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Convergence and alinost convergence
of certain sequences of positive linear operators

by

B. WOOD (Tucson, Ariz.)

L Let L,(f(1);#),n =1,2,..., be a sequence of linear operators
transforming f(¢) to functions of z defined on —oo <e<2z<h < oo,
Assume that the sequence is ultimately positive, i.e. for all large n and
every non-negative definite function f(z)

L(f(t);2) >0 (a<z<b).

A theorem of Korovkin ([6], p. 14) states essentially that if L, (1; x)
=1, Lo (¢ @) — @ and L, (% ) — 2* uniformly on [a, b], then L, (f(t); )
~ f (@) uniformly on [a, b] for all fecla, b]. Recently Hsu [2] has given
an extension of this theorem which applies to uniform approximation
on any finite interval of functions defined and econtinuous on (—o0, oo).
His result asserts that certain sequences of linear operators which are
positive on a particular finite interval may be modified so as to be capable )
of approximsation to non-bounded continuous functions defined on
(o0, co).

It is the purpose of this note to point out that Hsu’s result remains
true if “convergent” is replaced by “almost convergent” in the statement
of that result. In addition, the general theorems are applied to certain
types of generalized Bernstein polynomials.

2. For the basic properties of almost convergent sequences, see-[7].
Unless otherwise stated, it will be asswmed in this section that [a, b]
= [—1,1] and L,(f(#); @} is positive in [—1, 1] for all large n. Modifi-
cations of the results for other finite intervals-will be obvious.

TrHEOREM 1. Lét a, be nereasing to oo with n and let

(1) {Ln((ant)’; az'2)} be almost convergent to o uniformly on every finite
interval, where k=10,1,2,m,m-+1, m+2, and m is certain
non-negative even integer.

Then for every comtinuous fumction f(=) defined on (—oo, o) and
satisfying the condition f(z) = O(|jx|™), & - oo, it follows that {Ln( flaa?);
ay @)} is almost comvergent to f(z) uniformly on any finite interval.
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Proof. Let

v4p-1

1 i
tpv(ti; @) 2"5 ; Ln((ant) ) awlm))

0=0,1,..., p=1,2,... and i = 0,1,2,m,m+1,m+2. It follows
from a result of Lorentz [7] and (1) thatb
) o (t'; @) = &'+ 6 (),
where limd,(#) = 0 uniformly in » =0,1,... and uniformly on any
D0
finite interval for each § =0,1,2,m, m+1,m+2. If L"(f(ant); ata)
< Ln(g(ant); «lz) for two functions f(¢) and g(f), 2 fixed 2 and
n=0,1,2,..., then
(3) tm(f(t)i “") <tm(g(t)§ w),
Employing (2) and (3), the proof becomes a reproduction of that
of Hsu’s Theorem 1. ‘
Similarly Hsu's Corollary 1, Corollary 2 and Theorem 2 Tremain
valid if “convergent” is replaced by “almost convergent” in those results.
Various applications of the general results will now be considered.

p=0,1,...and p=1,2,...

3. Let {h;(#)} be a sequence of functions defined on [0, 1]. The
generalized Lototsky or [, ;] = (@) matrix [3] ig defined by

=1, ax=0 (k#0),

n n
H(’Ml—i— 1—-I) = Z%kyk-
=1 k=0
For each f defined on [0, 1] let

Lu(f(t); @) = D) F(0/n) ().

V=0
These operators were first investigated by King [5] and were proved
to be capable of approximation to continuous functions defined on [0, 1]
with a suitable choice of hy(z). When hy(z) = (i =1, 2,...), Lu(f(?); 2)
becomes the classical Bernstein polynomial [8]. Assume that

hi(2) = :Vj Bui?’

V=1

for j¢|<1and ¢ =1,2,..., where f,; > 0 for all 4,v and

Zﬂ’”‘<1 for i=1,2,...

v=1

Let {s;} denote the (¢, 1)-transform of the sequence {fy}.

icm
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THEOREM 2. Lét a, be increasing to +oco with # and let o} = o(n).
Let f(x) be defined, continuous and bounded on [0, co). Then {s;} convergent
(almost convergent) to 1 implies {Ly(f(an?); 0n @)} convergent (almost
convergent) to f(z) uniformly on any finite interval of [0, co).

Proof. Let ¢ <a <2 <b < +oo. Since 0 < ky(z) <1 for o<1,
L, (f(t); @) is positive on [0,1]. It follows that Ly (f(an1); ¢ a) is positive
on [a, b] for » large. According to the general results, it must be veritied
that {Ln((@x?)*; a5 a)} is convergent (almost convergent) to «* uniformly
on [a, b], where k = 0,1, 2. A modification of the computations of [5]
shows that ’

(4) L,(1; 05'x) =1,
() La(ant; 05'0) == 3 hy(w/am);
and

(6)  Ln((ant)?; a'a) = (anjn)?( ) hl@jan)— > Wi(@]an)+ [2“ hi(o/a)[)-

i=1

For n sufficiently large, the assumptions on h:(z) imply

@ = 2 he(o]an) =& 3 suplfan),

T=1
where s, = (1/n) Z; Buwi (v =1, 2, ...). The result now follows from (4)-(7)
T= .
and the hypotheses.

) 4. Let {gn} be a sequence of functions, each of which is analytic in the
disk |2|] < B (B> 1) and such that {g,} converges to a function g uni-
formly in some disk |2] < 7 for some r (1 < # < R). Define the generalized
Boole polynomials {¢{”(z)} by the equation

Im(W) 1+ )" = e (@) u”.
n=0
With every function f defined on [0, 1] associate for m = 1,2,...
the operator

1 m
L 0 — _qymensm) 'n___'m._n_lf"_
1053 = gy D) e ey ()
for 0 << 1. For gn(u) =g(u) =1(m=1,2,...), Ln(f(2); %) becomes
the Bernstein polynomial. These operators have been studied in [4]
and [10]. Properties of associated summability matrices have been inves-
tigated in [9].
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" PaRoREM 3. Let a, be increasing to +oo with m and let ap, = o(m).
Let W denote thé class of all the continuous functions satisfying the condition
of the type flz) = 0", s - +oo, N =0,1,2,... Suppose

(8) (=)™ " (—n—1) =0, O0<nsm,m=0,1,..
Then for all fe W it follows that
Lim L (f(ant); o’ @) = f(2)
M—-r00

uniformly on any finite subinterval of [0, oo).
Proof. Condition (8) implies that L, (f(f); ) is positive on [0, 1]
for all m. Let [a, b] be any finite subinterval of [0, co). Then, for m
. sufficiently large, Lu(f(ent); am'a) is positive on [a, b].
Write

In(2) = D amd®, m=1,2,...
k=0 .
It is easy to see that
Man
m) m—k
(—1r=eu—n—1) = 3 (") o
It follows that

L (1; a;zlm) = g(m/g}m::l_)j (Tﬂ%)n (1— %)m_n S (m?:k) Nl

n=40

1 m
= Ylan—1) ,; (o (1“ %) ‘

A slight modification of the analysis given in [9], p. 37, shows that
this last expression converges to 1 uniformly on [a, b]. Next

Ly (ant; an's)

e PR B

k=0 n=0

m
2 x1m—Fk (1 @ )’“
= E a ——].
g(mlufm—l) — m i A

Again, a modification of the analysis of [9], p. 37, shows that the
last expression converges to # uniformly on [a, b]. Repeated compu-
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tations yield
_ kEy(m—Fk—1) z \*
Ln((amt)?; g o —
m((am ) 3 U ) g($/am__1) oo Az |1 +

x Uy Mm—k z \*
+g(w/am—1)275 m “”"‘(1‘7;)’
oy (m— F) (m— k— 1) (m—F— ?) .
g(wlam—l) m?

2| 3% o (m-—k)(m—k——l) o\F
12\, 88 Vo (m—K)(m—k—1) a
X“mk( am) T 9(@)am—1) ;; ey e aank(l am) +

Fray () 2 e 2

=0

Ln((amt)®; an'a) =

and, in general, for any positive integer 7,

(9) ((amt) ,am w) .
_ (m—k) ... (m—k—r-1) z\*
= @D Z _ " (1“2) *

m—Fk z \*
et g(m/am-1>k§(‘;;) (i

The hypothesis a, = o(m), (9) and (essentially) the analysis of [9],
p. 37, show that

mﬁ_ﬂ.}L’““a”‘tY; n'a) = o

uniformly on [, b] for » = 2,3, ... An appeal to Corollary 2 of [2] com-
pletes the proof.

It should be mentioned that Theorem 3 for the case g, (u) = g(u) =1
extends a result of Chlodovsky ([8], p. 36) for the Bernstein polynomials.

5. Let {u,(z)} be a sequence of real-valued functions defined on [0, 1].
Denote by (hn(#)) the Hausdorff matriz generated by {ua(m)} ([1],
chapter 11). Then

(;:) A ), 0<k<n

Pz () =
0 k>mn,
where, for any integers m, p >
AP () = ( )um-;-j(m)'

_() L
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The sequence {u, (%)} is called a moment sequence ([8], p. 57) if there
exists a function a(z,?), of bounded variation in # for each 2ef0,1],
such that for all we[0, 1] .

1
un(o) = ["da(o,8), n=0,1,2,
0

The sequence {u,(x)} is said to be totally monotone if A% u,(2) =0
for all z¢[0, 1] and all integexrs n, p = 0. Let {u,(x)} be a moment sequence.
For all functions f defined on [0, 1], define a linear operator by

(7t 9) = Zf( J he.

0, Oo<i<uw,
1, a<it<1,
these operators become the Bernstein polynomials.

THEOREM 4. Let {u,(x)} be o totally monotone sequence. Let a, be
increasing to —-oo with n and let a, = o(n). Let f(x) be defined, bounded
and continuous in [0, oo). Assume that {uy(x/as)} is convergent (almost
convergent) to 1, {anu,(v/ay)} is convergent (almost comvergent) to w, and
{0 us (2]an)} 78 convergent (almost aonﬂeﬁ"gent) to 22, uniformly on any finite
interval of [0, oo). Then {H,(f(ant); om’ @)} is convergent (almost convergent)
to f(z), uniformly on any finite interval of [0, co).

Proof. Since {u,(%)} is totally monotone, H, is positive on [0, 1].
Thus H,(f(ant); an'a) is positive on [a,b] = [0, oo) for n large. The
result is now an immediate consequence of the following easy compu-

‘When

alw, f) =

tations:
7t )= G} ) = w2
— O, Qn
N —1 @
Ho(ant; a'2) = a, (n )An-l_kuk 1(_)
2 )l
1
@
= andf tda (;n"’ t) = Uy (%]an),
and

Hofentfy 'a) = 2D (2] 1 B (2),

n ap

Of course, Theorem 2 of [2] shows that Theorems 2,3, and 4 are
also valid for all functions of the Lipschitz class Lipa (0 <a<1).
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