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Mergelyan’s theorem for vector-valued functions
with an application to slice algebras
by

E. BRIEM, K. B. LAURSEN and N. W. PEDERSEN (Aarhus)

In the first part of this note we state and prove an analogue of the
Mergelyan Theorem for functions with values in a locally convex gpace.
Although this extension has a proof that lies surprisingly near the proof
of Mergelyan’s Theorem (for example as presented in Rudin’s book on
real and complex analysis [4]) it appears that the vector-valued version
of the theorem is not in the literature.

The second part contains an applieation of the extended Merge-
Iyan’s Theorem to a problem from the theory of function algebras. We
refer to that part for details.

I. Mergelyan’s Theorem for functions with values in a 1. c. space;

MERGELYAN'S THEOREM. Let X be a compact set in the compler plane
whose complement is connected. If f is a continuous complex function on X
which is holomorphic in the interior of X and if ¢ > 0, then there ewists
a polynomial P such that

fR)—P@)<e VeeX.
We want to extend this theorem to the case where f maps X into
a locally convex space B.

EXTENDED MERGELYAN'S THEOREM. Let X be as above and f a con-
tinuous function on X with values in a locally conver space B, which is
holomorphic in the interior of X. Then, if p is a continuous semi-norm on
B and if £ >0, there exists a polynomial P: X — B such that

P(f(@)—P(2) < e, VeeX.
(By a polynomial P: X -~ B we mean a function of the form
Tk
P(2) = 3 &b, 2¢X, beB, i =1,..., k.)
=1

Proof. The proof follows closely the proof of Mergelyan's Theorem
given in [4], p. 386. '
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By A(X, B) we denote the set of continuous functions from X into B,
holomorphic in the interior of X. :

Let fed (X, B). We extend f to a continuous funetion in the plane
with compact support, by first extending f to a continuous function
from € — B (see [2]) and then multiplying this extension by a C§°-function
identically equal to 1 on X. We will also denote this extension by f. For
any continuous seminorm p and any J > 0 put

®,(8) = sup{p (f(e1) —F(2))| lor—2| < 8}
limw,(6) = 0.

430

Thus

Let 6 be fixed. We shall prove that there exists an open subset @
of ¢ containing X and a function FeH (2, B) (the space of holomorphic
funetions from £ into B) such that

P (&) =T (2)) < Ky w,(5)
for all éeX, where K, is a positive constant independent of §.

We first construet a function @ «C, (R?, B) (continuously differentiable
funetions with compact support from R? into B) with the following
properties: '

M B2~ B (@) < 0y (6),
- 2 8 — 0 0
@) po@) <22 G- —(Bm +z—a—y—)>

(3) D (z) = (C = &+1n) for every ze C,

_iff%dfdw
g {—z ,
= {Cesupp®| dist(z, C X) < 8}.

‘We construct @ as the convolution of f with a smoothing function
A in the following manner. Put

3 rz\?
a(w):l”;?sé_'(l—ﬁ) O<r<2,

and define
A(z) =a(lel), VzeC.
Then A eC,(R?) and )

(4) ffA =1,
R

(5) Jfo4 =0,
R2 _ 9

) ' J[194] <=
R

(For details see [4], p. 387.)
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We now define

(M fff (e—0)A(D)azdy — ffA —Of(¢ )dfdn

f is a continuous vector-valued functlon and A is a continuous scalar
function with compact support, so the integrals are well-defined and
@(z)eB, Vze C. Also @ has compact support. Now

2E—16) = [[ (= 0—1@) A asay

and A(L) = 0 for |¢] > 4. Thus (1) follows from (4).

Now, since 4 ¢C,(R?), the difference quotients of 4 converge bound-
edly to the corresponding partial derivatives; also f is umiformly bounded,
so the last expression in (7) may be differentiated under the integral
sign to get

®)  0() = I 0A (== 0)f () dsdy
= fff (&)dédy

= f“f [f(z—C)—f(z)](54)(c)d§d77 (because of (5)),

80 (6) and (8) give (2).

By writing (8) with @, and @, in plaee of 0® we see that @ has con-
tinuous partial derivatives.
Thus for any b*eB* (the dual space of B)

Do) = f f Dacay @ = srin).

([4], Lemma (20.3) apphed to b*®).
Thus

ff 6@(() atdy

and (3) will follow if we can show that 9 = 0 in@ = {ze X | disti(z, CX)
> 6}. We will do this by showing that

P(e) =f(z) (2¢4).
(5f =0 in @ since f is holomorphic in G.)

'If ze@, then 2— ¢ is in the mterlor of X, v{ with |Z! < 8 80

ff(,g—-wm)d() = 27-f for r < 8.
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Thus by the first equation in (7):

fba, Vrdr ff(z—w““)d()

4§
= 2T:f(z)af aryrdr =f(2) [[ 4 =f(2).
R?

We have now proved (1),(2), and (3).

The definition. of K shows that K is compact and that K can be
covered by finitely many open dises Dy, ..., D, of radius 24, whose centers
are not in X.

Since O\X is connected, the center of each D, can be “joined to co”
by a polygonal path in C\X. It follows that each D; contains a comyact
connected set F; of diameter at least 20 so that C\Z; is connected and
X N B; =@. (Take, for example, E; = the intersection of the above
mentioned path with D;.)

We now apply [4] (Lemma . 20.2) with » = 26. Thus there exist
g;eH(C\E;) (complex holomorphic functions on C\E;) and constants
¢; 80

@ 19,(¢, 2| <_60
(10) (L, ) — _1_ I|<Togo;|:

holds for z¢H; and {eD; if
“(11) Q;(8,2) = g+ (=) g (2).

Put @ = C(E, v ... UE,); then Q is an open set which contains X.
Put K, =K nD;and K; = (K nD)— (K, v... UK ,) for 2<j<n.

Define
RB(L,2) =Q7(C,z) (CEK“ZGQ),
and
1
(12) == Kf DR, ) AEdy  (2eQ).
Since
k) 1 _
=%;Ljf 0)@Q,(L, 2)dEdn,

3

(11) ‘shows that F is of the form 3 a,(2)b;, where a,<H (2) and b;eB.
7

By (12), (2), and (3)

10(17'(z)~<15(z))<Eﬁ’“—é@”‘hf(c,z)——L atdy  (2e0).
E |- #—{
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By the proof of Mergelyan’s Theorem ([4], p. 389)
P(F(2)—P(2)) < Ko, ().
Now we only have to use Runge’s theorem on the a’s to get the

statement of the theorem.

COROLLARY 1 (Runge’s theorem for analytic vector-valued functions).
Suppose G = C is an open set which does mot separale the plane and does
not contain oo and suppose E is @ Banach space. Suppose further that
f: G — E is analytic. Then, on every compact subset of G, f can be uniformly
approzimated by polynomials.

JL. Slice algebras. Let X and Y be compact Hausdorff spaces and
B < ((X),0 = C(Y) be sup norm algebras. Let B®,C be the uniform
closure in ((X x ¥) of the algebraic tensor product B®C by means of
the usual identification

fegef(-)g(")
and let S(B, C) = 0(X x Y) be the slice algebra over B and C, [1], ie.
8(B,0) = {feO(X X T)|VaeX, @, )eB, Vye Ty f( y)ed}.
It is clear that in general we have
B®,C < 8(B, 0).

It is not known whether B®,C = 8(B, (), but we can give a proof
of this equality if one of the algebras B or C is singly generated. This

~ result was first obtained by Eifler [3].

PrOPOSITION. Suppose B and C are sup norm algebras and suppose
B is singly generated. Then S(B,C) = B®,0.

Proof. We may suppose that X is a compact subset of the complex
plane with connected complement and that B = P(X), the continuous
function on X uniformly approximable by polynomials on -X.

Now P(X)®,0 = P(X, 0), the set of continuous functions from X
into ¢ uniformly approximable by polynomials in X with coefficients
from C.

According to the extended Mergelyan’s Theorem, P (X, 0) = 4 (X, O),
the set of continuous functions from X into ¢ analytic in the interior
of X.

Thus we only have to prove that

8(P(X), 0) = A(X, ©).

Since A(X,0) contained in

8(P(X), 0).
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= P(X)®,0, A(X,C) is trivially


GUEST


226 E. Briem, K. B. Laursen and N. W. Pedersen

icm

Let f(z,y)eS(P(X), O). Then
is a continuous map from X into C.

‘We want to prove that it is analytic at interior points of X. We will
do that by proving that ¢*(f(z, ) is analytic at interior points of X for
cteC*.

Let z, be an interior point of X, and ¢*<0*. We shall prove that

. IC*f(my )z =0,
14
where y is any circle around @, contained in the interior of X.

Now finite linear combinations of elements of the form ¢, (evaluation

at y,) are weak™ dense in (7, ie.

[ *flm, Ve =c* [ f(z, ) de
k4 v
can be approximated by
k2
2 aiey [ flo, ) do,
i=1 14

but the last expression is equal to

n

2 aiyff(m, ¥, dz

=1

and this expression is 0 by the assumption on I
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Sur la théorie semi—classique du potentiel
pour les processus & accroissements indépendants
par

J. ZABCZYK (Warszawa)

0. Introdaction. Soit 4 un ensemble compact, A = R avec une
frontidre assez régulidre, X = {;, P*} un mouvement brownien dans
R% (pour simplifier les notations nous supposons d > 3). FPosons

v = intt: [ Li(w)ds > o).
0

En 1951 Kac [9] a prouvé que
(0.3) B (@) = P*(r, < + )
+o0

1 -
= limng‘”fAf Gl ey [o W),

tlo ;31
olt B est le potentiel capacitaire de A4,
rapg—1 1
2(m*  jo—y*?

et (4, @), est le systéme des valeurs et des fonctions propres de la
transformation & : !

G f(x) =Af Gz, yfly)dy, wxed,fel?(4).

G(z,9) =

Ciesielski [2] a montré ensuite, que la formule (0.1) est vraie pour
tout ensemble compact 4, 4 comdition qu'on y remplace le potentiel
B{ par '

8i(2) = inf{w(x): v>1 p.p. sw 4, v surharmonique, v > 0}

(p.p. signifie sauf sur un ensemble de mesure de Lebesgue nulle). En
introduisant le potentiel Si* on peut développer une théorie du potentiel
analogue & la théorie classique: la théorie semi-classique (voir [2], [3]
et [47). Ces résultats ont été étendus par Stroock [14]. Tl a considéré
les processus de diffusion (symétriques) et les équations qu'il a obtenues
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