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On the asymptotic hehaviour of some Markov processes
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MEHDI MOULINE (Rabat) and BUI-TRONG-LIET (Lille)

The purpose of this paper is essentially to study the relations between
the ergodicity of a Markov process and the ergodicity of Markov processes
constructed from the former with the help of a measurable mapping
(Part IT). The conditions under which this construction is possible have
been given in [5]. They are slightly modified here; this is the main object
of the first part, to which we add some complements. The terminology-
used in this paper is that of [1] and [5].

In the following, we shall denote by N the set of non-negative in-
tegers, N* the set of positive integers, and 1 the indicator of the set B.

I. MARKOV PROCESSES CONSTRUCTED FROM ANOTHER
‘WITH THE HELP OF A MEASURABLE MAPPING

I.0. A cs-algebra I of subsets of a non-empty set 2 is said to be
separable if there exists a countable family of subsets of % generating 7.
For example, if %4 is a Polish space, and if & is the o-algebra generated
by open sets of %, then J is separable.

A class € of subsets of % ig said to be semi-compact if for every
sequence (Cyplnoye 0f elements of €, such that () 0, = @, there exists

neN*
an meN™ such that () C, = 0.
ngm

A class # of subsets of & is said to have the properiy of approwvima-

tion relatively to a probability @ and to a o-algebra 7 if

VCe7, Q(C)=rsupQ(F).
FeF

FcC

I. 1. Let (%, #') and (%, #") be two measurable spaces. We recall
that a transition probability P from (&, #') to (2", ') is a mapping
P: ' x %" —[0,1] such that Voe &', P(z, ) is a probability measure
on &', and VBe#", P(-, B) is a real random variable defined on (2", #').
Let ((.9? £y .%)),EN. be a sequence of measurable spaces, (Pyipi)ine
a sequence of transition probabilities such that VieN*, Py, is & transition
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probability from (%, %) to (Zin; +1). We shall denote by Py, the
transition probability from (%%, %) to (%4, #B,;) defined by

Ps,t(‘”: B) = f Ps,s-q-l('x: dms+1) f —Pi_z,t_.l(wt_g, d/l"t—l)Pt_Lt(m, By,

Zsr1 1

V{(x,B)e s X B

The family ((%:, %), Prypi)ins 15 said o be a Markov process.
To the special case &=, % =% and Py, =P, VteN", we say
that the Markov process is homogeneous, and we denote it by ((9&” y By Pr)neyes
where P, = S,s“,,V'SeN".

Let (2, o, Pr) be a probability space. A Markov random function
(X)ine defined on (2, &7, Pr) and taking its values in a measurable
space (&, #) is said to be atlached to the Markov process (&, 2), Pn),w.
if it hag P as transition probability.

Let (%, 77) be a measurable space and f be a 7 -#-measurable mapping
from Z onfo . Let us denote by %, the sub-c-algebra f~'(7) of #. As
mentionned in the introduction, the purpose of this part is to recall and
to modify, slightly, results given by Rosenblatt in [5]. We also give some
complements, which will be useful for the second part.

For convenience, we shall define the following hypotheses:

1.2, (i) V2eZ, {x}<5,

(ii) Vy<?, {y}7,

(i) Vae Z, ng,(a:, -) is dominated (viz. absolutely continue with
respect to) by a positive o-finite measure u on %, Py (2, ) being the
restriction of P(z, +) to %;. .

I.3. 7 is separable and there exists a semi-compaet sub-class F of
" such that, for any probability @ on 7, & has the property of approxi-
mation relatively to @ and to 7.

Proofs of propositions I. 10 and I. 11 below will be omitted: they
are the same as those given in [5], modulo the following result:

L. 4. ProposiTION. Lot A <%y, let € be a probability on & and g,
be the restriction of & on ;. Under hypothesis 1. 3, there ewisls a mapping
v: AXT —[0,1] such that

(i) VOeT, (-, 0) 1s Q}A')Jmeasumble' and VB eHY,

[v(@, 0Vat(w) = [ P(o,77(0))dé(),
B B
B denoting the o-algebra B~ A
(ii) Vee A, v(w, ) is a probability on 7.
‘We omit the proof. In the particular case 4 =.%, we have the

I.5. QOROLLARY. Under hypothesis 1.3, there ewists a mapping
v: X7 —[0,1] such that

icm
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(i) VCeT, v(-,0) is a wversion
B|P(, f7H(C))| %] relatively to E.

(ii) Voe Z,»(x, ) is o probability on J.

‘I. 6. We know (cf. [3]) that: For every family of probabilities
dom_mated by a probability, onec can find an equivalent countable sub-
fa,mlly. of propabilities. Since the family (ng(a;, e 0f probabilities
is domma.ted,- it is equivalent to a countable sub-family (Pg,f(wi, Vs -
The dominating (in fact, equivalent) measure can be taken, and shall
be taken, as the probability measure

w = 20’5133’;(‘7;157 ')7

1eN*

of the conditional expectation

where o; > 0 and Za¢=1.

, i+
‘We shall also make use, in Part II, of the probability measure
ﬁ == ZaiP(mi, ) on #.
=

I.7. A set Se;is said to be a single entry set it u(S) > 0 and if there
exists a point ye % such that P(z, 8) =0, Va<bf'(y). Such a point y
is called a single entry point corresponding to S. A set S<%; is said to be
a maximal single entry sef if it is a single entry set and if there does not
exist any single entry set § such that §' = § and #(8') > u(8).

I.8. Let us now recall some resulbs:

1° If S is a gingle entry set, there exists at least one point ze 2 such
that P(z, 8) > 0.

2° A maximal single entry set § is defined modulo a g-null set.

3° There are at most a countable class of disjoint maximal single
entry sets (Sk)raye and corresponding entry points.

4° Define M = [}(kU 8). If pw(M) =0, then # is the union of

N+

an at most countable family of maximal single entry sets.
5° If u(M) =0 and if § is a maximal single entry set such that

P(x,8) >0, then P(z, 8) = 1L

6° If u(M) =0, and if y%# is such that u(f~'(y)) >0, then f(y)
is a single entry set.

7° If u(M) = 0, then % is the at most countable set of single entry
points. ’

I. 9. It is to be remarked that if (X;)sne is & Markov random function
attached to a homogeneous Markov process ((9&" , .%’),Pﬁ)mm, the random
funetion (fo Xi)sn« is not generally Markovian. Rosenblatt in [5] has
given the conditions under whieh (foXips is also Markovian.

1.10. ProposITION. Under hypothesis 1.2, and if u(M) = 0, then
whatever be the Markov random function (X)ixe attached to the Markov
process ((Z, B), Pujnews, the random function (foXi)uw. 18 Markovian.

Studia Mathematica XXXIV.3 - 18
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1. 11. Consider now the case 0 < u(M) < 1. There exist.some single
entry sets, for this existence is equivalent to the condition w(M) < 1.
Let S be a gingle entry set such that we may be able to enter § starting
from M, that is to say there exist a positive integer » and n points y,, .

.y Yne? such - that: a,) ), §=2,...,m, are single entry sets
and f’l y1 is not; b) y;_; is the single entry point corresponding
to f (), j=2,...,n and y, is the single entry point correspond-
ing to S’ The mteger # and the points y,, ...,y , when they exist, are
uniquely defined and constitute a thread of length » entering 8.

1.12. PROPOSITION. Under the hypotheses 1.2 and 1.3, a necessary
and sufficient condition for (foXi)in« to be Markovian whatever be the
Markov random function (X, attached to the Markov process (%, B),
Pylneys, 15 that:

(i) There exists a mapping R: M XI — [0, 1] such that VCeT,
Vige &, R(-, O) is B-measurable and VBB,

[P, dw) B2y, 0) = [P(ay, doy) Py, (0)).
B B

(L) If 8 is a single entry set and if there exists a thread of length n
entering S, then there ewists a mapping R,: 8§XT —[0,1] such that
V0T, Vage &y Bo(-, C) is B -measurable and VBB,

P, 1@y 0) By (01, O) = [ Pyyy (34, dwy) Ploy, £71(0)).
B B .

As mentioned above, we omit the proof of I.12 and refer to [5].
‘We simply recall tham the absolute probabilities @t and the trangition
probabilities @;;.. (", *), teN™, of the Markov random function (fo X;)qs
are constructed as follows

1° m; being the law of X,,teN*, Q, is defined by @;(C) = m, [F-He,
VCeT .
2° With regard to the transition probabilities:
If t =1, we define, Vye% and V0e7, Q.(y, C) =»(-, C), where
@ef~*(y) and where »,(-, 0) is a version of thé conditional expectation
B, [P(,f(C))| %y which is such that VaeXZ, v (,-) i a probability
on J (such a version exists following I.5).
If t> 2, we distinguish two eases:
) If yef (M), then f~*(y) « M (for f~'(y) is an atom of %) and we
deﬁne

Quraly, 0) = B(@,0), VCOe7, where sef'(y).

b) If y ¢f (M), then f~'(y) is. included in a maximal single entry set 8.
If there exists a thread of length # entering §, we put, VC <7,
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R.(z,0) if ¢>n, where zef (),

n(z,C) i t<n, where zef(y),

(-, 0) denoting a #{-measurable function such that VBeZP,

[ (@ (@, 0) = [dm(2)P(z, f(0))
B B

Qt,t+1 =

and Vwe®, v (-, 0) is a probability on 7 (such a function exists by 1. 3).
1.13. Let us now make a few remarks:
1° Vi 2, VBB and V07,

(1.13) [ da (@) Ploy, f(C)) = [ dmy(@) B, O).
B B
Indeed,
[ dm(@)Plon, (@) = [| [ dmes(@)P (@, dor) | Plar, ()
B B %

= [dm, (w)[ [ P(z, dwy)Play, F(O))]
?dﬂ;_l(w [ [P, ) R(zy, 0)]
w” [ s (0) P doy)| B (o, %)
Bj domy(21) B (@1, ) -

It f(y) e and if n,[f-l(y)] > 0, then

— 2 [ @), 170), Vool W)-
m ()] i

Indeed, R(-, €) is constant on f*(y) which is an atom of 53}“’. We
then make use of (1.13.1) by taking - (y) in place of B.

2° Similarly, we have: Vi>n+2, VBe#® and V07,

(1.13.3) f oty () P (20, F(C)) = jf dry(m1) B (21, 0).
B

(L18.2) R(»,0) =

I f-1(y) e #P and if = [f(y)] > 0, then

1 1 —1
= d: )P, (0} Vaef (¥).
(118.4) Baln, ) = 1o f—L) () P15 )

3° If Vaee &, VBe By and V0T,
(1.13.3) f P (@, day) Pley, f72(0) = f P(%,, dwy) R(z, C),
B
. B
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where R(-,0) is #rmeasurable. Then, we have Vaye Z, VBe%;, V0T
and VneN¥,

(T18.6) [ Puya(ao, doy)Plzy, f7(C))
’ - Bf [ wf Py (o, d) P(, doy) [Py, £7(0))
= !Pn(mo, i) [pr(w, dw) Py, £(0))]
= J_P,,,(mo, dz) [JP(m, dw,) R (2, 0)]
= prm(mo, dw) R(@,, C).

So, (1.13.5) implies 1.12 (ii): it iy sufficient to take R, = R.
4° A sufficient condition for 1.12 (i) and 1.12 (ii) fo be satwfwd 8 ﬂmt
P(,171(0)) is Brmeasurable, VCeT .

Indeed, (L.13.5) is then verified, with P(-, /= (C)) in place of B(-, 0).

I.14. Consider now the homogeneous case. (Xi)n» and (fo X
having the same meanings as above, it is known that (%, 97), Qusy e
is not necessarity homogeneous, although ((%, &), Puluye is.

A sufficient condition for ((@ Ty Qs +1),EN, to be homogeawous s
that P(-, B) is Bymeasurable, VB e%;.

In the case where there exists no single entry set, this sufficient
condition is also necessary.

I1.15. The following remarks will be useful for Part II.

1° Suppose that 1.12 (i) and (ii) are wverified. Let v,; be defined by
Vo4 (#, C) = Qus(y, O) for ye¥, zef(y) and OcT. Then wvs4(-, 0) is
a version of the conditional expectation B, [P, (-, f~(0)|4].

Indeed, VO and 0'<7, and Vs, teN* with s < ¢, we have

Pr{¥,eC’, Y10} = Pr{X,ef " (("), Xsef(0)},
that is to say

@©151) [ dQ)Quu(y, ) = [ dmy(@)Pysfm, ().
&

1o
Since »;¢(-, €) is Frmeasurable, we have
(30 Qesly, O) = [ g, (@)rula, ),
& ~en
T, 58, denoting the restriction of =, to %;. Then

f d”sﬂ,(w)”st(m 0) f Ay (2) Py s( :f—1<0))~
1Yoy f~1w)
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2° Suppose that (1.13.5) is werified. Let R'(z,f(C)) = R(z, O),
0T ; (R (%, *) is then a positive measure on By) and
-R(l)(wy 0) = B(z, 0),
Rz, 0) = [ B'(w, do)R" (@', 0).
&

Then VBeBy;, VieN* and V(2,, O)e EXT,

(115.2) [ P2y, da) Py, 1(0)) = [ P(2,, d0) B (=, 0).
B B

We proceed by induction. Suppose that the equality is true for n—1,
then VBe%y,
[P (@4, @) Pufs, (0) = [ Play, d0)[ [ Pla, @) Pos(a’, ()]
-4 B &

= [P(ay, do)[ [ P(o, @) B* (', O]
B x

- [ [P (@, @) Pla, d)| B, 0)
* B

= [[[P@, @) B (&, &) IR (o, O)
X B

= fP(a:D,dw)R‘“)(m,G’).
B

3° Vs=2,Vt>s and VOeﬁ“, we have p-a.s.
(1.15.3) Qorly, 0) = B¢ 9(0,0), aef(3)-
At first, from 1.15.2, we have VBe%y, ‘
J @) Pafe, 170) = J ) B, 0) = Jw@E @, 0,

for R™(-, ¢) is %-measurable.
An'ulogously, as in (L.13.3), we have: VBed%;, Ve =2,Vi>s and

vo 7,
[ ey (@) P, £70) = [ (@) B (@, 0)
B B

= [ dmy 3, (0) B* (@, 0).
B .

Hence, by 1.15.1°
voe(r 0) = BUI(5 0), gt

and then, 7 g;-a.8.
Qsuly, €) = B*9(2,0),  aef7(y)-
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On the other hand, Vs>
have, u-a.8.

> 92, 7@, 18 dominated by u, so that we

Qs,t(?/, 0) = Rt (=, 0), wefﬁl‘(y) .

II. PROBLEMS OF ERGODICITY .

II. 1. We recall the following definitions (ef. [1]): A Markov process
(4, &, G1,1.1)een+ 18 s2id to be:
(i) strongly ergodic if VseN*, Vzed a.nd VA2, ]ng”(z 4)

= £,(4), where &, i3 a probability on Z; :
(ii) weakly ergodicif VseN*, Vz and#’ e and V4 2, lim [gs (s, 4)—
>0

—gs(¢; 4)] = 0;

(iii) strongly (Yesp. weakly) and wuniformly ergodic if it is strongly
(resp. weakly) ergodic and if, moreover, the hm1t in (i) (resp. (ii)) holds
uniformly with respect to z and A.

I.2. HyroreEsS. Welsuppose that (I 13.5) is werified, that is to
say: there ewists a mapping R: ¥ xXT — [0,1] such that VCeZ , R(-, ()
is Brmeasuradble and thot

[ P(@4, d2)) Py, f(0)) = [ Play, dny) R(wy, 0),
B B

C Vaye X, V0eI and VBe%;.

By 1.13.3° we see that 1.12 (ii) is verified.

I.3. V0e7, R(-,0) is a version of Epy, ., [P(:,f(C))|%)], then
R(-, 0) is also a version of Hz[P (-, (G))[.@‘fj ‘We have seen (Part I)
that we can choose B in such a way that Vze 2, R(#, -) is a probability
on 7, and that for s > 2, p-a.g.,

Qst((‘/: 0) = mef"l(y),

where R®9(-, () is a version of B[P, £ (0) 1 9.
More precigely, there exists a set NyeH; (viz. there exists N7 such
that Ny = f~(N)), with w(Ny) =0, such that Vs=>2,Vi>s, V0T,

Qus(9, 0)

RNz, 0),

=R"@,0), wef(y),. if y¢N.

‘We specially consider the case where, Vs > 2,

Qs,t(?/; 0)= R(t—s)(w, 0), }Def’l(y), if y¢N;

(IL3.1) ,
Qo1 (y,0) = w(€) if ~ yeNN, y denoting the image of u by f.

icm
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II. 4. PROPOSITION. Under Hypothesis IL2, if (Xi)ne #5 o Markov
random function atlached to o Markov process ((%, &), Polneye Strongly
and uniformly ergodic, then (fo Xy)ix~ 98 a Markov random fwnation attached
to a strongly and uniformly ergodic Markov process.

Proof. 1° By hypothesis, llmPt(m A) = £(4) uniformly with
respect to » and A, where £ is a proba,bﬂlty on & Let Ty = ((ine
be an algebra generating 7. VC” Ty, RO, C}) is & version of the conditio-
nal expectation H;[Py(-, F7(05)|%]. Since 0 < Py, f(CF) < 1, VieN™,
we have

lim BO(, 6) = By[lmPi(-, £(00) 18] = £ (GO, peas.

But 7, is countable, so that there exists a set N,e#; such that
u(N,) =0 and

(IL.41) ng“)(w, 0% = E[f(C})], VwéN, and VOeeT .

Let us now prove that this limit is wuniform, u-a.s. Indeed, by
hypothesis, Ve > 0, @n,eN* such that t > n, implies
—e+ B[ (OD] < Pifm, f7(0) < e+ ELF7(CR)],

Hence, VBe%y, A
(—e+ ELFHON) w(B) < Bf p (@) Py, £ (C0)
and, consequently, VBe%y,
(—e+e[f(00]) (B < Bf du(m) RO (x, C%) < (e+ ELFH(CD)]) 1(B).

V@, Ch) e XTy. .

< (s E[FH(OD)- u(B),

This implies that
(IL42) —etE[FH(CHI < BYC, ) < o+ ELFT(OD],  pras.
By (I1.4.1) and (I1.4.2), there exists a u-null set N,e%; such that

(IL.4.3) Lim RO (e, Ch = e[f(C))], Va¢N, o N; and V07,

>0

and this limit is uniform with respect to (z, 0y on (N, v Ny)XT .
2° Let us prove now that (IL.4.3) is verified for every (7. For this pur-

pose, let us prove that the class 7" of sets €7 such that (I1.4.3)is verified,

is 2 monotone class containing 7, (and, consequently, J~ contains I~ )
Indeed, it is clear that g’ contams . It remains to prove that 7~

is a monotone class. Let (Ci).x+ be a monotone sequence of elements

of 7 whose limit is C. For every #¢N, v N, we have
(IL.4.4) lim B (z, €) = lim lim Rz, 0y,
t>c0 ts00 f-rc0

a

for RY(x, ) is a probability on J


GUEST


280 M. Mouline and Bui-Trong-Liu
Since the limit im R®(z, ¢;) is uniform with respect to C;, we have
(=]

(IL.4.5) lLimERY (@, ¢) = lim ImRY(z, ¢;) = lim £[f~"(C;)]
t->00 Trco

4500 b0 :

= 5[f"1(£m0i)] = &E[f7UO)],  Vo¢N, o N,

This limit is also wniform with respect to (z, 0) on [(N,w N,) x7, for,
by (I1.4.2), t > n, and x¢N, v N, implies that

—& < R, 0;)—E[fH(0)] <&, VieN¥,

and
—e+&[fH(0)] < Bz, 0) < e £[FHO)].
Thus, CeZ”, hence 7~ = 7, consequently 7~ = 7.
3° We examine now separately the three following cases:

(8) s>2 and y¢f(N, o N,). Then f(y)< ((N;w XN, and, by
(IL.4.5), we have

(IL4.6)  1im Quy(y, 0) = g;g RN (@, €) = ¢[fHO)],  wef (),

uniformly with respeet to (y, 0) on Bf(N, v N,)xJ.
(b) 822 and yef(N;vw N,). As indicated in (IL.3.1), we take
Qs541(y, C) = p'(0) and, for ¢ >s+1, we have

Q¥ O) = [ Qo1 (¥, &) Qs (v, 0)
¥

= f Qs,s+1 (¥, d’!//)Qs-;.l,t(f’/’y 0).

(N Ny)

By I1.4.6 and the Fatou-Lebesgue theorem, we have

(TLA7)  1mQu(y,0) = |
tso0 (N3 o.Ng)

dﬂ'(ﬂ')}iﬁ%g,z(?ﬂ 0) = &0f7(0)],

uniformly with respect to (y, C) on f(Ny v N,) X7
(¢) 8 = 1. We have

lim@s(y, 0) = gf Q2 (y, dy’»l&g@at(y’, 0) = E[f(0)1,

by (IL.4.6) and (IL4.7), uniformly with respect to (y, C) on & xJ. "
Thus, the Markov process ((%,7), Qi i)en+ is strongly and
uniformly ergodic.
IL5. Hyeormmses. Let 4" = {ye¥: u[f'(y)] >0}. We remark
that @* containg an at most countable set of points, #* = {y,, ..., ¥n, ...}
for u(%) = 1. L3 (ii) implies that #*<7". We suppose that [f(#*)] = 1

icm
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and that VoeZ, the series Y Pyw,f(y) converges uniformly with
%

respect to 7.

In the particular case where % is a finite or countable set, the con-
dition #[f~(@*)] =1 is always verified.

II.6. PROPOSITION. If (Xy).n i8 attached to a strongly ergodic Markov
process ((%" s B)y Pios omd if, moreover, the hypotheses IL2 and II.5
are sotisfied, then (foXy)ne s attached to a strongly ergodic Markov
Process.

Proof. By hypothesis, there exists no u-null set Ne%; contained
in fH@%). Vyre?*, there exists a y-null set Nye%; such that

1R (@, {4}) = Ballim oo, £ (ge)) 8] = €177 (@], Vo ¢l
~>00 o0
Hence, there exists N = | ) Nye&y, p-null, such that
E1
ImB9(s, ) = §17 ], Ve eN.
We must now prove that, V¢ < %,

lim R (x, 0) = £[f(0O)],

a0

VaiN.

Thig formula is true for every ¢ which is a finite union of {y;}. It remains
for us to examine the case where C is a countable union of {yi}. Let

¢=U {Z/k,-} be such a countable union. We have, Vz ¢ XN,
=i

: 1G] — 1§ N (t)

E::gR (,0) gglﬁ (2, {yx})
1 < —1
_ggft(m,f (¥x,))
= ggﬂ(av,f—l(yk,.))

= D1in R, {yx})
e b

= ) L )]
= E[fT(ON].

For the rest of the proof, we use the same argument as that in
11.4.3° with the three cases: s>2 and ye(f(X); s>2 and y<f(N);s=>1.
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IL.7. PROPOSITION. If (Xi)un« 48 attached to a weakly ergodic homo-
geneous Markov process, and if TL2 and IL5 are satisfied, then (o Xy
is atiached to o weakly ergodic Markov process (%, ), Qi,i—{-l)ieN*'

Proof. We use, for the proof of this proposition, the following criteria
for weak ergodicity (cf. [1]):

A Markov proeess ((A, £), fye.1)en 18 weakly ergodic if and only
it for every §eN*, Be?, for every increasing sequence (i)sq. of indices
such that g,y (%, B) converges to a limit when j — oo, for some
wedy gsy(v, B) converges Vv ed to the same limit; moreover, this
common limit is independent of s. _

1° Leb (%, O)e Z XTI, and let o = ()i« be an increasing sequence
of indices such that the sequence (Pgi(m,,, f‘l(O)))isN. is convergent.
The criteria cited above implies that VseN* and Vue %, the sequence
(Pti_s (e, f“(C)))iﬁN* converges to the same limit. Let I(s, C) denote the
common limit of these sequences.

An argument analogous to that in IT.6.1° shows that

Lim R4 (-, 0) = 1(s, 0),

{500

U8,
and since there exists no w-null element of %, contained in f~'(%%),
we have

lim R4 (x, 0) = (s, 0), Vo (@").

00

TUsing the same argument employed in IL.4.3°, with the 3 cases
(a), (b), (¢), we have V(eI , Vo,

MQa,ti(?h C) = (o, O), VseN* and Vye?.
100 .

2° Now let s,eN*, CeZ and let o = (f;);« be a sequence of indices
such that (qu,tj(yg, O))jew 8 convergent for a certain yo,e@. Leb
(o, 89, Yo, 0) denote this limit. Following the criteria, we must prove
that this limit is independent of y, and s,. Let us examine separately
the 3 following cases:

(3) $>2 and y,¢%*. Then, we have

Qsa,fj %o, 0) = B2 (%0, C)y o Ef—l (o),

and

(I1.7.1)  RG°0 (g4, O)- [ f~  (wo)] = f d#(%‘)‘Pz]-_ao(w,f"l(C’)).

1=Ywy)
The sequence (Ptj_so(mo,f‘l((}’))),qv, being a sequence of numbers
contained mlthe interval [0, 1], we can find a convergent subsequence
(Pt].k~eo(w‘,',f" (C)kews- Since (%, &), Pliy» is weakly ergodic, the
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limit of this convergent subsequence is independent of z,.and of s,.
Let I(c’, C) denote this limit, ¢’ being the subsequence (%, )xay«-
By the Fatou-Lebesgue theorem, (II.7.1) implies that

lim B (@, ) w[f Ml = [ dp(@) limPy, o (o, £7(0)),

Fo )
hence
oy S0y Y05 O) [f7 (o)1 = U(o", C)- u [f 7 (30)].
Consequently, since u[f~(¥,)] >0,
o, 805 Yo, 0) = (0", 0).

Thus, all the convergent subsequences of the sequence (P,j_so(mu, i (C)))i,N,
have the same limit: the sequence itself is then convergent, and

Hm Py (o0, 174(0) = U0 50y Yo, O)-
By 1° VseN* and Vy<¥:
}ggs,ty. (y,0) = };miQsﬁ,c,-(yn, 0). .
(b) 8,2 and y,¢@* Then, f~(y,) = bf(#*). We have
Quyi; (%0, €) = ,_,,f ap’ (Y) Qepir,5(Y 5 0) -

Let y,e@*, and let (@, +1,tjk(y1’0))ks1v* be a convergent subse-

quence. By (a), Vye%, the sequence ((Qsﬁl,,fk(y, C)))kEN. converges to
the same limit, the Fatou-Lebesgue theorem gives

%;Qso,tjk(yo; 0)= g[d/‘,(?/) 'k]jngso;H,ijk(y; 0y,

that is to say
Ua, 80y Yo, C) = liszo+1,ﬁ,-k(?/1’ 0).
k=00

Thus, all the convergent subsequences of the sequence (Q80 114 (Yo, O))ﬁN«
have the same limit. Hence, the sequence itself is convergent, and

Bm Qe 1,4 (¥1s 0) = 1(0, 801 Yos O)-
7—00

By 1° VseN* and Vye%,
lim@s, ¢, (y, 0) = 1im Qs ; (%o) 0)-
J—o0 jc0

(c) s, = 1. We have
Quy(Wor €) = [@13(W0; )@y, O)-
L4
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Let 7,¢% and let (Qg,tjk(yz, O))rey+ be & convergent subsequence.

By (a) and (b), the sequence (QZ,,jk(y, O))ray+ cOnVerges to a limit inde- .

pendent of y«%. The Fatou-Lebesgue theorem shows that
1nQyy, (40, 0) = [@a(yo, @) IimQsy, v, 0),
00 I3 —>00

viz. .

(0, S0y Yo, 0) =klimQ2,tjk(f‘/2a Q).

All the convergent subsequences of (Q%(yz, O))f(N. having the same
limit, the sequence itself is convergent, and we have

Hm@, 4, (ys, O} = (0, S0, Yo, 0).
300
Consequently,
}ile,ty- (v, 0) =10, 8o, Yo, C) = }imgl,t:;(yoa 0).
Thus,.in every case, (o, 8, Yo, ) is independent of s, and y,, and

the Markov process ((@/ » 7)), Qt’i+1)teN* is weakly ergodic.

I1.8. Exavpres. Here are some examples in the case of a finite state
space.

1° % ={1,2,3,4}, 4 = #(Z) and
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Hypothesis I1.2, in our case, is satistied by the mapping R: & X #(¥)—
— [0, 1] defined by
R(jo’ {1}) = 112,
E(jq, {1}) = %%1

Then, we have

R(j, 2}) = &

z  for jo=1,2,
R(jo, 1) = 5

for j, = 3, 4.

30 3¢

7 5
12 12
—_— 9
Qi = (u ]9), Vi 2.

Computations show that

22 2§
. el
lim@,; = , Vs=2,
4 11 19 .
oo n 1
30 30

and
HmQ, ; = Q15 1im@s; = lim Qs 5,
tso0 o f—s00
for Q,, is a stochastic matrix and im@,, is with all its rows identical-
, 3

Thus, ((LZ?/ s 9’(@)},@,,,“)&1\,‘ is also strongly and uﬁiformly ergodic.
2° & = {1,2,3}, & = #(Z) and .

(&

P =

W=

o

1ot

.

.

o
0].
0

llll
3 3 6 6
1 1 1 1
4 4 4 4
=111
6 6 3 38
20203 3
10 100 10 10,

We can verify that the process ((3&’,
uniformly ergodic, for # is finite and

LimP, =

(2

Now, consider f:Aﬁ” — % such that f(1) = f(2) = 1;f(3) = f(4) = 2.
We take u on %, such that

sl @1 = Y P, (),

e

11
a7
11
%
1
il
1
I

z (“ZI));Pt)t(N* is strongly and

Vie® where o; > 0, Za,- =1.

je&

The Markov process ((&?‘ , P X )),Pt),EN. is strongly and uniformly
ergodie, for Z is finite and Py =P, VieN*. Let % = {1,2} and
i & =@ Do defined by f(1) =f(2) = 1, and f(3) = 2

We take u on 4%y such that

sl = Y P (j,f7(0), Vie?, where >0, Doy =1.
¥ Jjex
Thus,
plfiW1=1 end plf7(2)]=0.
Hypothesis IL2 is satisfied by the mapping R: Z XP(#) - [0,1]

defined by
R(1, {1}) =R(2,{1}) =1,

R(,{2) =R, {2) =0,
R(3,{1)+EBEG, 2h =1,

where R(3, {1}) can be arbitrarily chosen.
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Hence, we can take
Q ( ! 0 ) 1 =2
tir1 = _ or =
BT )] ’
where » is an arbitrarily chosen probability measure on. %y.
a) If » iy such that »[f~*(1)] = 0 and »[f~(2)] = 1, then

10\
Qi = 0 1)’ Viz=2,

and the process ((@ » 2(@)), Quy +1),£N. is not strongly ergodic.
b) If » is such that »[f(1)] = a, where a¢]0, 1], then

1 0
Qt,t+l= ’ Viz2.
a l—a
‘We have
lim@ lim ! 0 Lo ‘ =2
me = : = >
s T T Lo\l (1—a) (1—a) 1) V=

and, consequently, the process ((@ , P (@), Gy +]),€N* is strongly ergodie.
We examine now the converse for the proposition IT.7.
II.9. HyeporEEsES. (i) VoeZ, Pz, ) is of the form

(IL.9.1) P(a, B) = [g(w, 2)du(x'),
B

where Be#, and ¢(z,-) is %rmeasurable.

(i) V{z, B)e & x B, if (4;);y« is an increasing sequence of indices
such that the- sequence (P (2, B))jy+ converges, then Va'ef~*(f(a)), the
sequence (P,;j(m,B)),-EN* converges and

(IL.9.2) lmPy (@, B) = limP, (@, B).

IL10. The following is an interpretation of IT.9: IL.9 (i) implies the
condition of Doeblin (ef. [2]) for the homogeneous Markov process
(%, #), Pux+. 1L 9. (ii) implies that Vye#, if f(y) is included in an
ergodic set (ef. [2]) decomposable in eyeclic subsets Iy, ..., Ty, then f~(y)
is included in one of these cyeclic subsets. Indeed, suppose that there
exigt two distinet cyeclic subsets I', and I', such that Iy ~ ) #0
and Ty ~ f~'(y) %= @. We know, by [2], that there exist probabilities
ww and pw on & such that xw(ly) = 1 and # () = 1 and that

B Pog(a, I) = wn(Iy) = 1,
N300

o m Py, Ii) = pmlly) =0,

N>00

and thus, I1.9 (ii) is not be verified.

@ © o
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II.11. ProrPOSITION. Under IL9 (i), VteN* and V(z, B)eZ X%,
Pw,B) = [¢9(@,)du(o),
B

where the ¢9, Brmeasurable, are defined by recurrence:
g(l) =4,

(@ @) = [¢" Ve, 2)g(es, 2)da(wy), Vo and o <%
x

Proof. We proceed by induction. It iy easy to verify the formula
for t = 2. Suppose now that

Pz, B) = [¢* (@, d)du).
B

‘We have
Py, B) = [ Pia(v, d2y)P(a,, B)

x
= [ ¢“@, 2) (@) [ g(@s, o) du(a)
B

[ f 94 (@, w1)g (@1, @) d/_"(ml)] di(@)
&

W W ®

9O (@, @) du (o).

IL.12. PROPOSITION. Suppose that IL5 and IL9 are satisfied. Let
((W,F),Q,’t+1),em, to which (foXy)y 4 attached, be defined by (IL.3.1)
with ¥ =F1@". If (@,7),Quaen s strongly ergodio, then
(%, B), Pne is also sirongly ergodic.

Proof. By hypothesis, VseN*, Vye@ and V07,

(I112.1)  lim@se(y,C) = =(0), where » is a probability on Z .
[

1° At tirst, let us examine the limit tl_iijt (#, B), for we % and Bedy.

Let woe &, yo = f() and (e

(a) It woef~"(@*), then f'(yo) = f'(@"), and

Qs 542 Yoy )= R(i)(mo; 0).

Hence,

(IL122)  Qaspt(Wos O slf 7 (W)l = [ du@)Pie, F7(0).
1=1(wp)

Pu{wo f_1(0)])w. Deing 2 sequence of numbers of [;0,. 1], we can

find a eonvergent subsequence (ng(wo, f“(O')))iszw whose limit is #(z,, ¢, C),
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¢ denoting the increasing sequence (;)jen~ OF indices. By IL9 (ii), we have
Voef H(¥o)s

(IL.12.3) im P, (z, (0)) = U, o, 0).-

FA
Consequently, the Fatou-Lebesgue theorem, (I1.12.1), (I1.12.2) and
(IL.12.3) imply that

m Qs o0, Yoy O)- 6L W]l = [ dfi(e) i Py (a, 7(0),
Jo0 1~ 1g) e
viz.
llsz LS+ (0, 0 /‘[f (yo)] = Uz, o, Q) /"[f 'l/o)
viz.

w(0) = Uwgy 0, )y for  plf7(ye)]>0.

All the convergent subsequences of the sequence (Pt (mo,f"l(G)))tEN*
having the same limit, the sequence itself iy then convergent and
we have

(IL.12.4) ) and VOeJ .

limP,(a, [(0)) = #(0),  Vooef (¥
(b) Tt 2,07 (27),

Pt (5’70 ’ f_l (G))

we have, for ¢ > 2,

= [ P(ao, dn) Py (o, (0.
X

Since p[f~(@")] =1, we have P(s, f(@") =1, Voe Z. Hence,

Pi(wo, f7(0) = fP(mo,de,_ {w, 11 (0)),

) @) .
80 that, by (IL.12.4) and the Fatou-Lebesgue theorem,

(I1.12.5) hmPt(:co, ey = f P(mu,dw)hmm e, £

f—l(@*)
Thus, (2) and (b) show that V(x,0)e I X7,
(I1.12.6) EmPt(m, F7HO)) = =(0).

) ) == = (0).

2° We examine now the limit imP(», B) for ze & and Bed. Lot

t-c0
and o'« %, and y' = f(2'). By (I1.12.6) and IL.10, we have

Py, (y) = wllyD) =lm [ ¢, 0)d (0.

71y
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g9z, ) being by hypothesis #measurable, iy then constant on
f'(y") which is an atom of %;. Hence,

Cw{{y')) = tligg("(w, o) plf~ )]

We then conclude that, Voe %, the sequence (¢®(, )+ converges
w-a.8. to a limit ¢' independent of we %
Consequently,

(I112.7) HmPy(e, B) =1lim [¢" (e, 2,)du(z,)
{00 tero0 B
= Jlimg® (o, 2)du(w) = [ 4 (@)da(@).
B oo B

This last equality proves the strong ergodicity of ((z,4), P, t+1)gEN4

In fact, we have a stronger result than Proposition IL.12, but 1ts
proof makes use of the latter.

II. 13. PROPOSITION. Suppose that IL5 and IL9 are satisfied. Let
((WJ Ty, Oy ,+1)¢6N*, to whwh (fo X s 18 attached, be defined by (IL3.1)
with N = f‘l(@* If (@, T), Qiisr)iens 8 weakly ergodic, then (®, 2), Py
is strongly ergodic.

Proof. 1° TL9 (i) implies that the Markov process (%, B)y Pilsens
verifies the Doeblin condition. The Markov process ((@/ , 7 ),Qi’t._}_l)tt}g

eN'*

defined by (IL3.1) with N = f~'(#*) is homogeneous. It also verifies the
Doeblin condition, for s> 2.

2° We know (ef. [1]) that, for a homogeneous Markov process

satisfying the Doeblin condition, weak ergodicity and strong ergodicity

are equivalent. Consequently, the Markov process ((@ T), et +1)t>2
teN*

is strongly ergodic. Then, Vs 2> 2,

C) ==n(C).

V(fl/, G) U XT, }isz,3+t(f‘/7
00

3° Tt us prove now that ((@,7), Quuiluns is strongly exgodie.
Indeed, for s = 1, and V{y, 0)e¥ X7,

@y 44(y, €) =1Hm [ Qua(y, 4y")Qa44(y's O)
t—r00 t-ro0 gy
= [ @ualy, @)limQs (', 0) = =(0).
74 o0
4° By IIL.12, we see that the process ((3&” ,@),Pt)tEN, is strongly

ergodie.

Qe Mathemation SXXXIV.3 : 19
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On the zeroes of some random functions
by
R. KAUFMAN (Urbana, Il.)

Let F(f) be a Fourier geries with random coefficients and phases,

F(t) = ) anXncos(ni+B,).
=1 .
Here (X,) is a sequence of mutually independent Gaussian variables
of type N (0, 1); (@ (n))y it a sequence of mutually independent variables,
uniformly distributed upon [0, 2w]; and the X’s and &’s are mutually
independent. (The basic probability space will be denoted (2, P):) About
the numbers a, we suppose

a, >0, loga, = —plogn+to(logn), withi<pg<1.

Our goal is an estimation of the zero-set of F, Z (v) = {t: F(t, w) = 0}
TepoREM. Let B be a closed set in [0, 2] of Hausdorff dimension d.
Then :

P{dim(Z ~ B)<d—p-+4 =1, d>p—1,

PZAB=0}=1, d<p—4%,
P{dim(Z ~ B)>d} >0, 0<dy<d—p+3.

In § 1 we prove a general prineiple for the lower bound, whose appli-
cation in dependent upon specific estimates, derived later about F. In
§2 we review some conclusions from [2] about the uniform convergence
of I and its modulus of continuity, and we also obtain a technical lemma
about the local character of the trajectories of . In §3 we obtain an
upper bound. for the dimension, and in § 4 & lower bound is obtained by

combining the work of §§1 and 2.

§1. Let B be a compach set of real numbers and g a probability

measure in B such that: -
(i) u([a, a--h]) < O.h% for constants Cy,d >0 and all intervals

[a, a-+R]. .
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