly compact set [z, 2,]
so {¢,} must converge strongly to 2.

Fullerton [2], Theorem 3, has shown that if IC is the positive cone
of an unconditional basis {z;, fi} for a complete locally convex vector
space J, then for each we<XK the order interval [0, #] is homeomorphic
to a Hilbert cube of countable dimension and hence is compact and
metrizable. In his proof he uses only that {x;, f;} is a biorthogonal system
with {f;} total, that {m;, f;} is an unconditional basis on its positive cone
K, and that [0, ] is complete for each ze<K. Consequently, using
Fullerton’s proof one may show that condition (i) implies that [0, #]
is compact and metrizable for each ¥ K. When K is sequentially complete
condition (i) is equivalent to

a > fi(w)x,;'is unconditionally convergent for each zeK.
=1

The equivalence of (i) and (ix) was suggested to the author by
a recently announced result of Ceitlin [17; namely, if 7 is a real sequentially
complete locally convex space ordered by the positive cone of a Schauder
bagis, then the space is a conditionally complete vector lattice if and
only if the basiy is unconditional.

" 4. Relations between normality and regularity. Let {¢;} denote the
unit vector basis in m axnd for each 4ew define f; on m by f;(b) = b;, where
b = {b;}em. Clearly, {e;,f;} is a biorthogonal system for m with {fi}
total and its positive cone K is normal sinee the usual supremum norm

n

for m is monotone on K. Let z, == 3 6;. The sequence {x,} i8 increasing
i

=]

in K and bounded above by e = {b;}, where b; =1,4c0. If n #m,
o — @ml| =1, 80 {w,} does not comverge. This shows that the positive
cone of a biorthogonal systema may be mnormal but mnot sequentially
regular.

LuyvwA 6. Let B be o locally convews Housdorff space with a bior-
thogonal system {m;, fi} whose positive cone K is normal and such that

0

{@;, fi} is a basis on K. Then Y fi(@)w; converges unconditionally to o for
A=l

each x<X.

Proof. Let # be a generating family of %emin.orms for the topology
of & each of which is monotone on K. Let z X, pe #, and & > 0 be given.

icm
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Then there exists New such that

p'(Zfi(w)wi)< .
=N
Now if ¢e# and ¢ o [1, N], then
Béw—gfi(m)wié Zfi(m)mis
Teo =N

§0 by the monotonicity of p on K, p(m——-z fi(w)mi)< & - and hence
> fi(w)m; is unordered convergent to » and hence unconditionally con-~
4e=1

vergent to x.

LeMma 7. If B is a barrelled Hausdorff space with an unconditional
basis {w;, fi}, then its positive cone K s normal.

Proof. Let # be a generating family of seminorms for the topology
of B. For each ceF and zeF let S,(z) = Z’ fi(w)z;. Clearly, {S}es is

ie0

a family of continuous linear operators from E into E. Since {z;, fi} is an
unconditional basis for B, it follows that {S.(v): oeF} is for each weH
bounded and hence, since ¥ is barrelled, the family {S.},s is equicon-
tinuous. For each pe # and weF define p’(z) = sg}p(&,(m)). Bach such

p’ is continuous and p(z) <p'(x) for each zeE. Thus, “the famjly'?’
== {p': peP} is also a generating family of seminorms for the topdlogy
of B. For each p’e# and w<E and ceF it follows that if o' = g, then

p (Y h@e) < (X fiw)a.
Tt will now be shown that if <« <y, then p’(x) < p'(y) for each

p' <. Since 0<@ <y, 0 < fi(#) < fuly) for icw. Let mew. By the Hahn-
Banach theorem there exists feH’ such that [f(2)] < p'(e) for all 2B and

3 (:n fim)a) = f( gfi(w)wi).

Let o(m) = {ie[1, m]: f(=) > 0}. Suppose o(m) # @. Then

2 ffi(wm) = 1D fma)< ; fo(@)f (@)
i=1 N des(Mm) " )
< N fil)fle) <o Z)fm- W)z) <’ Zl‘fiw)w@-)
tea(mm) ea() i=.

for n large enough, so o(m) = [1, n]. Passing to the limit with respect
to n, it follows that

®

7| _ﬁfi(m)wi) <pW).
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On the other hand, if o(m)

and since
2 f () wt)

> 0 for all tew, it follows that fi(») = 0,7 =1,2,...

27—? fi(w)w; = 0

el

=@, then f(z;)<<0fori=1,2,...,m

2 o) (a)

with f;(2) , m. Hence,

80
m
o' (D) film)m) < p' ()
i=1 .
in this case also. It has béen shown that if p'e #’ andﬁ_@g 2 y, then
P (Y f@a) <)
=1

. for all mew and hence p’(z) < p'(¥).

Ceitlin [1] has shown that a Schauder basis in a sequentially complete
bornological space is unconditional if and only if its positive cone is gemer-
ating and normal. Now a sequentially complete bornological space is
barrelled ([5], p. 184). Thus Ceitlin’s result is a corollary of the following
theorem:

TeEEOREM 2. A Schauder basis {w;,f;} for a sequentially complete
barrelled space B is unconditional if and only if 5ts positive cone K is generating
and normal.

Proof. If K is normal, then {#;, f;} is an unconditional basis on K
by Lemma 6 and hence on E since K is generating. Conversely, if the
basis is unconditional, then K is normal by Lemma 7. I‘urthelmore,
if weB, then & = y—z, where y = > fi(#)® with o = {{icw: fi(2) = 0}

160
and —z = ) f;(#);. The sequential completeness. is used only to assure
'Lsm/a-

the convergence of the above two subseries.

The following theorem is known for Banach spaces [6]. The author
acknowledges learning of its validity for Fréchet spaces from Mark D, Levin
who presented a proof in seminar. The proof below is for complete metric
linear spaces.

TEEOREM 3. If F is a complete metric linear space ordered by a cone
K, then

(1) K is normal if and only if [0, @] is bounded for each vell, and
(i) ¢f K is a closed sequentially reqular cone, then K is normal.

icm°
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Proof. If K is normal and <K, then [0, #] is bounded ([12], p. 62).
To show the converse of (i) note that & is normal if and only if & is normal
([12], p. 63). Hence the converse of (i) will be shown by supposing K
to be cloged and not normal and showing the existence of #¢K such that
[0, z] is not bounded. If K i3 not normal, there exists a closed, balanced
neighborhood V of 6 such that if W is a neighborhood of 6 there exist
elements @, y such that 6 <2<y with ye W and x¢V ([12], p. 62, Pro-
position 1.3d). Let {W;};., be a local base for the topology of & such that
Wipi+Wipy© Wi, dtew. Thus, for each icw there exist i, y; such that
0< o <y; and yie(1/i) Wi and gi¢V. Let y; = 4y and a; — izi. Thus
Yie Wy and 2;¢1V. It is clear that {;} is mot bounded. However, the

sequence {2 Yitnew 18 @ Cauchy sequence in the closed and hence complete

cone K, so there exists yeK such that y = 5‘ ;. Now 0 < o; < y for all

tew 80 [0, y] is not bounded. To prove (ii) assume that K is not normal.
Then select sequences {x;} and {y;} just as in the proof of the converse
of (i). Thus

forn =1, 2, ... However, the increasing sequence {Z Zitneo in K, bounded

above by y <K, cannot converge smee {@;} is not bounded In particular,
the general term z; of the series 2 @; does not go to zero.
=1

It is known for Banach space ([14], pp. 220 and 221) that a cone is
normal if and only if it is weakly normal. The preceding theorem enables
one to establish this result for Fréchet spaces.

COROLLARY 1. A cone K in a Fréchet space B is normal if and only
if 4t is wealkly normal.

Proof. If K is normal, it is weakly normal ([14], Corollary, 3, p. 220).
Conversely, if K is weakly normal, its dual cone K’ generates H' ([14],
Corollary 3, p. 220). Let zeK and feE'. Then f = f,—f,, where fy,f,cK'.
Thus if ye[0, ], then 0< fi(y) < filz), 1 = 1,2, so If(y)] <fi(@)+fa(2)
for all ye[0, 2]. This shows that [0, #] is weakly bounded and hence
bounded for each e K. By Theorem 3, K is normal.

The following theorem elevates to Fréchet spaces a result recently
obtained for Banach spaces [9]:

TrEOREM 4. Let K be the positive cone of a biorthogonal system {&:, fi}
for a Préchet space B with {f;} total over B. Then K is regular if and only
if {2, f;} is a basis on K and K is normal.
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Proof. Suppose that K is regular. Then by Theorem 3, K is normal.
Also if 3K, then by the equivalence of (vi) and (i) of Theorem 1, 2 fi(m)w;
Geal

converges to some element. This sum must be « because of the totality
of {f;} and biorthogonality of {a;, fi}. Conversely, suppose {m,fi} is
a bagis on K and X it normal. Then, by Lemma 6, {z;, fi} is an uncon-
ditional basis on K and since B is complete, condition (i) of Theorem 1
is satistied, so K is regular by Theorem 1.

In general linear topological spaces if a closed cone K ig normal and
fully sequentially regular, then it is sequentially regular, for if 0 < a,
L0 <... <Wp<...<m, then [0,2] is topologically bounded ([12],
p. 62), 50 {@,} is bounded, so by full sequential regularity it converges.
Krasnoselgkil ([6], . 37) shows that for Banach spaces a fully gequentially
regular cloged cone is normal and hence sequentially regular. It is a corollary
of a theorem of Schaeffer [13] that if B is a weakly sequentially complete
locally convex space ordered by a normal closed cone K, then K is fully
sequentially regular. From. this and Lemma 7 it follows that the positive
cone of an unconditional basis for a weakly sequentially complete barrelled
space s fully sequentially regular.

5. Regularity of dual cones. A real barrelled space B with the prop-
erty P: the canonical embedding of ¥ in B is o(H", B')-sequentially
dense in B', will be called a P-space. Examples of P-spaces are reflexive
spaces, quasi-reflexive spaces, and spaces whose topological dual B’ is
B(B', B)-separable ([14],p. 143). Banach spaces which are P-spaces
have been studied by McWilliams [10, 117.

Karlin [4] showed that if Z is a Banach space with separable strong
dual B’ and if F is ordered by a closed cone K with the property that
there exists a constant M > 0 such that for each FeE" there exist
P, FycK" with F =F,—F, and |Fy|< M,i=1,2, then K’ is se-
quentially regular. The following generalization of Xarlin’s theorem
is proved by using Kaxrlin’s proof with several modifications:

TrEOREM 5. If B is a P-space ordered by a olosed generaling cone I,
then K’ is fully sequentially regular for the B(E', B)-topology. If B is both
a Banach space and o P-space ordered by o closed cone K, then the following
are equivalent: )

(i) K generates H;
(i) K" is (B, B) fully sequentially regular;
(ifi) K’ is B(E', H) sequentiolly regular;
(iv) K’ is B(E', E) normal.
Proof. Let {y,} be a sequence in K’ such that y,(®) < yp.1 () for
each z¢XK and each new and such that {y,} is f(E’, F) bounded. It follows

icm°®
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that {y,(2)} is bounded for each z<H. Define a functional § by ¥(w)
= limy,(x) for each weB. It e l, » = &' —a'', where o, 2" eK, so limy, (v)

= limy, (') —limy,(«’") exists. Clearly, § is a linear functional and §
n n

is continuous, being the pointwise limit of continuous linear functionals

on a barrelled space. Next, it will be shown that 7 is the o (&', E") limit

of {yn}. Let " <B". Sinee E is o(B", F")-sequentially dense in E’/, there

exists a sequence {m,} = B such that &"'(y) = Limy (an) for each yeF'.

m
Now if it can be shown that limlimy, (@,) = limlimy, (€.), then lima" (4,)
n mn m n n

= M § (Tm) = @ (), s0 § would be the o(F', B”) limib of {y,}. The

m

interchange of limits is justified as follows. Deﬁﬁe T on ¥ into 1 by
T(%) = {Yn(®)— Yn_1(&)}new, Where yo(w) = 0. Note that if zekK, then

3 (@)~ Yas @) = Y 9 (0)—Yos(0) = lima(a) < oo

Since K generates F, it follows that T is well defined on F into 1
and T is clearly linear. Now define T, on E into I’ by Tn(z) = (yl(m),
Yo (B)— Y1 (%), « -y Yn(B) —Yn_s(2), 0, 0, ) Tt is clear that T), is continuous
and LimT, (%) = T(z) for each z<E, so since H is a barrelled space, T'

is continuous. Hence T is o(H, B')—o(l', m) continuous. Since w"(?.;)
= limy(x,) for each yeE', {¥m} I8 o(B, B')-Cauchy so {T(@m)lme I8
m

o(V, m)-Cauchy. Now a o(l'; m)-Cauchy sequence in 7 must be a Cauchy
sequence in the norm topology of 7' Consequently, given ¢ > 0 there
is an integer m such that

N
Z 1{¥n (@my) — Y1 (@)} — {Yn (@ny) — Yn—r (mmz)H <e

for all N and all m, > m, m, > m. Passing to the limit with m, we obtain

N
S 1 ) — Y1 (@)} — {2 () — 3 W)} < 2

N=1

for all ¥ and m, > m. Hence, if my = m, then

l Zm: {f‘/n (a’m.l) —Yn—1 (mml)} - Zm: {=” (yn)—2" (Yn.. 1)}l <e,

N=1 n=1

that is,

lim Z{yn(mml)—yn—l(wml)}'— Z{m”(yn)'—_w”(yn—l)}l\< € .

M=+ =} n=1
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But,
lim limy, (2n) =Lm > ¥n (@) — Yn. (@)}
M—500 N0 Mer00 27,
and
lim 1im 4y, (@) = 2 {2 (Yn) — & (Yn-1)}
N—>00 M—r00 Py )

50
Him Ty, (@) — lim 1m gy, (#,)] < 6.
M—00 N300 N300 W00
Since & was an arbitrary positive nwmber, the intevchange of limity
is justified and § is the o(B’, B'')-limit of the moenotone increasing sequence
{#»}. By Lemma 1, § is the §(F', E) limit of {y,}. This concludes the
proof of the first sentence of the theorem and hence proves that (i) implies
(ii). A proof that (i) implies (iii) is given in [6], p. 37. By Theorern 3,
(iii) implies (iv). Finally, if K’ is normal for f(E', 1), then ([14], p. 221)
K is a strict b-cone and hence generates J.
CoROLLARY 2. If H is a P-space ovdered by the Dpositive cone K of
& biorthogonal system {m;, f;} with {f;} total and if K is generating, then
Jor each feE' and each bounded sequence {b;} of non-negative real numbers

the series i‘_}i’b@f (#:)f; converges for the pLE', B) topology. If, moreover, {w;, fi}
is a Schauder basis, then K' is not only fully sequontially regular but regular
as well. ‘

Proof. Let feX' and {b;} a sequence of non-negative real numbers
m

with 1 = supb; < +oo. The sequence {3 bif(@)fi) is increasing in K’

. iew =1
since b,;f@i) =0 and fie K’ for ico and K’ is a cone. Furthermore, the
sequence is f(E’, E) bounded gince if wekK, then

K

0< (2 bif(wi)fi) » = f( ) brtfi(-’b‘)%)é A (@)
because = i ‘

6 szvﬁfa‘,(m)mi < M.
b= 1

%

Now if weH, then s = o' — " with o K 50
m
[(gbif(w%)f%) w}g A(f(u’”')-}-f(w”))

m
This shows that {2; bif (45) fi}mew I8 o(B’, B) bounded and, since B
i§ barrelled, 8(B’, B) bounded. Now using the fact that K’ is fully gequen-
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tially regular for p(E', B) it follows that 3 byf(x;)f; converges for §(&, B)
00 i=1

to some element. In- particular, ' f(#;)f; is unconditionally convergent
1

for (&', B) to some element g<'. Since {x;} is total over B’ and {z;, f;}
is biorthogonal, g = f. That K' is regular follows from Theorem 1, because

"K' (since {;, fi} is a Schauder basis) is the positive cone of {fis J (@)}

Here J denotes the canonical embedding map of ¥ into E’.

CoROLLARY 3. If E is both & Banach space and a P-space ordered by
the positive cone K of o Schauder basis {x;, f;}, then K generates B if and
only if {f;, J(2;)} is an unconditional basis on K’ for the §{(E', B) topology
(J denotes the canonical map of B into E').

Proof. If K generates ¥, then the conclusion follows by fhe preceding
corollary. Conversely, suppose {fi,J{(a)} is a f(E', B) unconditional
basis on K'. Now since {w;, f;} is a Schauder basis, it follows that the dual
cone of K is the positive cone of {f;, J (2}, i.e., X' ={feF': f(z;)>=0,
all {ew}. Since B’ is a Banach gpace, in particular B’ is §(E’, ¥) complete,
condition (i) of Theorem 1 iz satisfied for {f;, J(2;)} and hence K’ is
regular. By the equivalences of Theorem 5, it follows that K generates Z.

The following generalized theorem. of James ([3], Corollary 2, p. 523)
recently announced by [15], p. 38, is an easy corollary of this approach.

COROLLARY 4. If E is a sequentially complete barrelled space with
an unconditional Schauder basis {w;,f;}, then E' is p(H', H) separable
if and only if {fiy J (@)} is o B(B', B) unconditional basis for H'.

Proof. To see the non-trivial implication note ([14], p. 143) that
if B’ is f(E', E) separable, then F is a P-space. By Theorem 2, the
positive cone K of {m;,f;} is generating and normal. By Corollary 2,
{fi, J (%)} is a B(¥', H)-unconditional basis on K'. Since K is normal,
K' generates E’, so {f;, J(#;)} is a (', E)-unconditional basis for E'.

Added in proof. Using Eberlein’s theorem, Nguen Van Khuse,
Tests for unconditional bases (Russian), Izv. Vyss. Ucebn. Zaved., Mate-
matika, 2 (69) (1968), p. 68-74, has shown that if {y;, f;} is a biorthogonal
gystem for a real Banach space B with both {y;} and {f;} total and K
is the cone of {u;,f:}, then {y;} is an unconditional basis for B if and
only if X is generating and each order interval iy weakly compact.
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Perfect sets in some groups

by

R. KAUFMAN (Urbana, TIL)

Let @ be a compact, metric, totally disconnected abelian group,
and Gy > ... Gy > Gypy D ... & decreasing sequence of open subgroups
meeting in {0}. Let (H,)Y be a sequence of positive numbers; a closed
subset X of @ is said to have positive H-capacity if X supports a Borel
probabﬂlty measure W Wlth ‘the property

u(b+G) <KEH,, 1<n<oco,beG::

In the first paragraph we prove an abstract lemma relating “econom-
ical coverings” of a set with additive set funetions; it follows that capa-
city and.metric covering properties are connected much as in a Buclidean
space.

Next we specialize to the group of p-adic integers, as the multipli-
cation in this ring yields an abundance of continuous endomorphisms.
An analogue of (' mappings is introduced, in terms of which a p-adic
a.na.logue of the. constmctlon in [4] is accomphsned ‘

I. Let § be a set and A a collection of subsets w1th thig property'

i (1) For each choice {Ty;-.., T} from A4 -of a covering .of 8 (hamely

8 = (J T;) there is a choice {T{, T;} STy, ..., Ty} of pairwise
i=1 " W

disjoint subsets such that § = U T;.

j=1 .
M01e0ve1 let >0 be a real function on A such thznt -

2 E(Ty=1 Whenevel each T, is in A and '8 = U T, ‘

LEMMA There is a non-negatwe finitely addztwe set fzmcmon a, s0
defined, on all the subsels of S that o(8) =1 and a(_’[’)gh(T for each
Toam A oo g

Proof. The argument is based o [3]. Flrs’n,‘tthe ;_Qov}ermg properﬁy
(2) is valid for multiple eovermgs vmtm the characteristic function
of T, 2 ‘ :
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