

- [4] S. Karlin, Positive operators, J. Math. Mech. 8 (1959), p. 907-937.
- [5] J. L. Kelley and I. Namioka, Linear topological spaces, New York 1963.
- [6] M. A. Krasnoselskiĭ, Positive solutions of operator equations (translated from the Russian), Groningen 1964.
- [7] C. W. McArthur, On a theorem of Orlics and Pettis, Pacific J. Math. 22 (1967), p. 297-302.
- [8] C. W. McArthur and J. R. Retherford, Some applications of an inequality in locally convex spaces, Trans. Amer. Math. Soc. 137 (1969), p. 115-123.
- [9] C. W. McArthur, I. Singer and M. Levin, On the cones associated to biorthoanal systems and bases in Banach spaces, submitted for publication.
- [10] R. D. Mc Williams, On the w*-sequential closure of a Banach space in its second dual, Duke Math. J. 35 (1968), p. 369-373.
- [11] On certain Banach spaces which are w*-sequentially dense in their second duals, to appear.
- [12] A. J. Peressini, Ordered topological vector spaces, New York 1967.
- [13] H. H. Schaefer, Halbgeordnete lokalkonvexe Vektorräume II, Math. Ann. 138 (1959), p. 259-286.
- [14] Topological vector spaces, New York 1966.
- [15] L. J. Weill, Unconditional bases in locally convex spaces, 1966.

THE FLORIDA STATE UNIVERSITY TALLAHASSEE, FLORIDA

Recu par la Rédaction le 7, 10, 1968

Perfect sets in some groups

Dy .

R. KAUFMAN (Urbana, III.)

Let G be a compact, metric, totally disconnected abelian group, and $G_1 \supset \ldots \supset G_n \supset G_{n+1} \supset \ldots$ a decreasing sequence of open subgroups meeting in $\{0\}$. Let $(H_n)_1^\infty$ be a sequence of positive numbers; a closed subset X of G is said to have positive H-capacity if X supports a Borel probability measure μ with the property

$$\mu(b+G_n) \leqslant KH_n$$
, $1 \leqslant n < \infty$, $b \in G$.

In the first paragraph we prove an abstract lemma relating "economical coverings" of a set with additive set functions; it follows that capacity and metric covering properties are connected much as in a Euclidean space.

Next we specialize to the group of p-adic integers, as the multiplication in this ring yields an abundance of continuous endomorphisms. An analogue of C^1 mappings is introduced, in terms of which a p-adic analogue of the construction in [4] is accomplished.

I. Let S be a set and A a collection of subsets with this property: (1) For each choice $\{T_1,\ldots,T_r\}$ from A of a covering of S (namely $S=\bigcup_{i=1}^r T_i$) there is a choice $\{T_1',\ldots,T_r'\}\subseteq \{T_1,\ldots,T_r\}$ of pairwise disjoint subsets such that $S=\bigcup_{j=1}^t T_j'$.

Moreover, let $h \ge 0$ be a real function on A such that $(2) \sum_{i=1}^{r} h(T_i) \ge 1 \text{ whenever each } T_i \text{ is in } A \text{ and } S = \bigcup_{i=1}^{r} T_r.$

LEMMA. There is a non-negative finitely additive set function σ , so defined on all the subsets of S that $\sigma(S)=1$, and $\sigma(T)\leqslant h(T)$ for each T in A.

Proof. The argument is based on [3]. First, the covering property (2) is valid for multiple coverings: writing I, for the characteristic function of I,

 $(2')\sum_{i=1}^{r}I_{T_{i}}(x)\geqslant m, ext{ for all } x ext{ in } S, ext{ implies } \sum_{i=1}^{r}h(T_{i})\geqslant m \ (m=1,2,\dots).$

In fact, from the sets T_1, \ldots, T_r a disjoint collection, say T_1, \ldots, T_t , can be chosen so that $\sum_{i=1}^t I_{T_i} = 1$, whence $\sum_{i=1}^t h(T_i) \geqslant 1$. In case m > 1, $\sum_{i=1}^t I_{T_i} \geqslant m-1$, and (2') is obtained by exhaustion, using (1) at each step.

Let now Z be the group of bounded integer-valued functions on S, and L a functional on Z defined by $L(1-I_T)=1-h(T)$ for T in A, and $L=-\infty$ for other functions. We shall find a functional ξ on Z so that

- (3) $\xi(z_1) + \xi(z_2) = \xi(z_1 + z_2), z_i \in \mathbb{Z};$
- (4) $\sup z \geqslant \xi(z)$;
- (5) $\xi(z) \geqslant L(z)$.

If such a functional ξ exists we need only define $\sigma(R) = \xi(I_R)$ for $R \subseteq S$; for σ is additive by (3), $\sigma(S) = 1$ by (4), $\sigma(T) \leq h(T)$ by (5).

A functional ξ exists, after [3], if $\sup(z_1+\ldots+z_r) \geqslant L(z_1)+\ldots+L(z_r)$ whenever all z_i are in Z. This is trivially true unless $z_i=1-I_{T_i}$ with each T_i in A, and it then becomes

$$\sup \sum_{i=1}^r (1-I_{T_i}) \geqslant \sum_{i=1}^r \left(1-h(T_i)\right),$$

 \mathbf{or}

$$\sum_{i=1}^r h(T_i) \geqslant \inf \sum_{i=1}^r I_{T_i}.$$

But this is just (2') and the lemma is proved.

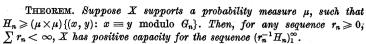
COROLLARY. Each of the following properties of a closed set X in G implies the other:

(1) X supports a Borel probability measure μ for which $\mu(b+G_n) \leq KH_n, 1 \leq n < \infty, b \in G$.

(2)
$$X \subseteq \bigcup_{j=1}^{t} (b_j + G_{n_j}) \Rightarrow \sum_{j=1}^{t} KH_{n_j} \geqslant 1$$
.

Proof. It is plain that (1) is stronger than (2) because $\sigma(X)=1$. If (2) holds we take for A, in the lemma, all intersections $X \cap (b+G_n)$, so that (1) is an easy consequence of the fact that distinct cosets of a fixed subgroup are disjoint. We choose $h(X \cap (b+G_n)) = KH_n$ and let σ be the set function obtained in the lemma. Restricting σ to the Boolean algebra of open-closed subsets of X, we obtain a measure μ that is trivially countably additive, and so can be extended to a measure on the Borel sets ([1], §§ 7,13).

We indicate a property of *H*-capacity involving product measures, related to concepts in classical potential theory.



Proof. Set $\psi_n(x) = \mu(x+G_n)H_n^{-1}, 1 \le n < \infty, x \in G$. Then $\int \psi_n(x)\mu(dx) = H_n^{-1}(\mu \times \mu)\{x \equiv y \text{ modulo } G_n\} \le 1$, so $\sum_{n=1}^{\infty} r_n \psi_n$ is integrable with respect to μ . Thus there is a closed subset Y of X, with $\mu(Y) > 0$ and $r_n \psi_n \le C$ on Y $(1 \le n < \infty)$. In particular, $\mu(Y \cap (x+G_n)) \le Cr_n^{-1}H_n$ for $x \in X$ in X, and we can prove the theorem by showing that $\mu(Y \cap (b+G_n)) \le Cr_n^{-1}H_n$ for each $x \in X$ in which case $x \in X$ in which case $x \in X$ with $x \in X$ in which case $x \in X$ with $x \in X$ in which case $x \in X$ with $x \in X$ in $x \in X$ in which case $x \in X$ in $x \in X$ with $x \in X$ in $x \in X$

II. In this section G is the ring of p-adic integers for a prime p ([2], § 10). Elements of G are sequences of integers

$$x = (x_1, x_2, ..., x_n, ...), \quad 0 \leqslant x_n < p;$$

the subgroup $G_n = p^n G$, or, which is the same,

$$x \in G_n \Leftrightarrow x_1 = x_2 = \ldots = x_n = 0 \Leftrightarrow |x|_p \leqslant p^{-n}.$$

Let φ and $D\varphi$ be continuous mappings of G into itself. We say that φ is C^1 with derivative $D\varphi$ provided

$$|\varphi(x+y)-\varphi(x)-yD\varphi(x)|_p=o(|y|_p)$$
 as $|y|_p\to 0$,

uniformly for all x in G. The C^1 -norm of φ is defined as

$$||arphi||=\sup|arphi|_p+\sup|Darphi|_p+\sup_{x,y}rac{|arphi(x+y)-arphi(x)-yDarphi(x)|_p}{|y|_p}.$$

By an argument familiar from Banach spaces, we find that C^1 is a complete metric group with regard to the norm $\|\varphi\|$.

Now let φ be C^1 with a derivative which at each point is different from zero; we call φ "non-singular". There is an integer N such that, whenever $|x-\overline{x}|_p \leq p^{-N}$ in G, then $|\varphi(x)-\varphi(\overline{x})| \geq p^{-N}|x-\overline{x}|_p$. Thus, for each coset $b+G_n$, $\varphi^{-1}(b+G_n)$ intersects at most p^{2N} cosets of G_n $(1 \leq n < \infty)$. If, then, μ is a probability measure on G, and

$$H_n \geqslant \sup \mu(b+G_n) \quad (1 \leqslant n < \infty, b \epsilon G),$$

then

$$\sup \mu \left(\varphi^{-1}(b+G_n) \right) \leqslant p^{2N}H_n.$$

Thus φ maps sets of positive H-capacity onto sets with the same property.

Recall that a closed set E in G is a Kronecker set ([1], 5.2; 6) if each continuous unimodular function on E admits uniform approximation by characters of G.

THEOREM 1. For every modulus function H such that $p^nH_n\to\infty$, G contains a Kronecker set of positive H-capacity.

The method of proof is to construct a subset of positive H-capacity (in the most obvious way) and then produce a non-singular C^1 mapping φ of this set onto a Kronecker set. For any set M of positive integers we define

$$G[M] = \{x \in G : x_i = 0 \text{ for all } i \notin M\}.$$

Let m be the counting function of M:

$$m(n) = \sum_{\substack{i \le n \\ i \ge M}} 1$$
 $(n = 1, 2, ...).$

LEMMA. G[M] has positive capacity for the function $H_n = p^{-m(n)}$. Proof. Regarding G[M] as a product $\prod_{M} \{0, 1, ..., p-1\}$ we provide G[M] with a probability measure μ rendering the co-ordinates mutually independent, and equally distributed upon $\{0, 1, ..., p-1\}$. Then a coset of G_n has μ -measure H_n if it meets G[M], and 0 otherwise.

THEOREM 2. Let M be a set of positive integers whose complement contains segments of unbounded lengths.

Then each mapping φ in the space C^1 , excepting only a set of Baire's category 1, determines a homeomorphism of G[M] onto a Kronecker set.

Proof. Suppose that $\{F_j\}_j^{\infty}$ is a sequence of continuous unimodular functions on G[M], uniformly dense in the metric space of all these functions. Let $V_{j,k}$ be the set of C^1 defined thus:

For some character γ of G, $|\gamma(\varphi(y)) - F_j(y)| < k^{-1}$ for all y in G[M]. Then $V_{j,k}$ is open, the intersection $\bigcap V_{j,k}$ is exactly the set described in the theorem, and we proceed to show that each $V_{j,k}$ is dense in C^1 .

Let $\psi \in C^1$, $\varepsilon > 0$, and F be a unimodular function on G[M]. There is a constant B so that $|\psi(x) - \psi(\overline{x})|_p \leq B|x - \overline{x}|_p$ for any pair x, \overline{x} in G. Let [u, v] be a segment of positive integers so that $[u, v] \cap M = \emptyset$, and let w and w_1 be integers so chosen that

$$|w - \frac{2}{3}v - \frac{1}{3}u| \le 1, \quad |w_1 - \frac{2}{3}u - \frac{1}{3}v| \le 1.$$

For γ we choose a certain character of order p^w ([2], § 25.2) (later we shall give the exact form of γ).

We are going to displace ψ by a function α , constant on cosets of G_u , while $|\alpha|_p \leqslant p^{-w_1}$. Thus $D_a = 0$, and $|\alpha(x+y) - \alpha(x)| \leqslant p^{u-w_1}|y|_p$ because $\alpha(x+y) = \alpha(x)$ unless $y \notin G_u$. As $u-w_1 \geqslant \frac{1}{3}(v-u)-1$, $||\alpha||$ can be made as small as we please. We note also that if y_1, y_2 belong to G[M] and $y_1 \equiv y_2$ modulo G_u , then $y_1 \equiv y_2$ modulo G_v . Then $|\psi(y_1) - \psi(y_2)|$

 $\leq B_p^{-v}$; if v-u is sufficiently large, then $B_p^{-v} < p^{-w}$, so that $\gamma(\psi(y_1)) = \gamma(\psi(y_2))$. Similarly, $\gamma(\alpha(y_1)) = \gamma(\alpha(y_2))$ as soon as v > w.

The character γ has the formula

$$\gamma(x_1, \ldots, x_w, x_{w+1}, \ldots) = \exp 2\pi i q(p^{-w}x_1 + \ldots + p^{-1}x_w)$$

for an integer q with (q, p) = 1, for example q = 1. The range of γ on G_{w_1} is the group of p^{w-w_1} roots of 1, and since $w-w_1 \ge \frac{1}{3}(v-u)-2$, the number $\delta = |1 - \exp 2\pi i p^{w_1-w}|$ can be made arbitrarily small.

From each coset of G_u that meets G[M], we choose an element y_0 and specify $a(y_0)$ in G_{w_1} so that

$$\left|\gamma(a(y_0)) - \overline{\gamma(\psi(y_0))}F(y_0)\right| < \delta$$

 \mathbf{or}

$$|\gamma(\alpha(y_0))+\psi(y_0))-F(y_0)|<\delta.$$

Because the function $\gamma(a+\psi)$ is constant on cosets of G_u , the error $\|\gamma(a+\psi)-F\|_{\infty}$ is easily estimated by means of δ and the degree of continuity of F. Making u and v-u increase without bound we obtain element $a+\psi$, arbitrarily close to ψ , with $\|\gamma(a+\psi)-F\|_{\infty}$ arbitrarily small.

We note that the non-singular mappings in C^1 form a neighborhood of the identity mapping of G, so that mappings of this kind are determined in our theorem. To verify Theorem 1, a choice of M is the final step; the complement of M must contain segments of unbounded length, while $p^{-m(n)} = O(H_n)$. We may assume that $p^{-n} \leqslant H_n$ for all n. Suppose we have found sets $P_1 \supseteq \ldots \supseteq P_j$ of natural numbers whose complements are finite, and the counting number π_j of P_j fulfills $p^{-nj(n)} \leqslant H(n)$ for all n. Then we can remove j consecutive integers from P_j , so as to leave an acceptable set P_{j+1} . Plainly $M = \bigcap P_j$ will serve for Theorems 1 and 2.

References

[1] P. R. Halmos, Measure theory, New York 1950.

[2] E. Hewitt and K. A. Ross, Abstract harmonic analysis I, Berlin 1963.

[3] R. Kaufman, Interpolation of additive functionals, Studia Math. 27 (1966), p. 269-272.

[4] — A functional method for linear sets, Israel J. Math. 5 (1967), p. 185-187.

[5] W. Rudin, Fourier analysis on groups, New York 1962.

[6] I. Wik, Some examples of sets with linear independence, Arkiv for Matematik 5 (1965), p. 207-214.

UNIVERSITY OF ILLINOIS URBANA, ILLINOIS 61801