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A covering lemma with applications to differentiability
of measures and singular integral operators
- by
MIGUEL »x 4GUZMAN* (St. Louis, Mo.)

§ 0. INTRODUCTION

In 1945 Besicovitch made use of a lemma of geometrie type, involving
spheres in R", to obtain from it several results on differentiability of
measures [17, [2]. A little later A. P. Morse [14] generalized such results
substituting spheres by certain families of nearly spherical starshaped
sets (1). Later on Cotlar [6], [7] presented and used in several problems
dealing with singular integrals, a lemma of the type introduced by
Besicovitch. Such a lemma, dealing with cubes in R", is introduced by
him as 2 sharpening of a result used by Wiener and others, but the geomet-
ric character (uniformly finite overlapping of the covering) of the result
seems to belong to him independently of Besicovitech. Moreover, he was
the firgt in making use of this kind of lemma in singular integrals, sub-
stituting by it the covering lemma used by Calderén and Zygmund in [5]

In the first section of this paper we present a geometric covering
lemma of the same type. We give two versions of it, one in R™ which is
extremely simple and already sufficient for the applications to singular
integrals we present here and to obtain satisfactory results in differen-
tiation theory. The second vexrsion, more general and powerful in differen-
tiation theory, is a little more complicated. The method of proof we use
here, a sort of generalization of the one-dimensional result by means
of a combinatorial theorem (Ramsey’s theorem) is interesting in itself
and might be of use in other situations. In the second section we make
use of the covering lemma to obtain a new version of the Vitali’s covering
theorem and some new results on differentiation of measures. In the third
section we present an application of the same covering lemma to obtain
a theorem on singular integral operators of convolution type which includes

(*) For detailed information on these and other results on differentiafion theory
we rofer te the excellent expository article of Bruckner [3].

The author gratefully acknowledges assistance from the National Science Foun-
dation and the University of Chicago.
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and generalizes some results on operators associated to kernels with
mixed homogeneity obtained by Jones [13] and Fabes and Riviére [8], [9].
For another study of some properties of such operators we refer also
to [107, [11], [12].

The results presented here are included in my Ph. D. Dissertation
at the University of Chicago and my Doctoral Thesis at the University
of Madrid. My work has been mainly done at the University of Chicago
under the direction of Professor Alberto P. Calderdn. I wish to acknowledge
here his kind and generous advice. Many helpful suggestions were made
by Professor Alberto M. Dou, my director at the University of Madrid.
To him also I am most grateful. Many conversations with R. R. Coifman
and N. M. Riviére have been particularly helpful. ‘

§ 1. THE COVERING LEMMA
1.1. IeMmMA. Let {Rq;}/,;_la

—1,2,..x be @ finite sequence of non-decreasing,

open intervals of R" centered at 0. Let S be a bounded set of R". For every
ze8 we take an integer i(@), 1 < i(x) < k, and the set By = Rygy+ . Then
one can choose a finite number of elements of S8, wy, %y, ..., 2y, Such that
1
8= U R, and every y <R" is at most in 2" of these sets {Ba}
j=1
Proof. Choose #, such that i(z,) is largest possible. Assame @y, ..., &y,
m

already chosen. Take then &y, e8— (U Rmy. such that 4(zy,.,,) is largest
F=1

possible. Since § is bounded and the ny.’s we thus obtain are such that
R* =@+ %Rm.) are obviously disjoint, we end this selection process

in a finite number of steps, I, obtaining 8 < U Ey,. We now prove that

any yeR"™ is at most in 2" sets R . To see 'thb, through y draw n hyper-
planes parallel to the coordinate hyperplanes and consider the 2" closed
quadrants so obtained. In each quadrant there is at most one @; with
YRy, for if there were two, the larger By, would contain the centre of
the smaller one and this is excluded by construction. This proves the
lemma.
1.2. Lemwma. Let (M, o) be a metric space. Call Bx,r) = {me M:
o(m, x) <r}. Assume that the following properties are satisfied:
(o) Boery ball comtains at most a finite number of disjoint balls of
a given positive radius.
(B) There is a positive integer & such that for every pe M there are at
most §—1 balls B(wi,r),i=1,2,..., £&—1, such that
(1) peB(w,r)— (mzyﬁ’): "*1727"'75_‘17
(2) Tz+1~<37zyi~l ,E 2,
(3) @5 ¢B(m;, 7;) for § > 1.

icm°®

A covering lemma 301

(v) There is a positive integer 0 such that for every ball B(w, r) there
are af most 6—1 balls B(w;, r;),4=1,...,0—1, such that

(1) B(=, r) ~B(wy, 1) #0, 1 =1,2,...,0—1,
(2) m=ir,i=1,...,60—1,
(3) Wi‘#B(m@', r3) for j > 1.

Then, given 8 = M bounded, and a mapping xS — By = B(w, (),

r(z) > 0, one can select from (By)zes & Sequence {By} such that
y 8 < U By.

(b) Bvery meM is at most in & balls By.

(¢) The family {By} can be split into 0 disjoint families.

1.3. Remark. It is easy to see that R with the metric of the absolute
value satisfies all conditions of Lemma 1.2. Also R™ with the Euclidean
distance or with g(w,y) = max(|z;—v;|) satisties these properties as
one can see with an easy geometrical argument. This is the lemma of
Besicovitch in [1]. The fact that one has a metric is not very important,
ag one can realize from the proof of the lemma. One can substitute the
above conditions on the balls by appropriate conditions on the sets one
wants to consider in order to be able to follow the same procedure. If for
every ¢ of § = R", § bounded, one has a set ¢, which contains a Euclidean
ball B(z, ) and is contained in another B(z, R) with E/r = a independent
of ze8 and, moreover, for every point p of C, the convex hull of
{p} v B(w, r) is contained in Cy, then one can select from (Cy)zs & sequence
{C)} which satisties properties (a), (b), (¢) of the conclusion of Lemma 1.2.
The reason is that such sets satisty properties analogous to those described
in the conditions of the lemma. This result is contained in [14].

Proof of Lemma 1.2. Suppose supr () = oo for z<S. Then, since
§ is bounded, one can selecta single ball B, which satisties (a), (b), (e)
Let us assume supr () = a, < oo and take wleS such that 7(w,) >ia,.

Suppose @y, ..., &, already chosen. If § = U By, where By= Bz, (1)),
1

we stop. Otherwise define a,, = supr(z) for zeS— U By and take @,
1

m .
eS— (J By, such that 7(®ny) > 2anm. We will show that {By} satisfies

1
(a), (b), (¢) of the conclusion. If the process stops in a finite number of
steps, § < By, is obvious. Assume then that {By} is an infinite sequence.
Then we have r(z;) -0 as &k —oco. In fact, the sets Bz, 1 r(m)) are
clearly digjoint and so, if #(@) —> 0 we have in a bounded set an infinite
number of disjoint balls of a fixed positive radius which contradicts (e).

Assume now seS— U Bj. Then 7(s) >0 would mean that s has been

1 . .
overlooked in the selection of the @’s. Thus § = By and (a) is proved.
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Property (b) is an immediate consequence of condition (8) of the lemma,
since the balls B(z, %r(wzc)) are disjoint and the By's clearly satisfy
(2), (8) of (B). Property (c) is also an easy consequence of condition (v),
To see this consider any ball By, with & > 0. We claim that Bj intersecty
at most 6— 1 balls By, with % < . This is clear from (y) and from the choice

" of the balls B;. Now in order to split {B;} we consider the families 4,
i=1,...,0. We set Byiedy, ..., Byedy. We know that B, , is disjoint
from at least one of the previous sets. We add By, to this family. Algo
By, intersects at most 6—1 of the previous sets. Thus there is a family
such that By, does not intersect oa,ny of its sets. In this way we obtain

6 disjoint families and {Bp} = | 4x.
1

The following covering lemma will be proved by means of two
interesting results in combinatorial theory due to Ramsey [157:

14. TerorEM. Let M be a set with infinitely many elements and
w and v positive integers. Let all subsets of v elements of M be arbitrarily
distributed into n classes. Then there ewists an infinite subset D of M such
that all subsets of r elements of D are in the same dlass.

L5. TurorEM. Let 7, m, n be positive integers. There ewisis a positive
tnleger & = a(r, n,m) such that if we take a set M of p elements, = a,
form the subsets of v elements of M and disiribute them arbitrarily into n
classes, then there is o subset N of M with m elements such that all subsets
of 7 elements of N are in the same class.

1.6. Levma. Let M;,i=1,2,...,m, be n metric spaces satisfying
conditions (a), (B), (v) of 1.2 with corresponding integers &;, 0,.

Let 8 be a set in P = M;XMyX ...X My,, bounded with respect to the
metric ¢ = max g;. Let

§e8 = (ry(s), 74(s), ..., 7a(8)) e (BT)*

be any mapping such that r;(s) > 0 and for any two points sy, 8,68 we have
either 75(s1) = ri(s,) for all 4 or else ry(s,) < 7:(85) for all ©. Consider

Co = {meP: gi(m,s) <rys), i =1,...,a},

where m == (my, ..., my,), s = (817 + 00y 8n).
Then one can choose from (Cs)ey @ sequence {Cy} such that:
(2) 8= U Cy.
(b) Buvery meP is at most in g = u(f,, vevy En) sels Cy.
{€) The family {Cr} cam be split into » = (6, ..., 6,) disjoint families.
Proof. (For the sake of clarity the proof will be presented for
m =2, but it is easy to see that the same reasoning applies to. an
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arbitrary n.) Suppose supr;(s) = co for seS8,4=1,2. Then one can

select a single C; covering §. Suppose af — supri(s) < co for sed,

i=1,2. Choose s;¢8 such that r(s;) >%af for ¢ =1,2. This can

be done because of the comparability condition imposed on the r(s).
m

Asggome §y, ..., 8y chosen. If S< ) Oy, where Cj= Cs,, we stop. Otherwise,
m 1 o

if @ = supry(s) for seS— (J Cr, we choose s, such that 75(Smya) >3
1

for ¢ =1,2. We claim that {C3} satisfies (a), (b), (c). .

I {0y} is finite, we obviously have (a). Assume {(%} infinite. Then
necessarily at least one of the sequences {r;(sx)}, {ro(5:)} tends to zero
a8 k — oco. In fact, otherwise there is an ¢ > 0 and an inifnite subse-
quence {s;} of {sy} such that r,(sy) > &, ry(sz) > s. Consider s;, s;,j > h.
Then we have s; ¢ ;. Call mj, mj the projections of s; on M,, M, respecti-
vely and Rj, R} the projections of Cs, on M,, M,. It iz then clear, since
s;¢0s,, that we have m; ¢ By, or m; ¢ B;. In the first case we write (h, j)ed,
in the second (h,j)e4,. By Theorem 1.4 we have an infinite sequence
{s%,} of {si} such that for all & > j we have m}cjgtR}% or else mj, ¢R?cj. Suppose
we are in the first case. Then in M, we have a bounded set {m}ci},
j=1,2,...; for each point of {mi} a ball Ej = Bi(mi,r:(sy,)) such
that 74(s7,) > e and the balls B, (my,, }ri(si;)) are disjoint. This contra-
dicts property («) of M. Thus we have r,(s;) — 0 or 7,(sz) = 0 a8 & — oco.

=+
Assume now seS— (J Op. Then, since r;(s) > 0, it is clear that s has

1
been. overlooked in the choice of the s;’s. Thus we obtain (a).

For property (b) we can apply the same reasoning using now
Ramsey’s Theorem 1.5. Suppose peP is in more than » = a(2,2, &)
sets Cp, where @ is the function defined in 1.5 and & =max (&, &)+1;
call these sets Cf,, ..., Cx,, and Ri,..., B; ., their corresponding pro-
jections on M; and assume k, << k; for & < j. Then, for » < j we have
81, ¢Cy, and if miy., m?ch are the projections of Skyy Sk, OLL M;we ].1ave m}rj ¢ RL,
or mii ¢ R}, . As before in the first case we write (b, j) <4, and in the seeonfl
(h,j)ed,. By Theorem 1.5 we have &> &+ 1 indices such that all their
binary combinations are for example in 4,. But one easily sees that
this contradicts property (8) of M,. So (b) is proved. ' ]

For (¢) one applies also Theorem 1.5 and the same reasoning as in
the proof of (¢) of 1.2.

Suppose finally supr,(s) = oo, supry(s) = af < co for seS. Then,
it §” is the projection of § over M, and I is the diameter of §', we select

m
sy sueh that ri(s;) > 1, 7a(s,) > § 65 and if d = supry(s) for seS—1J Gy
" - ’
We take sy, e8— J O such that ri(spy:) >min(l, # am), 7%(Smer) > § ame
1

The same considerations lead to the conclusion also in this case.
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1.7. COROLLARY. Let (Ry).q be o collection of open (or closed) intervals
of RY centered at O such that if a;, azed we have R, = R,, or B, < R, .
Let 8 be a bounded set of R* and i: 8§ — A any mapping from S to the index
st A and Ry = o+ Bigy. Then there is a sequence {wr} = 8 such that if
By = w4 Rigyy, we hove:

(a) U Rpc 8.

() Bwery y <Ry is at most in & = &(n) of the sets {Ry}.

(¢) The sequence {Ry} can be split into 6 = 0(n) disjoint families.

§2. APPLICATION TO DIFFERENTIATION THEORY

For the sake of clarity 'we will present some consequences of the
covering lemma stated in Corollary 1.7. It will be obvious that similar
results on differentiation hold for spaces P for which one has families
of sets satisfying the properties of the sets 0; of Lemma 1.6.

2.1. THROREM. Lét (R,)eca be @ collection of closed indervals as in
Corollary 1.7 containing arbitrarily small intervals and w any non-negative
measure whose domain of definition includes all Borel sets of R". Let Il be
a p-measurable set of R™ such that u(B) < co and assume that for every
el there is a sequence {v+ Ry}, Rye(Ro)aea, cOntracting to u as k — oo,
Then there is a disjoint sequence {T'v} of sets Ty of the form y -+ Ry with yeB
and Rye(Ry)aea Such that uw(B—J Ty) = 0.

Proof. If @(r) is the open cubic interval of centre 0 and semiedge
7 and 0Q(r) denotes its boundary, it is clear that there is an increasing
sequence {ry}, 7 — co as k — oo, such that u(0Q (1) ~ E) = 0 for every k.
Otherwise we would obtain that u(Q(r) ~ B) = ¢(r) is a bounded non-
decreasing function of r with an uncountable set of discontinuities, Thus,
by considering B ~ (Q(r +1)—@(rz)) we can assume E < B, B open and
bounded. For each point weF we have, for some Rye(Ry)yes, &+ By B
and so one can select a sequence {R;} of intervals of the form z+ Ry,
Bye(Bo)oes, xeB; such that Bo {J By o> B and {Ry} satisfies (¢) of L.7.
If we consider the § disjoint families we obtain, it is obvious that for at
least one of them {R;} we have

BB A (U B} > S u(m)

and so ‘
, 1
w(B—U B < (1——,5) u(B).
Thus we ean select a finite number &, of rectangles of {R;} such thai

Iy i
p(B— U B) <nu(B),  where (1—%)<n<1-
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Now we apply the same process to E—. thl R}, taking intervals
disjoint from Cj ER;, and we obtain {R}, % =1, .12, U S S, DR
disjoint such t];am

(B~ L]:j Ry < n'u(B).

Tn this way we obtain {7y} disjoint with px(B— U Ts) = 0.

2.2. Remark. When we have around each xeE not just a sequence,
but a continuously contracting family of intervals, then by the consid-
eration at the beginning of our proof we can take the sequence {T%} such
that u(0Zy) =0 and so disregard the boundary of T.

2.3. DEFINITION. Let (R.).s be a family of intervals as in 2.1 and
», 4 two non-negative measures defined on the Borel sets of R". Consider
for z <R" all the sequences {Ry}, where Ry is of the form - R,, contracting
to 2 a8 k — oo and the numbers

N TN = sup | T 2B
DG, »1s) = mt[1n 2, Do, sy = sup [T 22,

where sup and inf arve taken over all such sequences {.} and one puts
D(x,v/u) = D(w,»/u) = 0 if for some Ry one has u(R) = 0.

T Define D(z,v/u) = D(w,v/n) = D(@,»/u) whenever D(w,v/p) < oo
and D(x,v/u) = D (@, v/u). The number D(z, v/u) is called the derivative
at @ of v with respect to u and (Eo)ea- _

2.4. TurorEM. Let u,v be two mon-negative complete measures which
are defined on the Borel sets of R™. Assume u,v régular (i.e. o is regular
when for M o-measurable, o(M) < oo, and &> 0 there is an open set G > M
such that o(G— M) < &), Suppose further p, v are finite on bounded sets.

Let (Ro)eea be as in the preceding definition. Then we have the follow-
ing: :
() If D(w,v/u), D(w,v|p) are measurable, then D(w,v[u) ewists
u-a.e. in R"

(b) Assume €°(R") is dense n IMR" u). Then, if v = v1+-v2 with vy
p-continuous and vy u-singular (Lebesgue decomposition of v with respect
to u) we have:

(i) D(m,vy/u) = 0 p-a.e. in R .

(ii) D(®,v./p) evists p-a.e. in R, is p-integrable and for every P,
Borel set, one has:

n(P) = [ D(®,v/un)du®).
P

20
Studia Mathematica XXXIV.3
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Proof. The proof of (a) follows a standard pattern. We first show
that D{, »/u) is finite u-a.e. Let ¥ be any open bounded set and define
for o= M > 0, : ’

By = {o<B: D(o,v[u) > M}.

Take G > B, G open, »(¢) < co. Then, for every weB,, there is an
E, = @ of the form - B, so that »(R,) > Mu(R,). Using 1.7, we have
{B,}, U By = By, such that every ye<R" is at most in £ gots Ry, 8o that
v(By) > Mu(R,). Thus we obbain V ’

"0 >9(UR)> 3 Som) > 2 N uim,y

M M
> 5 MUR) > (B > %m&o).

Hence, since M is arbitrarily large, u(B,) 0.8 D (%, v/u) is finite
wa.e. in R, ‘
Now we prove D(w,»/u) = D(x, | - in R
D u), w-a.e. in R® For a
bounded set ¥ and for h, keZ* we ,Write, o

= A1
Ay = {meE: D(z,vju) > ——_7;;—|——> —;:—> D (z, v/M)}

We will see that u(4,,) =0 and so D@, v[u) exists u-a.e. First we
remark that if 4 is a g-measurable bounded set such that D(x 1"/,14) > a
for weA, then we have v(4) > au(4). In fact, take any G o ;/1" @ op/en
Then, for wed, there is a sequence {R%} contracting to @, of séts of th(;
form 4R, so that R =@, »(Rl)> ap(R;). Then, using 2.1, we get

a digjoint sequence {R,} such that WA—~UR,) =0, R, « G. Hence, |
3 " ’

W@ = (UR) = Dv(B)>a Du(Ry) = aup(UR) > ap(d).

Thus »(A) > au(A) as we wished to shov.
Now, for & > 0, we take a G open bounded, G > Ay, u(@) < (Apz) e

If wed,,, there i i J i
ﬂmte np, Uhere 18 again, as hefore, a sequence {B.} contracting to z so

h
Y(B) < (RS,
Thus we obtain {R;} disjoint, R, = @,

v(By) < % u(Ry)
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such that u(dy—UR;) = 0. Thus p(4y,) = ul(UR;) ~ Ay] and
h h h
WUR) = D)) <3 D) wlB) < p(@ < (a4 +e].

Using the preceding fact we also have

W(UR) > 2 LURIA 4] > 25 ul(UB) A ] = 2L ).

Hence u(Ay,) < he and 5o p(4y) = 0.

In order to prove (b) i) we show that D(z, »,/u) = 0 in B, u-a.e,
for any B open and bounded. Since u is regular and », is u-continuous,
v, is also regular and so is »,. Both »,, v, are non-negative. Further, since »,
is p-singular, there is a set N such that u(N) = 0, »,(N') = 0, where N’
denotes the complement of N¥. Consider H, = {zeB— N: D(», v,/u) > a}
for any a > 0. Take any open bounded set G o H, and for every zeH,
take B, < G of the form x4 R, such that v,(R;) > au(R,). We select
a sequence {B,} with | JR; > H, and such that every point of R is at
most in & sets K. So we get

nl@) > D nB) > D a5 D,

where x* is the exterior measure associated to p. Now G can be chosen
so that »,(@) is arbitrarily small, since », is regular and »,(H,) = 0. Thus
u(H,) = 0 and Dz, »/u) = 0 u-a.e.
For the proof of (b) ii) we first define
' »(B)
®,v[p) = sup ——-
ulw, v/m) p W(B)’

where the sup is taken over all those B of the form z-+E, such that
u(R) 0. We show that, if for any 1> 0, we call 4;,={w: Y (w,v/n)
> A}, then
»(R™)
WA < 0=

with ¢ > 0, constant independent of 1.
In fact, if wed,~H, for B open bounded, we have an R =2+ R,

§0 that »(R)/u(R) > A Thus, using 1.7, we can obtain a sequence {E}
50 that no point yeR™ is in more than £ sets B, and R, > 4;,~E.

Hence

‘ £
M*(AAHE) < 2 ‘M(Rk)<%2 ’V(Rk)<§”(URk) <7"(Rﬂ)’
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Therefore

(4 < —V(R”)

By the Radon-Nikodym theorem, since »,(R") < oo and », iy g-con-

tinuous, there is an feI' (R", u) so that for any Borel set P we have
1(P) = [ fl@)du(w).
P

‘We shall show that D (%, »/u) = f(@) p-ave.
First one proves, as before, that D(w, vlm) is finite u-a.e. Let now

be f = g-+h, where ys%,,(R" ) and hsLl(R , i)y bl < e It is obvious
that if

ny(P) = [ g@)dpu(e),
P
we then have
D(w,vylu) = D, vy,/u) = g(w)

We prove now that if H,; = {o: |D(w, v,/u)—f(z)] >4 >0}, then
p(H;) = 0. In fact,

{“" iD(” (Vlg+7’1h)//4) (

for every z.

2+h)| 2
- {w: 1D(o, bl > 5 fos o) >2)

A A
c{m: M(w, vy [p >E} v {m: 1A (2)] >§-} = 4,uB,,
where |v,,| denotes the total variation of »,;,. One therefore has

.U* (45)

¢
STl w(B) <.

Hence

2 1
ut (H) < __(it_)e
and so u(H;) = 0. In the same way

one can proceed with D (a
80 one obtains D(w, v/u) (@] and

= f(®) p-a.e. in R".

§ 3. APPLICATION TO SINGULAR INTEGRAL OPERATORS
3.1. THEOBEMn (a) Let o: R"XR" - ~>[0,00) be a translation in-
variant metric in B" (we also call g(z) = (0, ) satisfying:

(1) The balls B(0,7),r >0, are compact convex bodies symmetric with
respect to the coordinate hyperplanes
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(2) For all » > 0, |B(0, 2r)| < ¢|B(0, 7)|, where | | represents Lebesque
measure and ¢ is o positive constant independent of v (we will denote in
general by ¢ a positive constant, not necessarily the same at each ocourrence,
independent of certain elemenis of the ewpression in which it appears).

(8) The function of r, [B‘(O, )], 98 @ continuous function of v and the
balls B(0, r) contract fo 0 a3 v — 0 and expand as r increases so that they
contain any given bounded set for v sufficiently large.

(4) We have o(tw) = to(w) for 0 <{<1 and any ®.

(b) Let & be a function k: R" -, keLio(R"—{0}) such that:

(1) For 0<e<y,| [ klo)dw|<e o independent of e,7m and

e<o(T)<n
k(z)dx converges as & — 0.

a<o(@) <l
[ e(®) k() do <
g(w)<a

(2) For any >0, ca, ¢ independent of a.
k(z—y)do < ¢, ¢ independent of y.

3 [ \ke)—
e(%)=>40(v)
Define, for feLP(R™),

Eof(@)= [ kyfte—ydy, e n>0.

e<p(¥)<n
Then K., is an operator of weak type (1, 1) on LY, (i.e.

i

‘Et(Kanf | = |{a}:lKn1f N> t > 0}1 01

and of type (p, p) on L (i.e. | Eunfly < ellflp) for 1 <p < oo, umformzy
in g1 (i.6. the constants o, ¢, are independent of & 7). -
Furthermore K., f converges in IF as ¢ —>‘0, 7 —> oo.
Proof. We first prove that K,, is of type (2, 2) uniformly in &, 7.

Congider
. k(m) if &< o) <n,e>0,
() = elsewhere.
We will show that f |h{z—y)—h(z)dz < ¢, ¢ mdependent of Y.
It g(w) > 40(y) we have:

‘ B(s—y)—k(@) it fe < o@) <3u,
h(w»—y)—h(m)‘ = ‘ if  o(w) <teor e(w) >4y,

Thus, if we write.

< of@),}e > (@) >34},
& < o(®) <3}y
o(m) <in},

8y = {w: 4do(y)
8y = {w: 40(y) < (@)}
83 = {w; do(y) < Q(m)7%’7<
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we obtain
[ h@-he—ylde< [|k@—y)—k@)|do+ [ @)+
() >4a(¥) 8y &
+ k@—y) 1o+ [ [k(@){+ k(e —y)|1do
. ]
Now

[ 1ko—y)~h(@)|do < o
82

by condition (b) (3),

e(@)[k(@)| da < o,

f]k(m)mm Ik (2)] dov < —

4/33>Q(z)>4/55 4/3520(%)
[R@—ylldo< [ |k@—y)—b@)|do+ [ ) do< o
81 o(x)>4e(y) 8

by (b) (3) and the preceding inequality. The same is true for the third
1ntegm1 on s;. Thus

[h(@—y)— h(z)|do < ¢
o(%)>40(¥) )
holds.

We next prove that the Fourier transform of  ig bounded in R"
uniformly in e, 5. Consider

hia) = [n(y)emon gy,

If 2 =0, by condition (b) (1) we have |h(0)| 6. Suppose # #% 0

and take zeR" such that (z,2) = % and (%) = min o (u) for [(%, @) = %
We can write
2h(a) = [ 6= N (y)— h(y—2)]dy
= " J;e (ﬁ)g—zni(x,v) [h(y)“h(yf z)]dy_h(y)g;(a) h{y) [6—2111(0:,1/)__1] dy+
o <f g@“y)d”‘m gf.w)h“’_z) te-“”‘<“-ﬂ>+11di,+
+Q(H )L W}h(y~z)dy-e(H )i S(Q()z)h(y-z) dy = g{’ I;.

Now |I,] is bounded as shown above.
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Algo |I,| is bounded in R", uniformly in e, 4. In fact, if we have
o(2) < o(y) < 40(2), we also have

s e 1) < 9 < 2 9((‘7’))
o(z
and 80
e~ —1] [k(y)|dy < “U o) |k(y)idy < o.
o(?)=<e(V)<e(?) e(¥)<He(2)

I o(y) < o(?) we take #,,y, such that 0 <t <1,y = t1¥1, 0(¥s)
= p(2). It is clear from the conditions on ¢ that this is always possible
if ¥ # 0. Then we have .

|e~2miEn) _

U<ol(@,9)] = etl(@, yo)l <ot }

because of the choice of 2. Since ¥, p(2) = t,0(yy) < 0(f,91) = 0 (¥), We have

|6—2ni(w,u) —1<e Q(fy)
o(e)
and so
le™ ™0 — 1] [B(y)|dy < (—) o) ke()dy <o
e(¥)<e(?) ew)<e(?)

Also |I,] is bounded by condition (b) (1).
For |I,| we can proceed a§ with |I,|, since

‘ —2n'i(a: 11)+1l — ]e—zwl(z,y—z)e—zni(m,z)_‘_ll — I —2m (@,y—2) __ 1I

OOndmon (b) (1) 1mphes the bounded.ness of 1151
For |I| we.have

17 = h(y—«z)dy} < lkly—#)|dy
( L0 se(e)<aly—=)<5e(?)
aly~#)<se(?) ’
< oly—2)hly—2)dy <o
¢ Mz) e(u—~#)<se(?)
Hence |h,(w\ ¢ with ¢ independent of &, 7, #. So we have, for

feLf,

1K oflla = [xflls = 1Bl < ¢1flla

which proves that 40, is of type (2,2) on L’ umformly in ¢, 7.

(Note that most of the properties of the metric p are not needed
for this result. In particular, it is not necessary that the balls satisfy any ‘
symmetry condition with respect to the coordinate hyperplanes.)

By using the preceding fact we w1ll now prove that K., is also of

weak type (1, 1) uniformly in &, 7.
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We first remark the following: Consider B(0,r), » > 0, and the in-
tergections :
(£a.(r),0,..0,0), ..., (0,0,..., 0, Lay(r)

of its houndary with the coordinate axes. Call ¢(0,r) the interval

L

An easy geometrical argument shows that €(0,r) < B(0, 7), |B(0, 7)|
< 4"0(0, 7)], |C(0, 7)| is continuous in r, 0(0,r) contracts to 0 asg + — 0
and contains any fixed given bounded set for r sufficiently large. Moreover
G(0,71) = C(0, 7y) if 7y <1y .

Call for brevity K,, = 4. Let >0 be given and take fe%,(R")
(i.e. continuous function with compact support). We want to prove

| By (Af)] < cltfﬂ with ¢ independent of f, ¢, ¢, 9.

a;(r)

00, r) = {msR”: o] <

Consider f = f,+f,, where
If{@)] =1,

 [f@) ‘
)= [ 0 \f@)| <.

Then |f,(#)| < ¢ for any zeR" and we have
1B (AN)] < | Bya (Af1) -+ | Bea (Af2)]
from thé‘ sublinearity of 4 and the definition of E,(4h). Now we get
92
2

if
if

I-Et/z (Afz)l = dr <
Byja(Afa)

<5 [1n@Pw <2< i,

[ 14tz -

by using the fact that 4 is of type (2, 2).
We will try to estimate [Bys (Af1)|. For any @esuppf, we obviously
have some Cj of the form x-- (0, r) such that

11 1
=< d, 2t.
5 <] J f)ldy <

Furthermore, from the continuity of the integral, we see that for
. every zesuppf; we have a neighborhood ¥V of » such that for every point
ZeV we have for (5 = %+ (0, r) with the same 7 ag before

t 1
5< WJ F@)lay <.
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By the Heine-Borel theorem we obtain the following :

There is a finite number of #°s,7,,r,, ..., 7, such that for every
wesuppf, there is one of these s, say r;, such that, if ¢, = o 00,7y,
we have

1 '
5<—la;|—%f|f(y)ldy <.

Hence we can apply Lemma 1.1 and we obtain 'a finite sequence
: j

{0}, b =1,...,5 of intervals such that suppf, = (JO; and every
1

xeR" i3 at most in 0 = 2" of the sets {Cy}. (Note that the fact that the
intervals are taken closed or open is irrelevant.) b1
Define now E, = 01,E21= C,—Cyy ...y By = Cy— |J Cp. The sets
i

. 1
Iy, are disjoint and ) By = (J Ox. Let yp be the characteristic function

1 1
of P and let ¢; = f; ym, and

if me(]i,

1
¢i() = Wc‘f%(y)dy
0

if x¢C;.

Call

7
pi—g, 1= Zli'

7
g = 2 gi; I
1

Then we have
J
fi= 2% =g+l for any zeR",
1

lg (#)] = dmax |g:(w)] < 26¢,

and

7 7/
gl Y [1gs(@ldo< D) [ 1f(@)ldy < 01 fl:.

Thus we obtain, as with f,,

B (ag) =

On the other hand, we clearly have

suppl; = Oy, fldw)dw-—-() for i=1,2,...
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Consider, if 0; = @+ 0(0,8;), 5, > 0, the ball B; = @, B(0, 4s;),

Then we obtain, if Bj is the complement of B;, and h is defined as in

the proof of the type (2, 2),

[14L(@) dw = [fh(w—y)li(y')dy’ da
B;: o(@—T;) >48;
= [ |/ re—u)ty+a)dy|do
_e@)>18;

= [ ] [ o=y —h@)lly+a)dy|d

a(x)>48; o(V)<s;

< [ Wytedl [ [he—y)—h@)|dody = o|lj

e(u)<s; 0(%)>48;
gince h satisfies ‘
| he—y)=~h(@)idz <o

o(x)>4e(v)

a8 we have already seen.
In this way we get our last estimate for |Ey,(4})l,

1B (AD)] = |Bys(Al) ~ D|+|Byy(41) ~ D],

i
where D = {J By, and so
1

i j i
K 2
DI< YBi<o Ylod <o D+ [Ifwlay< il
1 1 1 [of%

and, finally,
i

4 4
D~ B <5 [lak@ldo < 3 [ 14t (o) do
b T 5
R
¢ ¢
<72 [ ol ar < Sl
Adding up all our estimates we obtain
man) <o,
The weak type (1, 1) on LP(R") is easily obtained by approximation.
Marcinkiewicz interpolation theorem (ef. [16], II, p. 111) yields the
result on the type (p,p) for L <p <2 and a duality argument for the

convolution operator K,, the same result for 1 < P < oo,
We will finally prove the convergence of I, f in I* ag ¢ — 0, 5 — oo,

4 covering lemma 315

We first remark that the condition #o(z) < e(tx) for all &, 0 <2< 1,
implies || < og(w) for o (x) <1 with ¢ independent of 2. In fact, assume
(@) <1, # 0. Then.» = 1z, ¢(z) = 1,0<?<1, and so we have

o o ol '
o(w) = o(17) > to(z) = Eh

Hence one can take ¢ = suple| and obtain |z| < co(x). We prove next
(@)=l

the convergence of X,,f in I” for fe%}(R"). We have
If(@)—fW) < erlo—y| < epo(—1y)
with ¢; depending on f, but not on , y. If e <1 < #, we can write

Enf@)= [ ko—piw)ay— [ ka—yfy)dy.
e(z—y)>e e[@—y)=n
The last convolution clearly converges in I”(R"). For the first term
of the second member we have

Ef@) = [ #lo—y)f@)dy

e(@—~v)>e

ba—9 @) —f@)ldy+@) [ kEy)dy+

1>e(@-y)>= 1>e(¥)>e

+ [ Re—yfy)dy.

e(z—%)>1

Ed

According to condition (b) (1), k(y)dy converges as ¢ >0. We

1>o(U)>e
also have
[ se—y)f)—f@ldy|<e [ elo—y)ika—y)ldy >0
>Q(T—w)>8 I>e(x—-y)>e

as  &,d—~>0.

On. the other hand, for big |#|, K.f(x) is independent of . Th‘l'lS
H,f(») converges uniformly in & as &—0. Hence K,f converges in
IP(R"). For any other feIL(R") the result is obtained by approximation.

3.2. Remarks. (a) Note that we obtain easily from the theorem
the same vesults for f<L” (R"), 1 < p< oo, and so the restriction fe LP(R™)
isirvelevant. If g e L' (R™), take hy, e LP (R"), Iy, — ¢ in I'. Then Kl > Koy g
in I' and so also in measure. Thus for ¢ >0

{o: | Koyg ()| > | =7£i_13°1° {o: | Kephi(w)] >3] <0'%
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Algo it is obvious [[K.,glk < ¢llglly if geI?(R™).

(b) Metrics ¢ and kernels & satisfying the conditions of Theorem 3.1
appear in a natural way when one studies singular integrals with generalized
homogeneity which are associated with differential equations of parabolic
type. Consider a real # X% matrix P such that P*P = PP* (P* iy the
adjoint of P) and with eigenvalues with real part > 2. Then one can
define ¢(z) for @ # 0 as the unique solution of [[exp(— Plog o)]a = 1.
The function so obtained yields a metric satisfying all properties of Theo-
rem 3.1. A function % is said to be P-homogencous of order m if

k([exp(Plogi)la) = I"k(w) .for @eR™w 0,4 > 0.

It is easy to construct P-homogeneous kernels satisfying all conditions
of Theorem 3.1 and they appear in the problems mentioned above. The
theory of the singular integrals so obtained rung parallel to the one
obtained for the classical singular integral operators of Calderén and

Zygmund (cf. [4]). We refer to [8]-[13] for a more detailed study of such
operators.
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