

On the asymptotic behaviour of some Markov processes

by

MEHDI MOULINE (Rabat) and BUI-TRONG-LIÊU (Lille)

The purpose of this paper is essentially to study the relations between the ergodicity of a Markov process and the ergodicity of Markov processes constructed from the former with the help of a measurable mapping (Part II). The conditions under which this construction is possible have been given in [5]. They are slightly modified here; this is the main object of the first part, to which we add some complements. The terminology-used in this paper is that of [1] and [5].

In the following, we shall denote by N the set of non-negative integers, N^* the set of positive integers, and 1_B the indicator of the set B.

I. MARKOV PROCESSES CONSTRUCTED FROM ANOTHER WITH THE HELP OF A MEASURABLE MAPPING

I. 0. A σ -algebra \mathscr{T} of subsets of a non-empty set \mathscr{Y} is said to be *separable* if there exists a countable family of subsets of \mathscr{Y} generating \mathscr{T} . For example, if \mathscr{Y} is a Polish space, and if \mathscr{T} is the σ -algebra generated by open sets of \mathscr{Y} , then \mathscr{T} is separable.

A class $\mathscr C$ of subsets of $\mathscr V$ is said to be *semi-compact* if for every sequence $(C_n)_{n\in \mathbb N^*}$ of elements of $\mathscr C$, such that $\bigcap_{n\in \mathbb N^*} C_n = \emptyset$, there exists an $m\in \mathbb N^*$ such that $\bigcap C_n = \emptyset$.

A class $\mathscr F$ of subsets of $\mathscr V$ is said to have the *property of approximation* relatively to a probability Q and to a σ -algebra $\mathscr F$ if

$$\nabla C \, \epsilon \mathscr{T}, \quad Q(C) = \sup_{\substack{F \in \mathscr{F} \\ F \subset C}} Q(F).$$

I. 1. Let $(\mathcal{X}', \mathcal{B}')$ and $(\mathcal{X}'', \mathcal{B}'')$ be two measurable spaces. We recall that a transition probability P from $(\mathcal{X}', \mathcal{B}')$ to $(\mathcal{X}'', \mathcal{B}'')$ is a mapping $P \colon \mathcal{X}' \times \mathcal{B}'' \to [0, 1]$ such that $\nabla x \in \mathcal{X}', P(x, \cdot)$ is a probability measure on \mathcal{B}'' , and $\nabla B \in \mathcal{B}''$, $P(\cdot, B)$ is a real random variable defined on $(\mathcal{X}', \mathcal{B}')$. Let $((\mathcal{X}_t, \mathcal{B}_t))_{t \in \mathbb{N}^*}$ be a sequence of measurable spaces, $(P_{t,t+1})_{t \in \mathbb{N}^*}$ a sequence of transition probabilities such that $\nabla t \in \mathbb{N}^*, P_{t,t+1}$ is a transition

probability from $(\mathcal{X}_t, \mathcal{B}_t)$ to $(\mathcal{X}_{t+1}, \mathcal{B}_{t+1})$. We shall denote by $P_{s,t}$ the transition probability from $(\mathcal{X}_s, \mathcal{B}_s)$ to $(\mathcal{X}_t, \mathcal{B}_t)$ defined by

$$P_{s,t}(x, B) = \int_{\mathscr{X}_{s+1}} P_{s,s+1}(x, dx_{s+1}) \dots \int_{\mathscr{X}_{t-1}} P_{t-2,t-1}(x_{t-2}, dx_{t-1}) P_{t-1,t}(x, B),$$

$$\nabla(x, B) \in \mathscr{X}_s \times \mathscr{B}_t.$$

The family $((\mathcal{X}_t, \mathcal{B}_t), P_{t,t+1})_{t \in \mathbf{N}^*}$ is said to be a Markov process. In the special case $\mathcal{X}_t = \mathcal{X}$, $\mathcal{B}_t = \mathcal{B}$ and $P_{t,t+1} = P$, $\nabla t \in \mathbf{N}^*$, we say that the Markov process is homogeneous, and we denote it by $((\mathcal{X}, \mathcal{B}), P_n)_{n \in \mathbf{N}^*}$, where $P_n = P_{s,s+n}$, $\nabla s \in \mathbf{N}^*$.

Let $(\Omega, \mathscr{A}, \Pr)$ be a probability space. A Markov random function $(X_t)_{t \in \mathbb{N}^*}$ defined on $(\Omega, \mathscr{A}, \Pr)$ and taking its values in a measurable space $(\mathscr{X}, \mathscr{B})$ is said to be attached to the Markov process $((\mathscr{X}, \mathscr{B}), P_n)_{n \in \mathbb{N}^*}$ if it has P as transition probability.

Let $(\mathscr{Y}, \mathscr{F})$ be a measurable space and f be a \mathscr{F} - \mathscr{B} -measurable mapping from \mathscr{X} onto \mathscr{Y} . Let us denote by \mathscr{B}_f , the sub- σ -algebra $f^{-1}(\mathscr{F})$ of \mathscr{B} . As mentionned in the introduction, the purpose of this part is to recall and to modify, slightly, results given by Rosenblatt in [5]. We also give some complements, which will be useful for the second part.

For convenience, we shall define the following hypotheses:

- **I. 2.** (i) $\nabla x \in \mathcal{X}$, $\{x\} \in \mathcal{B}$,
- (ii) $\nabla y \, \epsilon \mathcal{Y}, \{y\} \, \epsilon \mathcal{T},$
- (iii) $\nabla x \in \mathcal{X}, P_{\mathscr{B}_f}(x,\cdot)$ is dominated (viz. absolutely continue with respect to) by a positive σ -finite measure μ on $\mathscr{B}_f, P_{\mathscr{B}_f}(x,\cdot)$ being the restriction of $P(x,\cdot)$ to \mathscr{B}_f .
- **I. 3.** $\mathscr T$ is separable and there exists a semi-compact sub-class $\mathscr F$ of $\mathscr T$ such that, for any probability Q on $\mathscr T$, $\mathscr F$ has the property of approximation relatively to Q and to $\mathscr T$.

Proofs of propositions I. 10 and I. 11 below will be omitted: they are the same as those given in [5], modulo the following result:

I.4. PROPOSITION. Let $A \in \mathcal{B}_f$, let ξ be a probability on \mathcal{B} and $\xi_{\mathcal{B}_f}$ be the restriction of ξ on \mathcal{B}_f . Under hypothesis I. 3, there exists a mapping $v \colon A \times \mathcal{F} \to [0,1]$ such that

(i) $\nabla C \in \mathcal{F}$, $v(\cdot, C)$ is $\mathscr{B}_{f}^{(A)}$ -measurable and $\nabla B \in \mathscr{B}_{f}^{(A)}$,

$$\int\limits_{B}v(x,C)\,d\xi(x)=\int\limits_{B}P\left(x,f^{-1}(C)\right)d\xi(x)\,,$$

 $\mathscr{B}_{t}^{(A)}$ denoting the σ -algebra $\mathscr{B}_{t} \cap A$

(ii) $\nabla x \in A$, $\nu(x, \cdot)$ is a probability on \mathcal{F} .

We omit the proof. In the particular case $A = \mathcal{X}$, we have the

I.5. COROLLARY. Under hypothesis I.3, there exists a mapping $v: \mathcal{X} \times \mathcal{T} \rightarrow [0, 1]$ such that

(i) $\nabla C \in \mathcal{T}$, $v(\cdot, C)$ is a version of the conditional expectation $E_{\varepsilon}[P(\cdot, f^{-1}(C))|\mathcal{B}_t]$ relatively to ξ .

(ii) $\nabla x \in \mathcal{X}$, $\nu(x, \cdot)$ is a probability on \mathcal{T} .

I.6. We know (cf. [3]) that: For every family of probabilities dominated by a probability, one can find an equivalent countable subfamily of probabilities. Since the family $(P_{\mathscr{B}_f}(x,\cdot)|_{x\in\mathscr{X}})$ of probabilities is dominated, it is equivalent to a countable sub-family $(P_{\mathscr{B}_f}(x_i,\cdot)|_{i\in\mathscr{N}^*})$. The dominating (in fact, equivalent) measure can be taken, and shall be taken, as the probability measure

$$\mu = \sum_{i \in \mathbb{N}^*} a_i P_{\mathscr{B}_f}(x_i, \cdot), \quad ext{where } a_i > 0 ext{ and } \sum_{i \in \mathbb{N}^*} a_i = 1.$$

We shall also make use, in Part II, of the probability measure

$$\overline{\mu} = \sum_{i \in \mathbb{N}^*} a_i P(x_i, \cdot)$$
 on \mathscr{B} .

I. 7. A set $S \in \mathcal{B}_f$ is said to be a single entry set if $\mu(S) > 0$ and if there exists a point $y \in \mathcal{Y}$ such that P(x, S) = 0, $\nabla x \in \mathbf{G} f^{-1}(y)$. Such a point y is called a single entry point corresponding to S. A set $S \in \mathcal{B}_f$ is said to be a maximal single entry set if it is a single entry set and if there does not exist any single entry set S such that $S' \supset S$ and $\mu(S') > \mu(S)$.

I. 8. Let us now recall some results:

1° If S is a single entry set, there exists at least one point $x \in \mathcal{X}$ such that P(x, S) > 0.

2° A maximal single entry set S is defined modulo a μ -null set.

3° There are at most a countable class of disjoint maximal single entry sets $(S_k)_{k \in \mathbb{N}^*}$ and corresponding entry points.

4° Define $M = \mathbb{G}(\bigcup_{k \in \mathbb{N}^*} S_k)$. If $\mu(M) = 0$, then \mathscr{X} is the union of an at most countable family of maximal single entry sets.

5° If $\mu(M) = 0$ and if S is a maximal single entry set such that P(x, S) > 0, then P(x, S) = 1.

 6° If $\mu(M) = 0$, and if $y \in \mathscr{Y}$ is such that $\mu(f^{-1}(y)) > 0$, then $f^{-1}(y)$ is a single entry set.

7° If $\mu(M)=0$, then $\mathscr Y$ is the at most countable set of single entry points.

I. 9. It is to be remarked that if $(X_t)_{t\in\mathbb{N}^*}$ is a Markov random function attached to a homogeneous Markov process $((\mathcal{Z},\mathcal{B}),P_n)_{n\in\mathbb{N}^*}$, the random function $(f \circ X_t)_{t\in\mathbb{N}^*}$ is not generally Markovian. Rosenblatt in [5] has given the conditions under which $(f \circ X_t)_{t\in\mathbb{N}^*}$ is also Markovian.

I.10. PROPOSITION. Under hypothesis I. 2, and if $\mu(M) = 0$, then whatever be the Markov random function $(X_t)_{t \in \mathbb{N}^*}$ attached to the Markov process $\{(\mathcal{X}, \mathcal{B}), P_n\}_{n \in \mathbb{N}^*}$, the random function $(f \circ X_t)_{t \in \mathbb{N}^*}$ is Markovian.

- I.11. Consider now the case $0 < \mu(M) < 1$. There exist some single entry sets, for this existence is equivalent to the condition $\mu(M) < 1$. Let S be a single entry set such that we may be able to enter S starting from M, that is to say there exist a positive integer n and n points $y_1, \ldots, y_n \in \mathscr{Y}$ such that: a) $f^{-1}(y_j), j = 2, \ldots, n$, are single entry sets and $f^{-1}(y_1)$ is not; b) y_{j-1} is the single entry point corresponding to $f^{-1}(y_j), j = 2, \ldots, n$ and y_n is the single entry point corresponding to S. The integer n and the points y_1, \ldots, y , when they exist, are uniquely defined and constitute a thread of length n entering S.
- **I.12.** PROPOSITION. Under the hypotheses I. 2 and I. 3, a necessary and sufficient condition for $(f \circ X_t)_{t \in \mathbb{N}^*}$ to be Markovian whatever be the Markov random function $(X_t)_{t \in \mathbb{N}^*}$, attached to the Markov process $((\mathscr{X}, \mathscr{B}), P_n)_{n \in \mathbb{N}^*}$, is that:
- (i) There exists a mapping $R: M \times \mathcal{F} \to [0, 1]$ such that $\nabla C \in \mathcal{F}$, $\nabla x_0 \in \mathcal{X}, R(\cdot, C)$ is $\mathscr{Q}_{+}^{(M)}$ -measurable and $\nabla B \in \mathscr{Q}_{+}^{(M)}$.

$$\int_{B} P(x_{0}, dx_{1}) R(x_{1}, C) = \int_{B} P(x_{0}, dx_{1}) P(x_{1}, f^{-1}(C)).$$

(ii) If S is a single entry set and if there exists a thread of length n entering S, then there exists a mapping $R_n \colon S \times \mathcal{T} \to [0, 1]$ such that $\nabla C \in \mathcal{T}, \nabla X_0 \in \mathcal{X}, R_n(\cdot, C)$ is $\mathscr{B}_{i}^{(S)}$ -measurable and $\nabla B \in \mathscr{B}_{i}^{(S)}$.

$$\int\limits_R P_{n+1}(x_0,\,dx_1)R_n(x_1,\,C) \,=\, \int\limits_R P_{n+1}(x_0,\,dx_1)P\big(x_1,f^{-1}(C)\big).$$

As mentioned above, we omit the proof of I.12 and refer to [5]. We simply recall that the absolute probabilities \tilde{Q}_t and the transition probabilities $Q_{t,t+1}(\cdot,\cdot)$, $t \in N^*$, of the Markov random function $(f \circ X_t)_{t \in N^*}$ are constructed as follows:

1° π_t being the law of $X_t, t \in N^*, \tilde{Q}_t$ is defined by $\tilde{Q}_t(C) = \pi_t[f^{-1}(C)], \nabla C \in \mathcal{F}$.

2° With regard to the transition probabilities:

If t=1, we define, $\nabla y \in \mathscr{Y}$ and $\nabla C \in \mathscr{T}$, $Q_{1,2}(y,C)=\nu_1(\cdot,C)$, where $x \in f^{-1}(y)$ and where $\nu_1(\cdot,C)$ is a version of the conditional expectation $E_{\pi_1}[P(\cdot,f^{-1}(C))|\mathscr{B}_f]$ which is such that $\nabla x \in \mathscr{X}$, $\nu_1(x,\cdot)$ is a probability on \mathscr{T} (such a version exists following I.5).

If $t \ge 2$, we distinguish two cases:

a) If $y \in f(M)$, then $f^{-1}(y) \subset M$ (for $f^{-1}(y)$ is an atom of \mathcal{B}_f) and we define

$$Q_{t,t+1}(y,C) = R(x,C), \quad \forall C \in \mathcal{F}, \quad \text{where } x \in f^{-1}(y).$$

b) If $y \notin f(M)$, then $f^{-1}(y)$ is included in a maximal single entry set S. If there exists a thread of length n entering S, we put, $\forall C \in \mathcal{F}$,

$$Q_{t,t+1} = egin{cases} R_n(x,C) & \text{if} & t>n, ext{ where } x \in f^{-1}(y), \ r_t(x,C) & \text{if} & t \leqslant n, ext{ where } x \in f^{-1}(y), \end{cases}$$

 $v_t(\cdot, C)$ denoting a $\mathscr{B}_f^{(S)}$ -measurable function such that $\nabla B \in \mathscr{B}_f^{(S)}$,

$$\int\limits_{R} d \pi_t(x) \nu_t(x, C) = \int\limits_{R} d \pi_t(x) P(x, f^{-1}(C))$$

and $\forall x \in \mathcal{X}, \ v \ (\cdot, C)$ is a probability on \mathcal{F} (such a function exists by I. 3).

I.13. Let us now make a few remarks:

 $1^{\circ} \ \forall t \geqslant 2, \forall B \in \mathscr{B}_{j}^{(M)} \ \text{and} \ \forall C \in \mathscr{T},$

(I. 13.1)
$$\int\limits_{\mathbb{R}} d\pi_t(x_1) P(x_1, f^{-1}(C)) = \int\limits_{\mathbb{R}} d\pi_t(x_1) R(x_1, C).$$

Indeed.

Indeed,
$$\int_{B} d\pi_{t}(x_{1})P(x_{1}, f^{-1}(C)) = \int_{B} \left[\int_{\mathcal{X}} d\pi_{t-1}(x)P(x, dx_{1}) \right] P(x_{1}, f^{-1}(C))$$

$$= \int_{\mathcal{X}} d\pi_{t-1}(x) \left[\int_{B} P(x, dx_{1})P(x_{1}, f^{-1}(C)) \right]$$

$$= \int_{\mathcal{X}} d\pi_{t-1}(x) \left[\int_{B} P(x, dx_{1})R(x_{1}, C) \right]$$

$$= \int_{B} \left[\int_{\mathcal{X}} d\pi_{t-1}(x)P(x, dx_{1}) \right] R(x_{1}, C)$$

$$= \int_{B} d\pi_{t}(x_{1})R(x_{1}, C).$$

If $f^{-1}(y) \in \mathscr{B}_{+}^{(M)}$ and if $\pi_{t}[f^{-1}(y)] > 0$, then

$$(I.13.2) \quad R(x,C) = \frac{1}{\pi_t[f^{-1}(y)]} \int_{f^{-1}(y)} d\pi_t(x_1) P(x_1,f^{-1}(C)), \quad \nabla x \in f^{-1}(y).$$

Indeed, $R(\cdot, C)$ is constant on $f^{-1}(y)$ which is an atom of $\mathscr{B}_{f}^{(M)}$. We then make use of (I.13.1) by taking $f^{-1}(y)$ in place of B.

2° Similarly, we have: $\forall t \geq n+2, \forall B \in \mathcal{B}_{j}^{(S)}$ and $\forall C \in \mathcal{F}$,

(I.13.3)
$$\int\limits_{B} dx_{t}(x_{1}) P\left(x_{1}, f^{-1}(C)\right) = \int\limits_{B} dx_{t}(x_{1}) R_{n}(x_{1}, C).$$

If $f^{-1}(y) \in \mathscr{B}_{f}^{(S)}$ and if $\pi_{t}[f^{-1}(y)] > 0$, then

$$(I.13.4) \quad R_n(x,C) = \frac{1}{\pi_t[f^{-1}(y)]} \int_{f^{-1}(y)} d\pi_t(x_1) P(x_1,f^{-1}(C)), \quad \forall x \in f^{-1}(y).$$

3° If $\nabla x_0 \in \mathcal{X}$, $\nabla B \in \mathcal{B}_f$ and $\nabla C \in \mathcal{T}$,

(I.13.5)
$$\int\limits_{B} P(x_0, dx_1) P(x_1, f^{-1}(C)) = \int\limits_{B} P(x_0, dx_1) R(x_1, C),$$

where $R(\cdot, C)$ is \mathscr{B}_f -measurable. Then, we have $\nabla x_0 \in \mathscr{X}, \nabla B \in \mathscr{B}_f, \nabla C \in \mathscr{F}$ and $\nabla n \in \mathbb{N}^*$,

$$(I.13.6) \qquad \int_{B} P_{n+1}(x_{0}, dx_{1}) P(x_{1}, f^{-1}(C))$$

$$= \int_{B} \left[\int_{\mathcal{X}} P_{n}(x_{0}, dx) P(x, dx_{1}) \right] P(x_{1}, f^{-1}(C))$$

$$= \int_{\mathcal{X}} P_{n}(x_{0}, dx) \left[\int_{B} P(x, dx_{1}) P(x_{1}, f^{-1}(C)) \right]$$

$$= \int_{\mathcal{X}} P_{n}(x_{0}, dx) \left[\int_{B} P(x, dx_{1}) R(x_{1}, C) \right]$$

$$= \int_{\mathcal{X}} P_{n+1}(x_{0}, dx_{1}) R(x_{1}, C).$$

So, (I.13.5) implies I.12 (ii): it is sufficient to take $R_n = R$.

4° A sufficient condition for I.12 (i) and I.12 (ii) to be satisfied is that $P(\cdot, f^{-1}(\mathcal{O}))$ is \mathcal{B}_{f} -measurable, $\nabla \mathcal{C} \in \mathcal{F}$.

Indeed, (I.13.5) is then verified, with $P(\cdot, f^{-1}(C))$ in place of $R(\cdot, C)$.

I.14. Consider now the homogeneous case. $(X_t)_{t \in N^*}$ and $(f \circ X_t)_{t \in N^*}$ having the same meanings as above, it is known that $((\mathscr{Y}, \mathscr{F}), Q_{t,t+1})_{t \in N^*}$ is not necessarily homogeneous, although $((\mathscr{X}, \mathscr{B}), P_n)_{n \in N^*}$ is.

A sufficient condition for $((\mathcal{Y}, \mathcal{T}), Q_{t,t+1})_{t \in \mathbb{N}^*}$ to be homogeneous is that $P(\cdot, B)$ is \mathcal{B}_{t} -measurable, $\nabla B \in \mathcal{B}_{t}$.

In the case where there exists no single entry set, this sufficient condition is also necessary.

I. 15. The following remarks will be useful for Part II.

1° Suppose that I.12 (i) and (ii) are verified. Let $v_{s,t}$ be defined by $v_{s,t}(x,C) = Q_{s,t}(y,C)$ for $y \in \mathscr{Y}$, $x \in f^{-1}(y)$ and $C \in \mathscr{F}$. Then $v_{s,t}(\cdot,C)$ is a version of the conditional expectation $E_{\pi_s}[P_{t-s}(\cdot,f^{-1}(C))|\mathscr{B}_f]$.

Indeed, ∇C and $C' \in \mathcal{F}$, and ∇s , $t \in \mathbb{N}^*$ with s < t, we have

$$\Pr\{X_s \in C', Y_t \in C\} = \Pr\{X_s \in f^{-1}(C'), X_t \in f^{-1}(C)\},$$

that is to say

$$(\text{I.15.1}) \qquad \int\limits_{\mathcal{O}'} d\tilde{Q}_s(y) \, Q_{s,t}(y\,,\,C) \, = \, \int\limits_{t^{-1}(C')} d\pi_s(x) P_{t-s}\big(x\,,\,f^{-1}(C)\big).$$

Since $\nu_{s,t}(\cdot, C)$ is \mathscr{B}_{f} -measurable, we have

$$\int\limits_{\mathcal{O}'} d\tilde{Q}_s(y) Q_{s,t}(y,C) = \int\limits_{f^{-1}(C')} d\pi_{s,\mathscr{B}_f}(x) r_{s,t}(x,C),$$

 π_{s,\mathscr{B}_t} denoting the restriction of π_s to \mathscr{D}_t . Then

$$\int\limits_{f^{-1}(C')} d\pi_{s,\mathscr{F}_{f}}(x) \, \nu_{s,t}(x,\,C) = \int\limits_{f^{-1}(C')} d\pi_{s}(x) P_{t-s}\big(x,\,f^{-1}(C)\big).$$

2° Suppose that (I.13.5) is verified. Let $R'(x, f^{-1}(C)) = R(x, C)$, $C \in \mathcal{F}: (R'(x, \cdot))$ is then a positive measure on \mathcal{B}_{i}) and

$$egin{aligned} R^{(1)}(x,\,C) &= R(x,\,C)\,, \ R^{(n)}(x,\,C) &= \int\limits_{x} R'(x,\,dx') R^{(n-1)}(x',\,C)\,. \end{aligned}$$

Then $\nabla B \in \mathcal{B}_t$, $\nabla t \in N^*$ and $\nabla (x_0, C) \in \mathcal{X} \times \mathcal{T}$,

$$(I.15.2) \qquad \int\limits_{\mathcal{D}} P(x_0, \, dx) P_t(x, f^{-1}(C)) = \int\limits_{\mathcal{R}} P(x_0, \, dx) R^{(t)}(x, \, C).$$

We proceed by induction. Suppose that the equality is true for n-1, then $\nabla B \in \mathscr{B}_t$.

$$\begin{split} \int_{B} P(x_{0}, dx) P_{n}(x, f^{-1}(C)) &= \int_{B} P(x_{0}, dx) \Big[\int_{\mathcal{X}} P(x, dx') P_{n-1}(x', f^{-1}(C)) \Big] \\ &= \int_{B} P(x_{0}, dx) \Big[\int_{\mathcal{X}} P(x, dx') R^{(n-1)}(x', C) \Big] \\ &= \int_{\mathcal{X}} \Big[\int_{B} P(x_{0}, dx) P(x, dx') \Big] R^{(n-1)}(x', C) \\ &= \int_{\mathcal{X}} \Big[\int_{B} P(x_{0}, dx) R'(x, dx') \Big] R^{(n-1)}(x', C) \\ &= \int_{\mathcal{X}} P(x_{0}, dx) R^{(n)}(x, C). \end{split}$$

 $3^{\circ} \ \forall s \geqslant 2, \forall t > s \ and \ \forall C \in \mathcal{T}, \ we \ have \ \mu-a.s.$

(I.15.3)
$$Q_{s,t}(y,C) = R^{(t-s)}(x,C), \quad x \in f^{-1}(y).$$

At first, from I.15.2, we have $\nabla B \in \mathcal{B}_f$,

$$\int_{\mathbb{R}} d\overline{\mu}(x) P_n(x, f^{-1}(C)) = \int_{\mathbb{R}} d\overline{\mu}(x) R^{(n)}(x, C) = \int_{\mathbb{R}} d\mu(x) R^{(n)}(x, C),$$

for $R^{(n)}(\cdot, C)$ is \mathscr{B}_{f} -measurable.

Analogously, as in (I.13.3), we have: $\forall B \in \mathcal{B}_t, \forall s \geq 2, \forall t > s$ and $\forall C \in \mathcal{F}$,

$$\int_{B} d\pi_{s}(x) P_{t-s}(x, f^{-1}(C)) = \int_{B} d\pi_{s}(x) R^{(t-s)}(x, C)
= \int_{B} d\pi_{s,\mathscr{B}_{f}}(x) R^{(t-s)}(x, C).$$

Hence, by I.15.1°,

$$v_{s,t}(\cdot,C) = R^{(t-s)}(\cdot,C), \quad \pi_{s,\mathscr{A}_f}$$
-a.s.

and then, π_{s,\mathscr{B}_f} -a.s.

$$Q_{s,t}(y, C) = R^{(t-s)}(x, C), \quad x \in f^{-1}(y).$$

On the other hand, $\forall s \geqslant 2, \pi_{s,\mathscr{A}_f}$ is dominated by μ , so that we have, μ -a.s.

$$Q_{s,t}(y, C) = R^{(t-s)}(x, C), \quad x \in f^{-1}(y).$$

II. PROBLEMS OF ERGODICITY

II.1. We recall the following definitions (cf. [1]): A Markov process $(\Lambda, \mathcal{L}, q_{t,t+1})_{t\in \mathbb{N}^*}$ is said to be:

- (i) strongly ergodic if $\forall s \in N^*$, $\forall z \in \Lambda$ and $\forall A \in \mathcal{L}$, $\lim_{t \to \infty} q_{s,t}(z, A) = \xi_s(A)$, where ξ_s is a probability on \mathcal{L} ;
- (ii) weakly ergodic if $\forall s \in \mathbb{N}^*$, $\forall z \text{ and } z' \in \Lambda \text{ and } \forall A \in \mathcal{L}$, $\lim_{t \to \infty} [q_{s,t}(z, A) q_{s,t}(z', A)] = 0$;
- (iii) strongly (resp. weakly) and uniformly ergodic if it is strongly (resp. weakly) ergodic and if, moreover, the limit in (i) (resp. (ii)) holds uniformly with respect to z and A.
- **II. 2.** HYPOTHESIS. We suppose that (I. 13.5) is verified, that is to say: there exists a mapping $R: \mathcal{X} \times \mathcal{F} \to [0,1]$ such that $\nabla C \in \mathcal{F}, R(\cdot,C)$ is \mathcal{B}_r -measurable and that

$$\int\limits_{B} P(x_{0}, dx_{1}) P(x_{1}, f^{-1}(C)) = \int\limits_{B} P(x_{0}, dx_{1}) R(x_{1}, C),$$

 $\nabla x_0 \in \mathcal{X}, \ \nabla C \in \mathcal{F} \ and \ \nabla B \in \mathcal{B}_t$.

By I.13.3°, we see that I.12 (ii) is verified.

II. 3. $\nabla C \in \mathcal{F}$, $R(\cdot, C)$ is a version of $E_{P(x_0, \cdot)}[P(\cdot, f^{-1}(C)) | \mathcal{B}_f]$, then $R(\cdot, C)$ is also a version of $E_{\overline{\mu}}[P(\cdot, f^{-1}(C)) | \mathcal{B}_f]$. We have seen (Part I) that we can choose R in such a way that $\nabla x \in \mathcal{X}$, $R(x, \cdot)$ is a probability on \mathcal{F} , and that for $s \geq 2$, μ -a.s.,

$$Q_{s,t}(y, C) = R^{(t-s)}(x, C), \quad x \in f^{-1}(y),$$

where $R^{(t-s)}(\cdot, C)$ is a version of $E_{\overline{\mu}}[P_{t-s}(\cdot, f^{-1}(C))|\mathscr{B}_{t}]$.

More precisely, there exists a set $N_f \in \mathscr{B}_f$ (viz. there exists $N \in \mathscr{T}$ such that $N_f = f^{-1}(N)$), with $\mu(N_f) = 0$, such that $\nabla s \geq 2$, $\nabla t \geq s$, $\nabla C \in \mathscr{T}$,

$$Q_{s,t}(y,C) = R^{(t-s)}(x,C), \quad x \in f^{-1}(y), \quad \text{if } y \notin N.$$

We specially consider the case where, $\forall s \ge 2$,

(II.3.1)
$$Q_{s,t}(y,C) = R^{(t-s)}(x,C), \quad x \in f^{-1}(y), \quad \text{if } y \notin N;$$
$$Q_{s,s+1}(y,C) = \mu'(C) \quad \text{if} \quad y \in N, \mu' \text{ denoting the image of } \mu \text{ by } f.$$

II. 4. Proposition. Under Hypothesis II.2, if $(X_t)_{t \in \mathbb{N}^*}$ is a Markov random function attached to a Markov process $((\mathcal{X}, \mathcal{B}), P_n)_{n \in \mathbb{N}^*}$ strongly and uniformly ergodic, then $(f \circ X_t)_{t \in \mathbb{N}^*}$ is a Markov random function attached to a strongly and uniformly ergodic Markov process.

Proof. 1° By hypothesis, $\lim_{t\to\infty} P_t(x,A) = \xi(A)$ uniformly with respect to x and A, where ξ is a probability on \mathscr{B} . Let $\mathscr{F}_0 = (C_0^t)_{t\in \mathbb{N}^*}$ be an algebra generating \mathscr{F} . $\forall C_0^t \in \mathscr{F}_0$, $R^{(t)}(\cdot,C_0^t)$ is a version of the conditional expectation $E_{\mu}[P_t(\cdot,f^{-1}(C_0^t))|\mathscr{B}_f]$. Since $0 \leqslant P_t(\cdot,f^{-1}(C_0^t)) \leqslant 1$, $\forall t \in \mathbb{N}^*$, we have

$$\lim_{t\to\infty}R^{(t)}(\cdot,C_0^i)=E_{\tilde{\mu}}[\lim_{t\to\infty}P_t(\cdot,f^{-1}(C_0^i))|\mathscr{B}_f]=\xi[f^{-1}(C_0^i)],~~\mu\text{-a.s.}$$

But \mathscr{T}_0 is countable, so that there exists a set $N_1 \in \mathscr{B}_f$ such that $\mu(N_1) = 0$ and

$$(\text{II}.4.1) \qquad \lim_{t\to\infty} R^{(t)}(x,\,C_0^i) = \xi[f^{-1}(C_0^i)], \quad \forall x \notin N_1 \text{ and } \forall C_0^i \in \mathcal{F}_0.$$

Let us now prove that this limit is uniform, μ -a.s. Indeed, by hypothesis, $\nabla \varepsilon > 0$, $\exists n_e \in N^*$ such that $t > n_e$ implies

$$-\varepsilon + \xi [f^{-1}(C_0^i)] < P_t \big(x, f^{-1}(C_0^i) \big) < \varepsilon + \xi [f^{-1}(C_0^i)], \quad \nabla (x, C_0^i) \in \mathcal{X} \times \mathcal{F}_0.$$

Hence, $\nabla B \in \mathcal{B}_t$,

$$\left(-\varepsilon + \xi \left[f^{-1}(C_0^i)\right]\right) \cdot \mu(B) < \int\limits_B d\mu(x) P_t\!\!\left(x, f^{-1}(C_0^i)\right) < \left(\varepsilon + \xi \left[f^{-1}(C_0^i)\right]\right) \cdot \mu(B)\,,$$

and, consequently, $\nabla B \in \mathcal{B}_t$,

$$\left(-\varepsilon + \xi \left[f^{-1}(C_0^i)\right]\right) \cdot \mu(B) < \int\limits_{\mathbb{R}} d\mu(x) R^{(t)}(x, C_0^i) < \left(\varepsilon + \xi \left[f^{-1}(C_0^i)\right]\right) \cdot \mu(B).$$

This implies that

$$(\text{II}.4.2) \quad -\varepsilon + \xi [f^{-1}(C_0^i)] < R^{(t)}(\cdot, C_0^i) < \varepsilon + \xi [f^{-1}(C_0^i)], \quad \mu\text{-a.s.}$$

By (II.4.1) and (II.4.2), there exists a μ -null set $N_2 \in \mathcal{B}_f$ such that

$$(\text{II.4.3}) \qquad \lim_{t\to\infty} R^{(t)}(x,\,C_0^i) = \, \xi[f^{-1}(C_0^i)], \quad \, \forall x \, \epsilon N_1 \cup N_2 \, \text{ and } \, \forall C_0^i \, \epsilon \mathcal{F}_0$$

and this limit is uniform with respect to $(x,\,C_0^i)$ on $(N_1\cup N_2) imes {\mathscr F}_0$.

2° Let us prove now that (II.4.3) is verified for every $C \in \mathcal{T}$. For this purpose, let us prove that the class \mathcal{F}' of sets $C \in \mathcal{F}$ such that (II.4.3) is verified, is a monotone class containing \mathcal{F}_0 (and, consequently, \mathcal{F}' contains \mathcal{F}).

Indeed, it is clear that \mathscr{T} contains \mathscr{T}_0 . It remains to prove that \mathscr{T} is a monotone class. Let $(C_i)_{i\in\mathbb{N}^*}$ be a monotone sequence of elements of \mathscr{T} whose limit is C. For every $x\notin N_1\cup N_2$, we have

$$(\text{II}.4.4) \qquad \lim_{t\to\infty} R^{(t)}(x,C) = \lim_{t\to\infty} \lim_{t\to\infty} R^{(t)}(x,C_t),$$

for $R^{(t)}(x,\cdot)$ is a probability on \mathscr{T} .

Since the limit $\lim_{t\to\infty} R^{(t)}(x, C_i)$ is uniform with respect to C_i , we have

$$\begin{split} (\text{II.4.5}) & & \lim_{t \to \infty} R^{(t)}(x,\,C) = \lim_{t \to \infty} \lim_{t \to \infty} R^{(t)}(x,\,C_i) = \lim_{t \to \infty} \, \xi \, [f^{-1}(C_i)] \\ & = \, \xi \, [f^{-1}(\lim_{t \to \infty} C_i)] = \, \xi \, [f^{-1}(C)], \quad \, \forall x \notin N_1 \cup N_2. \end{split}$$

This limit is also uniform with respect to (x, C) on $\mathfrak{g}(N_1 \cup N_2) \times \mathscr{F}$, for by (II.4.2), $t > n_e$ and $x \notin N_1 \cup N_2$ implies that

$$-\varepsilon < R^{(l)}(x, C_i) - \xi [f^{-1}(C_i)] < \varepsilon, \quad \nabla i \in N^*,$$

and

$$-\,\varepsilon + \xi \, [f^{-1}(C)] < R^{(l)}(x,\,C) < \varepsilon + \xi \, [f^{-1}(C)]\,.$$

Thus, $C \in \mathcal{T}'$, hence $\mathcal{T}' \supset \mathcal{T}$, consequently $\mathcal{T}' = \mathcal{T}$.

3° We examine now separately the three following cases:

(a) $s\geqslant 2$ and $y\notin f(N_1\cup N_2).$ Then $f^{-1}(y)\subset {\bf G}(N_1\cup N_2)$ and, by (II.4.5), we have

(II.4.6)
$$\lim_{t\to\infty} Q_{s,t}(y,C) = \lim_{t\to\infty} R^{(t-s)}(x,C) = \xi[f^{-1}(C)], \quad x \in f^{-1}(y),$$

uniformly with respect to (y, C) on $\mathbf{G}f(N_1 \cup N_2) \times \mathcal{F}$.

(b) $s\geqslant 2$ and $y\in f(N_1\cup N_2)$. As indicated in (II.3.1), we take $Q_{s,s,1}(y,C)=\mu'(C)$ and, for t>s+1, we have

$$egin{aligned} Q_{s,t}(y,\,C) &= \int\limits_{y} Q_{s,s+1}(y,\,dy') Q_{s+1,t}(y',\,C) \ &= \int\limits_{tt(N_{s},\,N_{s})} Q_{s,s+1}(y,\,dy') Q_{s+1,t}(y',\,C). \end{aligned}$$

By II.4.6 and the Fatou-Lebesgue theorem, we have

$$(\text{II}.4.7) \quad \lim_{t \to \infty} Q_{s,t}(y,C) = \int\limits_{t \neq (N_s \cup N_s)} d\mu'(y') \lim\limits_{t \to \infty} Q_{s+1,t}(y',C) = \xi \left[f^{-1}(C)\right],$$

uniformly with respect to (y, C) on $f(N_1 \cup N_2) \times \mathcal{T}$.

(c)
$$s = 1$$
. We have

$$\underset{t\rightarrow\infty}{\lim}Q_{1,t}(y,C)=\int\limits_{\mathscr{Y}}Q_{1,2}(y,dy')\cdot\underset{t\rightarrow\infty}{\lim}Q_{2,t}(y',C)=\xi[f^{-1}(C)],$$

by (II.4.6) and (II.4.7), uniformly with respect to (y, C) on $\mathscr{V} \times \mathscr{F}$. Thus, the Markov process $((\mathscr{Y}, \mathscr{F}), Q_{t,t+1})_{t \in \mathbb{N}^*}$ is strongly and uniformly ergodic.

II.5. Hypotheses. Let $\mathscr{Y}^* = \{y \in \mathscr{Y}: \mu[f^{-1}(y)] > 0\}$. We remark that \mathscr{Y}^* contains an at most countable set of points, $\mathscr{Y}^* = \{y_1, \ldots, y_n, \ldots\}$, for $\mu(\mathscr{X}) = 1$. I.3 (ii) implies that $\mathscr{Y}^* \in \mathscr{F}$. We suppose that $\mu[f^{-1}(\mathscr{Y}^*)] = 1$

and that $\forall x \in \mathcal{X}$, the series $\sum_{k} P_t(x, f^{-1}(y_k))$ converges uniformly with respect to t.

In the particular case where \mathscr{Y} is a finite or countable set, the condition $\mu\lceil f^{-1}(\mathscr{Y}^*)\rceil = 1$ is always verified.

II.6. PROPOSITION. If $(X_t)_{t \in \mathbb{N}^*}$ is attached to a strongly ergodic Markov process $((\mathcal{X}, \mathcal{B}), P_t)_{t \in \mathbb{N}^*}$ and if, moreover, the hypotheses II.2 and II.5 are satisfied, then $(f \circ X_t)_{t \in \mathbb{N}^*}$ is attached to a strongly ergodic Markov process.

Proof. By hypothesis, there exists no μ -null set $N \in \mathscr{B}_f$ contained in $f^{-1}(\mathscr{Y}^*)$. $\nabla y_k \in \mathscr{Y}^*$, there exists a μ -null set $N_k \in \mathscr{B}_f$ such that

$$\lim_{t\to\infty} R^{(t)}(x,\{y_k\}) = E_{\widetilde{\mu}} \big[\lim_{t\to\infty} P_t \big(x,f^{-1}(y_k)\big) \, | \, \mathscr{B}_t \big] = \xi \, [f^{-1}(y_k)], \quad \, \forall x \notin N_k.$$

Hence, there exists $N = \bigcup_{k=1}^{\infty} N_k \epsilon \mathscr{B}_f$, μ -null, such that

$$\lim_{t\to\infty} R^{(t)}(x, \{y_k\}) = \xi[f^{-1}(y_k)], \quad \nabla x \notin N.$$

We must now prove that, $\forall C \subset \mathscr{Y}^*$,

$$\lim_{t\to\infty}R^{(t)}(x,\,C)=\,\xi\,[f^{-1}(C)],\qquad \forall x\notin N\,.$$

This formula is true for every C which is a finite union of $\{y_k\}$. It remains for us to examine the case where C is a countable union of $\{y_k\}$. Let $C = \bigcup_{i=1}^{\infty} \{y_{k_i}\}$ be such a countable union. We have, $\forall x \notin N$,

$$egin{aligned} \lim_{t o \infty} R^{(t)}(x,C) &= \lim_{t o \infty} \sum_{j=1}^{\infty} R^{(t)}(x,\{y_{k_j}\}) \ &= \lim_{t o \infty} \sum_{j=1}^{\infty} P_t(x,f^{-1}(y_{k_j})) \ &= \sum_{j=1}^{\infty} \lim_{t o \infty} P_t(x,f^{-1}(y_{k_j})) \ &= \sum_{j=1}^{\infty} \lim_{t o \infty} R^{(t)}(x,\{y_{k_j}\}) \ &= \sum_{j=1}^{\infty} \xi [f^{-1}(y_{k_j})] \ &= \xi [f^{-1}(C)]. \end{aligned}$$

For the rest of the proof, we use the same argument as that in II.4.3° with the three cases: $s \ge 2$ and $y \in f(N)$; $s \ge 2$ and $y \in f(N)$; $s \ge 1$.

H.7. PROPOSITION. If $(X_t)_{t,\mathbf{N}^*}$ is attached to a weakly ergodic homogeneous Markov process, and if II.2 and II.5 are satisfied, then $(f \circ X_t)_{t,\mathbf{N}^*}$ is attached to a weakly ergodic Markov process $((\mathscr{Y},\mathscr{T}),Q_{t,t+1})_{t,\mathbf{N}^*}$.

Proof. We use, for the proof of this proposition, the following criteria for weak ergodicity (cf. [1]):

A Markov process $((\Lambda, \mathcal{L}), q_{l,t+1})_{l \in \mathbb{N}^*}$ is weakly ergodic if and only if for every $s \in \mathbb{N}^*, B \in \mathcal{L}$, for every increasing sequence $(t_i)_{j \in \mathbb{N}^*}$ of indices such that $q_{s,t_j}(u,B)$ converges to a limit when $j \to \infty$, for some $u \in \Lambda$, $q_{s,t_j}(v,B)$ converges $\forall v \in \Lambda$ to the same limit; moreover, this common limit is independent of s.

1° Let $(x_0,C) \in \mathcal{X} \times \mathcal{F}$, and let $\sigma = (t_i)_{i \in \mathbb{N}^*}$ be an increasing sequence of indices such that the sequence $\left(P_{t_i}(x_0,f^{-1}(C))\right)_{i \in \mathbb{N}^*}$ is convergent. The criteria cited above implies that $\nabla s \in \mathbb{N}^*$ and $\nabla x \in \mathcal{X}$, the sequence $\left(P_{t_i-s}(x,f^{-1}(C))\right)_{i \in \mathbb{N}^*}$ converges to the same limit. Let $l(\sigma,C)$ denote the common limit of these sequences.

An argument analogous to that in II.6.1° shows that

$$\lim_{t\to\infty} R^{(t_i-s)}(\cdot\,,\,C) = l(\sigma,\,C), \quad \mu ext{-a.s.},$$

and since there exists no μ -null element of \mathscr{B}_f , contained in $f^{-1}(\mathscr{Y}^*)$, we have

$$\lim_{i\to\infty}R^{(t_i-\theta)}(x,C)=l(\sigma,C),\quad \forall x\,\epsilon f^{-1}(\mathscr{Y}^*).$$

Using the same argument employed in II.4.3°, with the 3 cases (a), (b), (c), we have $\nabla U \in \mathcal{F}$, $\nabla \sigma$,

$$\lim_{t\to\infty}Q_{s,t_i}(y,C)=l(\sigma,C), \quad \forall s \in N^* \text{ and } \forall y \in \mathscr{Y}.$$

2° Now let $s_0 \in N^*$, $C \in \mathcal{F}$ and let $\sigma = (t_j)_{j \in N^*}$ be a sequence of indices such that $(Q_{s_0,t_j}(y_0,C))_{j \in N^*}$ is convergent for a certain $y_0 \in \mathcal{Y}$. Let $l(\sigma,s_0,y_0,C)$ denote this limit. Following the criteria, we must prove that this limit is independent of y_0 and s_0 . Let us examine separately the 3 following cases:

(a) $s \ge 2$ and $y_0 \in \mathscr{Y}^*$. Then, we have

$$Q_{s_0,t_i}(y_0,C) = R^{(t_i-s_0)}(x_0,C), \quad x_0 \in f^{-1}(y_0),$$

and

$$(\text{II}.7.1) \quad R^{(l_j-s_0)}(x_0,C) \cdot \mu \left[f^{-1}(y_0) \right] = \int\limits_{f^{-1}(y_0)} d\mu(x) \cdot P_{t_j-s_0} \big(x, f^{-1}(C) \big).$$

The sequence $(P_{t_j-s_0}(x_0, f^{-1}(C)))_{t \in \mathbb{N}^*}$ being a sequence of numbers contained in the interval [0,1], we can find a convergent subsequence $(P_{t_j-s_0}(x_0, f^{-1}(C)))_{k \in \mathbb{N}^*}$. Since $((\mathscr{X}, \mathscr{B}), P_t)_{t \in \mathbb{N}^*}$ is weakly ergodic, the

limit of this convergent subsequence is independent of x_0 and of s_0 . Let $l(\sigma', O)$ denote this limit, σ' being the subsequence $(t_{l_k})_{k \in \mathbb{N}^n}$.

By the Fatou-Lebesgue theorem, (II.7.1) implies that

$$\lim_{j\to\infty} R^{(t_{j_k}-s_0)}(x_0,\,C)\cdot \mu\,[f^{-1}(y_0)] = \int\limits_{j^{-1}(y_0)} d\bar{\mu}(x)\cdot \lim_{k\to\infty} P_{t_{j_k}-s_0}\!\!\left(x,f^{-1}(C)\right)\!,$$

hence

$$l(\sigma, s_0, y_0, C) \cdot \mu[f^{-1}(y_0)] = l(\sigma', C) \cdot \mu[f^{-1}(y_0)].$$

Consequently, since $\mu[f^{-1}(y_0)] > 0$,

$$l(\sigma, s_0, y_0, C) = l(\sigma', C)$$

Thus, all the convergent subsequences of the sequence $(P_{i_1-s_0}(x_0, f^{-1}(C)))_{j \in \mathbb{N}^*}$ have the same limit: the sequence itself is then convergent, and

$$\lim_{t_{1} \to \infty} P_{t_{j}-s_{0}}(x_{0}, f^{-1}(C)) = l(\sigma, s_{0}, y_{0}, C).$$

By 1° $\nabla s \in N^*$ and $\nabla y \in \mathscr{Y}$:

$$\lim_{j\to\infty}Q_{s,t_j}(y,C)=\lim_{j\to\infty}Q_{s_0,t_j}(y_0,C).$$

(b)
$$s_0 \ge 2$$
 and $y_0 \notin \mathscr{Y}^*$. Then, $f^{-1}(y_0) \subset \mathbf{G} f^{-1}(\mathscr{Y}^*)$. We have

$$Q_{s_0,t_j}(y_0,C) = \int\limits_{\mathscr{Q}_*} d\mu'(y) Q_{s_0+1,t_j}(y,C).$$

Let $y_1 \in \mathscr{Y}^*$, and let $(Q_{s_0+1,t_{j_k}}(y_1,C))_{k \in \mathbb{N}^*}$ be a convergent subsequence. By (a), $\forall y \in \mathscr{Y}$, the sequence $((Q_{s_0+1,t_{j_k}}(y,C)))_{k \in \mathbb{N}^*}$ converges to the same limit, the Fatou-Lebesgue theorem gives

$$\lim_{k o\infty}Q_{s_0,t_{j_k}}(y_0,C)=\int\limits_{\mathscr{Y}^*}d\mu'(y)\cdot\lim_{k o\infty}Q_{s_0+1,t_{j_k}}(y,C),$$

that is to say

$$l(\sigma, s_0, y_0, C) = \lim_{k \to \infty} Q_{s_0+1, t_{j_k}}(y_1, C).$$

Thus, all the convergent subsequences of the sequence $(Q_{s_0+1,t_j}(y_0, C))_{i \in \mathbb{N}^+}$ have the same limit. Hence, the sequence itself is convergent, and

$$\lim_{j\to\infty} Q_{s_0+1,t_j}(y_1,C) = l(\sigma,s_0,y_0,C).$$

By 1° $\nabla s \in N^*$ and $\nabla y \in \mathcal{Y}$,

$$\lim_{j\to\infty}Q_{s,t_j}(y,C)=\lim_{j\to\infty}Q_{s,t_j}(y_0,C).$$

(c)
$$s_0=$$
 1. We have
$$Q_{1,t_j}(y_0,C)=\int\limits_{\mathscr{Q}}Q_{1,2}(y_0,dy)Q_{2,t_j}(y,C).$$

Let $y_2 \in \mathcal{Y}$ and let $(Q_{2,t_{j_L}}(y_2,C))_{k \in \mathbb{N}^*}$ be a convergent subsequence. By (a) and (b), the sequence $(Q_{2,t_{j_n}}(y,C))_{k \in \mathbb{N}^*}$ converges to a limit inde-

$$\lim_{k \to \infty} Q_{1,t_{j_k}}(y_0, C) = \int\limits_{x} Q_{1,2}(y_0, dy) \lim_{k \to \infty} Q_{2,t_{j_k}}(y, C),$$

pendent of $y \in \mathcal{Y}$. The Fatou-Lebesgue theorem shows that

viz.

$$l(\sigma, s_0, y_0, C) = \lim_{k \to \infty} Q_{2,t_{j_k}}(y_2, C).$$

All the convergent subsequences of $(Q_{2,t_i}(y_2, C))_{i\in \mathbb{N}^*}$ having the same limit, the sequence itself is convergent, and we have

$$\lim_{j\to\infty} Q_{2,t_j}(y_2,C) = l(\sigma, s_0, y_0, C).$$

Consequently,

$$\lim_{i\to\infty} Q_{1,t_i}(y,C) = l(\sigma,s_0,y_0,C) = \lim_{i\to\infty} Q_{1,t_i}(y_0,C).$$

Thus, in every case, $l(\sigma, s_0, y_0, C)$ is independent of s_0 and y_0 , and the Markov process $((\mathcal{Y}, \mathcal{T}), Q_{t,t+1})_{t \in \mathbb{N}^*}$ is weakly ergodic.

II.8. Examples. Here are some examples in the case of a finite state space.

$$1^{\circ} \mathcal{X} = \{1, 2, 3, 4\}, \mathcal{B} = \mathcal{P}(\mathcal{X}) \text{ and }$$

$$P = egin{pmatrix} rac{1}{3} & rac{1}{3} & rac{1}{6} & rac{1}{6} \ rac{1}{4} & rac{1}{4} & rac{1}{4} & rac{1}{4} \ rac{1}{6} & rac{1}{6} & rac{1}{3} & rac{3}{3} \ rac{2}{10} & rac{2}{10} & rac{3}{10} & rac{3}{10} \end{pmatrix}.$$

We can verify that the process $((\mathscr{X},\mathscr{P}(\mathscr{X})),P_t)_{t\in N^*}$ is strongly and uniformly ergodic, for & is finite and

$$\lim_{t \to \infty} P_t = \begin{pmatrix} \frac{11}{47} & \frac{11}{27} & \frac{25}{94} & \frac{25}{94} \\ \frac{11}{47} & \frac{11}{47} & \frac{25}{94} & \frac{25}{94} \\ \frac{11}{47} & \frac{11}{47} & \frac{25}{94} & \frac{25}{94} \\ \frac{17}{47} & \frac{11}{47} & \frac{25}{94} & \frac{25}{94} \end{pmatrix}.$$

Now, consider $f: \mathcal{X} \to \mathcal{Y}$ such that f(1) = f(2) = 1; f(3) = f(4) = 2. We take μ on \mathcal{B}_t such that

$$\mu[f^{-1}(i)] = \sum_{j \in \mathfrak{X}} a_j Pig(j, f^{-1}(i)ig), \quad \, \, \, orall i \, \epsilon \mathscr{Y} \, \, \, ext{where} \, \, \, a_j > 0 \, , \, \, \sum_{i \in \mathfrak{X}} a_i = 1 \, .$$

Hypothesis II.2, in our case, is satisfied by the mapping $R: \mathcal{X} \times \mathcal{P}(\mathcal{Y}) \rightarrow$ $\rightarrow [0,1]$ defined by

$$R(j_0, \{1\}) = \frac{7}{12}, \quad R(j_0, \{2\}) = \frac{5}{12} \quad \text{for } j_0 = 1, 2,$$
 $R(j_0, \{1\}) = \frac{11}{30}, \quad R(j_0, \{2\}) = \frac{19}{30} \quad \text{for } j_0 = 3, 4.$

Then, we have

$$Q_{t,t+1} = egin{pmatrix} rac{7}{12} & rac{5}{12} \ rac{1}{30} & rac{19}{30} \end{pmatrix}, \hspace{0.5cm} orall t \geqslant 2 \,.$$

Computations show that

$$\lim_{t o\infty}Q_{s,t}=egin{pmatrix} rac{22}{47} & rac{25}{47} \ rac{19}{30} & rac{30}{30} \end{pmatrix}, \quad orall s\geqslant 2 \; ,$$

and

$$\lim_{t o\infty}Q_{1,t}=Q_{1,2}\cdot\lim_{t o\infty}Q_{2,t}=\lim_{t o\infty}Q_{2,t},$$

for $Q_{1,2}$ is a stochastic matrix and $\lim Q_{2,t}$ is with all its rows identical-Thus, $((\mathscr{Y}, \mathscr{P}(\mathscr{Y})), Q_{t,t+1})_{t \in \mathbb{N}^*}$ is also strongly and uniformly ergodic.

 $2^{\circ} \ \mathscr{X} = \{1, 2, 3\}, \mathscr{B} = \mathscr{P}(\mathscr{X}) \text{ and }$

$$P = egin{pmatrix} rac{1}{2} & rac{1}{2} & 0 \ rac{1}{2} & rac{1}{2} & 0 \ rac{1}{2} & rac{1}{2} & 0 \end{pmatrix}.$$

The Markov process $((\mathcal{X}, \mathcal{P}(\mathcal{X})), P_t)_{t \in \mathbb{N}^*}$ is strongly and uniformly ergodic, for $\mathscr X$ is finite and $P_t = P'$, $\nabla t \in N^*$. Let $\mathscr Y = \{1,2\}$ and $f: \mathcal{X} \to \mathcal{Y}$ be defined by f(1) = f(2) = 1, and f(3) = 2.

We take μ on \mathcal{B}_t such that

$$\mu[f^{-1}(i)] = \sum_{j \in \mathfrak{X}} a_j P(j, f^{-1}(i)), \quad orall i \in \mathscr{Y}, ext{ where } a_j > 0, \ \sum_{j \in \mathfrak{X}} a_j = 1.$$

Thus,

$$\mu[f^{-1}(1)] = 1$$
 and $\mu[f^{-1}(2)] = 0$.

Hypothesis II.2 is satisfied by the mapping $R\colon\thinspace \mathcal{X}\times\mathcal{P}(\mathcal{Y})\to \lceil 0\,,\,1\rceil$ defined by

$$R(1, \{1\}) = R(2, \{1\}) = 1,$$

 $R(1, \{2\}) = R(2, \{2\}) = 0,$
 $R(3, \{1\}) + R(3, \{2\}) = 1,$

where $R(3, \{1\})$ can be arbitrarily chosen.

Hence, we can take

$$Q_{t,t+1} = egin{pmatrix} 1 & 0 \ _{
u\lceil f^{-1}(1)
ceil} &
u\lceil f^{-1}(2)
ceil \end{pmatrix} \quad ext{for} \quad t\geqslant 2\,,$$

where ν is an arbitrarily chosen probability measure on \mathscr{B}_f .

a) If ν is such that $\nu[f^{-1}(1)] = 0$ and $\nu[f^{-1}(2)] = 1$, then

$$Q_{t,t+1} = \begin{pmatrix} 1 & 0 \\ 0 & 1 \end{pmatrix}, \quad orall t \geqslant 2,$$

and the process $((\mathscr{Y}, \mathscr{P}(\mathscr{Y})), Q_{t,t+1})_{t \in \mathbb{N}^*}$ is not strongly ergodic.

b) If ν is such that $\nu[f^{-1}(1)] = \alpha$, where $\alpha \in]0, 1]$, then

$$Q_{t,t+1} = egin{pmatrix} 1 & 0 \ lpha & 1-lpha \end{pmatrix}, \quad orall t \geqslant 2 \, .$$

We have

$$\lim_{t o\infty}Q_{s,s+t}=\lim_{t o\infty}inom{1}{1-(1-a)^t}inom{0}{(1-a)^t}=inom{1}{1}inom{0}{1},\quad orall s\geqslant 2\,,$$

and, consequently, the process $\left(\left[\mathscr{Y}, \mathscr{P}(\mathscr{Y}) \right], Q_{t,t+1} \right)_{t \in \mathbb{N}^*}$ is strongly ergodic.

We examine now the converse for the proposition II.7.

II.9. HYPOTHESES. (i) $\forall x \in \mathcal{X}, P(x, \cdot)$ is of the form

(II.9.1)
$$P(x, B) = \int_{B} g(x, x') d\overline{\mu}(x'),$$

where $B \in \mathcal{B}$, and $g(x, \cdot)$ is \mathcal{B}_t -measurable.

(ii) $\nabla(x, B) \in \mathcal{X} \times \mathcal{B}$, if $(t_j)_{j \in \mathbf{N}^*}$ is an increasing sequence of indices such that the sequence $(P_{t_j}(x, B))_{f \in \mathbf{N}^*}$ converges, then $\nabla x' \in f^{-1}(f(x))$, the sequence $(P_{t_j}(x', B))_{f \in \mathbf{N}^*}$ converges and

(II.9.2)
$$\lim_{t \to \infty} P_{t_j}(x, B) = \lim_{t \to \infty} P_{t_j}(x', B).$$

II.10. The following is an interpretation of II.9: II.9 (i) implies the condition of Doeblin (cf. [2]) for the homogeneous Markov process $((\mathscr{X},\mathscr{B}),P_t)_{t\in\mathbb{N}^*}$. II 9. (ii) implies that $\nabla y \in \mathscr{Y}$, if $f^{-1}(y)$ is included in an ergodic set (cf. [2]) decomposable in cyclic subsets Γ_1,\ldots,Γ_d , then $f^{-1}(y)$ is included in one of these cyclic subsets. Indeed, suppose that there exist two distinct cyclic subsets Γ_k and $\Gamma_{k'}$ such that $\Gamma_k \cap f^{-1}(y) \neq \emptyset$ and $\Gamma_{k'} \cap f^{-1}(y) \neq \emptyset$. We know, by [2], that there exist probabilities \mathbb{R}^n and \mathbb{R}^n on \mathbb{R} such that $\mathbb{R}^n(\Gamma_k) = 1$ and \mathbb{R}^n on \mathbb{R} such that

$$egin{align} &\lim_{n o\infty}P_{nd}(x_k,arGamma_k)={}_{k}\pi(arGamma_k)=1\,, \ &\lim_{n o\infty}P_{nd}(x_{k'},arGamma_{k'})={}_{k'}\pi(arGamma_{k'})=0\,, \end{aligned}$$

and thus, II.9 (ii) is not be verified.

II.11. Proposition. Under II.9 (i), $\forall t \in \mathbb{N}^*$ and $\forall (x, B) \in \mathcal{X} \times \mathcal{B}$,

$$P_t(x, B) = \int\limits_{\mathcal{B}} g^{(t)}(x, x') d\overline{\mu}(x'),$$

where the $g^{(t)}$, \mathcal{B}_t -measurable, are defined by recurrence:

$$g^{(1)}=g,$$

$$g^{(t)}(x,x') = \int\limits_{\mathbb{S}^r} g^{(t-1)}(x,x_1)g(x_1,x')d\overline{\mu}(x_1), \quad \ \forall x \ \ \text{and} \ \ x' \in \mathcal{X}.$$

Proof. We proceed by induction. It is easy to verify the formula for t=2. Suppose now that

$$P_{t-1}(x, B) = \int\limits_{\mathcal{B}} g^{(t-1)}(x, x') d\overline{\mu}(x').$$

We have

$$\begin{split} P_t(x,\,B) &= \int\limits_{\mathcal{X}} P_{t-1}(x,\,dx_1) P(x_1,\,B) \\ &= \int\limits_{\mathcal{X}} g^{(t-1)}(x,\,x_1) \, d\overline{\mu}(x_1) \cdot \int\limits_{B} g(x_1,\,x') \, d\overline{\mu}(x') \\ &= \int\limits_{B} \Big[\int\limits_{\mathcal{X}} g^{(t-1)}(x,\,x_1) g(x_1,\,x') \, d\overline{\mu}(x_1) \Big] d\overline{\mu}(x') \\ &= \int\limits_{B} g^{(t)}(x,\,x') \, d\overline{\mu}(x'). \end{split}$$

H.1.2. Proposition. Suppose that II.5 and II.9 are satisfied. Let $((\mathscr{A},\mathscr{T}),Q_{t,t+1})_{t\in\mathbb{N}^*}$, to which $(f\circ X_t)_{t\in\mathbb{N}}$ is attached, be defined by (II.3.1) with $N=f^{-1}(\mathscr{A}^*)$. If $((\mathscr{A},\mathscr{F}),Q_{t,t+1})_{t\in\mathbb{N}^*}$ is strongly ergodic, then $((\mathscr{X},\mathscr{B}),P_t)_{t\in\mathbb{N}^*}$ is also strongly ergodic.

Proof. By hypothesis, $\nabla s \in N^*$, $\nabla y \in \mathscr{Y}$ and $\nabla C \in \mathscr{T}$,

(II.12.1) $\lim_{t\to\infty} Q_{s,s+t}(y,C) = \pi(C)$, where π is a probability on \mathscr{F} .

1° At first, let us examine the limit $\lim_{t\to\infty} P_t(x, B)$, for $x\in\mathcal{X}$ and $B\in\mathcal{B}_f$.

Let $x_0 \in \mathcal{X}$, $y_0 = f(x_0)$ and $C \in \mathcal{T}$.

(a) If $x_0 \in f^{-1}(\mathscr{Y}^*)$, then $f^{-1}(y_0) \subset f^{-1}(\mathscr{Y}^*)$, and

$$Q_{s,t,t}(y_0,C) = R^{(t)}(x_0,C).$$

Hence,

(II.12.2)
$$Q_{s,s+t}(y_0, C) \cdot \mu[f^{-1}(y_0)] = \int_{f^{-1}(y_0)} d\overline{\mu}(x) P_t(x, f^{-1}(C)).$$

 $(P_t(x_0, f^{-1}(C)))_{t \in \mathbb{N}^*}$ being a sequence of numbers of [0, 1], we can find a convergent subsequence $(P_{t_j}(x_0, f^{-1}(C)))_{j \in \mathbb{N}^*}$ whose limit is $l(x_0, \sigma, C)$,

 σ denoting the increasing sequence $(t_j)_{j \in \mathbb{N}^*}$ of indices. By II.9 (ii), we have $\nabla x \in f^{-1}(y_0)$,

(II.12.3)
$$\lim_{t\to\infty} P_{t_j}(x, f^{-1}(C)) = l(x_0, \sigma, C).$$

Consequently, the Fatou-Lebesgue theorem, (II.12.1), (II.12.2) and (II.12.3) imply that

$$\underset{j\to\infty}{\lim}Q_{s,s+t_j}(y_0,C)\cdot\mu\left[f^{-1}(y_0)\right]=\int\limits_{f^{-1}(y_0)}d\overline{\mu}(x)\cdot\underset{j\to\infty}{\lim}P_{t_j}\big(x,f^{-1}(C)\big),$$

viz.

$$\lim_{t\to\infty} Q_{s,s+t_j}(y_0,\,C)\cdot \mu \llbracket f^{-1}(y_0)\rrbracket = l(x_0,\,\sigma,\,C)\cdot \mu \llbracket f^{-1}(y_0)\rrbracket,$$

viz.

$$\pi(C) = l(x_0, \sigma, C), \quad \text{for} \quad \mu[f^{-1}(y_0)] > 0.$$

All the convergent subsequences of the sequence $(P_t(x_0, f^{-1}(C)))_{t \in V}$ having the same limit, the sequence itself is then convergent and we have

(II.12.4)
$$\lim_{t\to\infty} P_t(x_0, f^{-1}(C)) = \pi(C), \quad \forall x_0 \in f^{-1}(\mathscr{Y}^*) \text{ and } \forall C \in \mathscr{T}.$$

(b) If
$$x_0 \in f^{-1}(\mathscr{Y}^*)$$
, we have, for $t \ge 2$,

$$P_t(x_0, f^{-1}(C)) = \int_{\mathcal{X}} P(x_0, dx) P_{t-1}(x, f^{-1}(C)).$$

Since $\mu[f^{-1}(\mathscr{Y}^*)] = 1$, we have $P(x, f^{-1}(\mathscr{Y}^*)) = 1$, $\forall x \in \mathscr{X}$. Hence,

$$P_t \big(x_0, f^{-1}(C) \big) = \int\limits_{f^{-1}(\mathscr{U}^*)} P(x_0, \, dx) P_{t-1} \big(x, f^{-1}(C) \big),$$

so that, by (II.12.4) and the Fatou-Lebesgue theorem,

$$(\Pi.12.5) \quad \lim_{t \to \infty} P_t \big(x_0, f^{-1}(C) \big) = \int\limits_{t^{-1}(dt^*)} P(x_0, \, dx) \lim_{t \to \infty} P_{t-1} \big(x, f^{-1}(C) \big) = \pi(C).$$

Thus, (a) and (b) show that $\nabla(x, C) \in \mathcal{X} \times \mathcal{F}$,

(II.12.6)
$$\lim_{t \to \infty} P_t(x, f^{-1}(C)) = \pi(C).$$

2° We examine now the limit $\lim_{t\to\infty} P_t(x,B)$ for $x\in\mathscr{X}$ and $B\in\mathscr{B}$. Let x and $x'\in\mathscr{X}$, and y'=f(x'). By (II.12.6) and II.10, we have

$$\lim_{t \to \infty} P_t(x, f^{-1}(y')) = \pi(\{y'\}) = \lim_{t \to \infty} \int_{f^{-1}(y')} g^{(t)}(x, x_1) d\overline{\mu}(x_1).$$

Asymptotic behaviour of some Markov processes

 $g^{(l)}(x, \cdot)$ being by hypothesis \mathscr{B}_{l} -measurable, is then constant on $f^{-1}(y')$ which is an atom of \mathscr{B}_{l} . Hence,

$$\pi(\{y'\}) = \lim_{t \to \infty} g^{(t)}(x, x') \cdot \mu[f^{-1}(y')].$$

We then conclude that, $\forall x \in \mathcal{X}$, the sequence $(g^{(t)}(x, \cdot))_{t \in \mathbb{N}^*}$ converges μ -a.s. to a limit g' independent of $x \in \mathcal{X}$.

Consequently,

(II.12.7)
$$\lim_{t \to \infty} P_t(x, B) = \lim_{t \to \infty} \int_B g^{(t)}(x, x_1) d\overline{\mu}(x_1)$$

$$= \int_B \lim_{t \to \infty} g^{(t)}(x, x_1) d\overline{\mu}(x_1) = \int_B g'(x_1) d\overline{\mu}(x_1).$$

This last equality proves the strong ergodicity of $((\mathscr{X},\mathscr{B}),P_{t,t+1})_{t\in\mathbb{N}^+}$. In fact, we have a stronger result than Proposition II.12, but its proof makes use of the latter.

II. 13. Proposition. Suppose that II.5 and II.9 are satisfied. Let $((\mathscr{C}, \mathscr{T}), Q_{t,t+1})_{t\in\mathbb{N}^*}$, to which $(f\circ X_t)_{t\in\mathbb{N}^*}$ is attached, be defined by (II.3.1) with $N=f^{-1}(\mathscr{C}^*)$. If $((\mathscr{C},\mathscr{F}), Q_{t,t+1})_{t\in\mathbb{N}^*}$ is weakly ergodic, then $((\mathscr{X},\mathscr{B}), P_t)_{t\in\mathbb{N}^*}$ is strongly ergodic.

Proof. 1° II.9 (i) implies that the Markov process $((\mathscr{X},\mathscr{B}), P_t)_{t \in \mathbf{N}^*}$ verifies the Doeblin condition. The Markov process $((\mathscr{Y}, \mathscr{F}), Q_{t,t+1})_{t \geq 2}$ defined by (II.3.1) with $N = f^{-1}(\mathscr{Y}^*)$ is homogeneous. It also verifies the Doeblin condition, for $s \geq 2$.

2° We know (cf. [1]) that, for a homogeneous Markov process satisfying the Doeblin condition, weak ergodicity and strong ergodicity are equivalent. Consequently, the Markov process $((\mathscr{Y},\mathscr{T}),Q_{t,t+1})_{\substack{t\geq 2\\t\in N^*}}$ is strongly ergodic. Then, $\nabla s \geq 2$,

$$\nabla(y, C) \in \mathscr{Y} \times \mathscr{T}, \quad \lim_{t \to \infty} Q_{s,s+t}(y, C) = \pi(C).$$

3° Let us prove now that $\{(\mathscr{Y},\mathscr{F}),Q_{t,t+1}\}_{t\in\mathbb{N}^*}$ is strongly ergodic. Indeed, for s=1, and $\nabla(y,\mathcal{O})\in\mathscr{Y}\times\mathscr{F}$,

$$\begin{split} \lim_{t \to \infty} Q_{1,1+t}(y\,,\,C) &= \lim_{t \to \infty} \int\limits_{\mathscr{Y}} Q_{1,2}(y\,,\,dy') Q_{2,1+t}(y',\,C) \\ &= \int\limits_{\mathscr{U}} Q_{1,2}(y\,,\,dy') \lim_{t \to \infty} Q_{2,1+t}(y',\,C) = \pi(C)\,. \end{split}$$

 4° By III.12, we see that the process $\{(\mathscr{X},\mathscr{B}), P_t\}_{t\in\mathbb{N}^*}$ is strongly godic.

References

- [1] Bùi-Trong-Liễu et M. Dorel, Sur le comportement asymptotique de processus de Markov non homogènes, Studia Math. 28 (1967), p. 253-274.
- [2] J. L. Doob, Stochastic processes, New York 1953.
- [3] P. R. Halmos, and L. J. Savage, Application of the Radon-Nikodym theorem to the theory of the sufficient statistics, Ann. Math. Statist. 20 (1949), p. 225-241.
- [4] J. Neveu, Bases mathématiques du calcul des probabilités, Paris 1964.
- [5] M. Rosenblatt, Functions of a Markov process that are Markovian, Journ. Math. Mech. 8 (1959), p. 585-595.

Reçu par la Rédaction le 29. 1. 1969

On the zeroes of some random functions

by

R. KAUFMAN (Urbana, III.)

Let F(t) be a Fourier series with random coefficients and phases,

$$F(t) = \sum_{n=1}^{\infty} a_n X_n \cos(nt + \Phi_n).$$

Here $(X_n)_1^{\infty}$ is a sequence of mutually independent Gaussian variables of type N(0,1); $(\Phi(n))_1^{\infty}$ is a sequence of mutually independent variables, uniformly distributed upon $[0,2\pi]$; and the X's and Φ 's are mutually independent. (The basic probability space will be denoted (Ω,P) .) About the numbers a_n we suppose

$$a_n > 0$$
, $\log a_n = -\beta \log n + o(\log n)$, with $\frac{1}{2} < \beta \leqslant 1$.

Our goal is an estimation of the zero-set of $F, Z(\omega) = \{t \colon F(t, \omega) = 0\}$. Theorem. Let B be a closed set in $[0, 2\pi]$ of Hausdorff dimension d.

$$\begin{split} P\{\dim(Z \cap B) \leqslant d - \beta + \frac{1}{2}\} &= 1\,, \quad d \geqslant \beta - \frac{1}{2}\,, \\ P\{Z \cap B = \emptyset\} &= 1\,, \quad d < \beta - \frac{1}{2}\,, \\ P\{\dim(Z \cap B) \geqslant d_1\} &> 0\,, \quad 0 < d_1 < d - \beta + \frac{1}{2}\,. \end{split}$$

In $\S 1$ we prove a general principle for the lower bound, whose application is dependent upon specific estimates, derived later about F. In $\S 2$ we review some conclusions from [2] about the uniform convergence of F and its modulus of continuity, and we also obtain a technical lemma about the local character of the trajectories of F. In $\S 3$ we obtain an upper bound for the dimension, and in $\S 4$ a lower bound is obtained by combining the work of $\S \S 1$ and 2.

- § 1. Let B be a compact set of real numbers and μ a probability measure in B such that:
- (i) $\mu([a, a+h]) \leqslant C_1 h^d$ for constants $C_1, d > 0$ and all intervals [a, a+h].