

A remark on p-absolutely summing operators in l_r-spaces

'n

S. KWAPIEŃ (Warszawa)

Pietsch [6] and Pełczyński [3] have proved that in a Hilbert space an operator is p-absolutely summing if and only if it is 1-absolutely summing. The aim of the present note is to generalize this result on the case of k-spaces.

The method employed here is that used by Persson and Pietsch [4] in the case of Hilbert spaces.

In the sequel we shall need the following notations:

B(X, Y) — the class of all linear, continuous operators from a Banach space X into a Banach space Y;

 $\Pi_p(X,Y)$ — the class of all p-absolutely summing operators from X into Y.

(A is p-absolutely summing if there exists a constant C such that for each $x_1, x_2, \ldots, x_n \in X$

$$\sum_{i=1}^{n} ||Ax_i||^p \leqslant C \sup_{||x^*|| \le 1} \sum_{i=1}^{n} |x^*(x_i)|^p).$$

 $N_p(X, Y)$ — the class of all *p*-nuclear operators from X into Y (A is *p-nuclear* if it admits a factorization $A: X \stackrel{U}{\rightarrow} l_{\infty} \stackrel{A}{\rightarrow} l_{p} \stackrel{V}{\rightarrow} Y$, where U, V are continuous operators and Δ is diagonal, i.e. $\Delta((\alpha_n)) = (\lambda_n \alpha_n)$ and (λ_n) is a fixed sequence from l_p).

THEOREM. If $1\leqslant r\leqslant 2$, $1\leqslant p\leqslant 2$, and $2\leqslant q<\infty$, then for each Banach space X

$$\Pi_p(l_r, X) = \Pi_1(l_r, X),$$

(b)
$$\Pi_q(X, l_r) = \Pi_2(X, l_r).$$

Proof. (a) Since (cf. Pietsch [6])

(1)
$$\Pi_s(X, Y) \subset \Pi_{s'}(X, Y) \quad \text{for } s \leqslant s',$$

it is enough to prove the inclusion $\Pi_2(l_r, X) \subset \Pi_1(l_r, X)$. This is a result of the following three facts:

(2)
$$A \in \Pi_1(Y, X) \text{ iff } AB \in \Pi_1(l_\infty, X) \text{ for each } B \in B(l_\infty, Y);$$

(3)
$$\Pi_2(l_{\infty}, l_r) = B(l_{\infty}, l_r) \quad \text{for } 1 \leqslant r \leqslant 2 \quad \text{(ef. [2])};$$

(4) If
$$B \in \Pi_2(X_1, X_2)$$
, $A \in \Pi_2(X_2, X_3)$, then $AB \in \Pi_1(X_1X_3)$ (cf. Pietsch [6]).

(b) By (1) it is sufficient to prove only the inclusion $\Pi_q(X,\,l_r)\subset\Pi_2(X,\,l_r).$

According to the results of Persson and Pietsch (cf. [4], Satz 5.2 and 5.3) and Saphar [8] the space $\Pi_s(X, l_r)$ is the dual of the space $N_{s^*}(l_r, X)$ (where $s^* = s/(s-1)$). Hence the above inclusion is equivalent to $N_2(l_r, X) \subset N_q^*(l_r, X)$.

Let $A \in \mathcal{N}_2(l_r, X)$ and let $A: l_r \stackrel{U}{\rightarrow} l_{\infty} \stackrel{A}{\rightarrow} l_2 \stackrel{V}{\rightarrow} X$ be its factorization. By (3) and (1) ΔU is r^* -absolutely summing. Thus

$$\sum_{k=1}^{\infty} \| \varDelta U e_k \|^{r*} < +\infty,$$

where (e_k) is the unit-vector basis of l_r .

Making use of the Rademacher system, an operator $P\colon L_{q^*} \to l_2$ may be constructed such that the operator $B\colon C \overset{I}{\to} L_{q^*} \overset{P}{\to} l_2$ is surjective (cf. [1] [7.1.3] and [7.3.6]) (I is the inclusion operator of C into L_{q^*}). So by the Banach "open map" theorem a sequence $(x_k)_{k=1}^{\infty}$ in C may be found such that

(6)
$$B(x_k) = \Delta U e_k, ||x_k|| \leqslant K ||\Delta U e_k||, \quad k = 1, 2, ...$$

(K is a constant independent of k).

(5) together with (6) imply that the assignment $e_k \to x_k$ for k = 1, 2, ... may be extended to a bounded linear operator $Q: l_r \to C$. Now, it is seen that the following diagram is commutative:

This means that ΔU is q^* -integral.

If r > 1, then l_r is reflexive. Hence ΔU is q^* -nuclear (cf. Persson [5]) and so $A = V \Delta U$ is q^* -nuclear as well.

Let r=1. Since ΔU is compact, ΔU may be factorized into

$$\Delta U \colon l_1 \stackrel{D}{\to} l_1 \stackrel{E}{\to} l_2,$$

where D is compact and E is a continuous operator. Indeed, let E be any operator from l_1 onto l_2 . Since E is open, there exists a sequence (x_k) in l_1 relatively compact such that $Ex_k = \varDelta Ue_k$ for $k=1,2,\ldots$ The operator $D\colon l_1\to l_1$ which maps e_k into x_k for each k is compact and $ED=\varDelta U$. Using again the fact that there exists a surjection $B\colon C\to l_2$ which is factorized by the natural embedding $J\colon C\to L_{q^*}$ and the fact that the space l_1 has the lifting property, we infer that every bounded linear operator from l_1 into l_2 is q^* -integral.

But D is compact, so ED is q^* -nuclear (cf. Persson [5]). Thus A = VED is also q^* -nuclear, which completes the proof.

As an immediate consequence, we obtain

Corollary. If $1 \leqslant r$, $s \leqslant 2$ and $1 \leqslant p < \infty$, then

$$\Pi_p(l_r, l_s) = \Pi_1(l_r, l_s).$$

Remark 1. In the case of r=s=2, Corollary coincides with Pietsch [6] and Pełczyński [3] theorem.

Remark 2. In the statements of the Theorem and of the Corollary the spaces l_r and l_s may be replaced by general \mathcal{L}_r and \mathcal{L}_s spaces of Lindenstrauss and Pełczyński [2] respectively.

The author wishes to thank A. Pełczyński who suggested the subject of this paper.

References

- [1] S. Kaczmarz und H. Steinhaus, Theorie der Orthogonalreihen, Warszawa 1935.
- [2] J. Lindenstrauss and A. Pełczyński, Absolutely summing operators in ap-spaces, and their applications, Studia Math. 29 (1968), p. 275-326.
- [3] A. Pełczyński, A characterization of Hilbert-Schmidt operators, ibidem 28 (1967), p. 335-360.
- [4] A. Persson und A. Pietsch, p-integrale Abbildungen in Banach Räumen, ibidem 32 (1969), p. 19-62.
- [5] A. Persson, On some properties of p-nuclear and p-integral operators, ibidem 32 (1969), p. 213-222.
- [6] A. Pietsch, Absolut p-summierende Abbildungen in normierten Räumen, ibidem 28 (1967), p. 333-353.
- [7] P. Sapher, Comparaison de normes sur des produits tensoriels d'espaces de Banach, Applications, C. R. Acad. Sci. 266 (1968), p. 809-811.
- [8] Produits tensoriels topologiques et classes linéaires, ibidem 228 (1968), p. 266-526.

Reçu par Rédaction le 20. 2. 1969