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On topological conjugation in linear groups
by

J. STRELCYN (Warszawa)

1. Introduction. If X is a Banach space, then by GL(X) we denote
the group of linear, bounded and invertible operators in X.

The identity operator in X will be denoted by Iy or simply by I.

By B" and C" (n =1,2,...) we will denote the n-dimensional real
and complex vector space respectively.

‘We recall that maps (= continuous transformations) «: X - X
and g: ¥ — X are topologically conjugated if there exists a homeomorphism
@ X — ¥ such that gap™ = §.

Let Ox and Oy be neighborhoods of zero of topological vector spaces
X and ¥ respectively. Maps a: Ox -~ X and B: Op — Y are said to
be locally topologically conjugated if there exist neighborhoods Zx and
Zy of zeros in X and Y respectivelly, and & homeomorphism ¢: Zx — Zy
such that (pop™)(y) = B(y) for each y in a certain neighborhood of zero
in ¥.

For arbitrary Banach space X (real or complex), by GLy(X) we
denote the subset of GL(X) consisting of U-operators. An operator
T eGL{X) is said to be an U-operator if its symmetric spectrum is disjoint
with the unit circle 8 = {2¢(*; |2} = 1}.

If X is a complex Banach space, then the symmetric spectrum of an
operator T: X — X is the smallest set containing the spectrum of T
and symmetric with respect the real axis (in the general case, see definition
in section 2).

We use here the following notation. For TeGLy(H), where E is
a Banach space, we put:

B,(T) = {eB; lim|I"¢|| = 0},
By(T) = {eB; lim||[T~"¢|] = 0}.

Tt is easy to see that B (T) and E;(T) are invariant subspaces of T'.
We shall denote by 7', and T, the operator T restricted to E, and E,,
respectively.
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The name “U-operators” is justified by the Amnosov’s theory of
U-diffeomorphism (see [1]).

In the present paper we study the problem of the clagsification
of U-operators in separable Banach spaces with respect to the relation
of (local) topological conjugacy.

TuroREM L. Let X and Y be separable Banach spaces and let A «GLy(X)
and B QL (Y). The operators A and B are locally topologically conjugated
iff they are topologically conjugated.

TaeorEM II. Let X and Y be separable Banach spaces. Let A «GLy(X)
and BeGLy(Y).

1. Let X and Y be real Banach spaces. Then, the conjunctions of the
Sollowing three conditions is necessary and sufficient in order that operators
A and B will be topologically conjugated:

(a) dimX,(4) = dim Y, (B) end dimX;(A) = dim ¥;(4);

(b) #f dim X (4) < oo, then detd,-detB,> 0;

(c) if dim X (A)< oo, then det A, detB;> 0.

2. If X and Y are complex spaces, then A and B are topologically
conjugated iff dAimX,(4) = dimY,(B) and dimX;(4) = dim ¥;(B).

In the case of finite-dimensional spaces, the second assertion of
Theorem II can be derived from a result of Vajsbord (see [18] and [4]).
For the finite-dimensional space the first assertion of Theorem II, where
“topological conjugation” is replaced by “local topological conjugation”,
has been announced by Smale in [17], p. 753.

To derivé some corollaries, we shall need the following result due
to Hartman and Grobman (see [4] and [8]): .

Let ¢ be a diffeomorphism of a neighborhood of zero in R"™ onto
another neighborhood of zero in R and let geC' and ¢(0) = 0. If the
first. derivative ¢' of ¢ at 0 is an U-operator, then ¢ and ¢’ are locally
topologically conjugated.

By MZ [MC] we denote the set all diffeomorphismg of a neigh-
borhood of zero in R™ [in ("] onto another neighborhood of zero in R"
[in C™] which satisfy the assumption of the Hartman-Grobman theorem.

Combining this theorem with Theorems I and IT we get the following
corollary:

COROLLARY 1. The set of equivalence classes in ME [in MS] with respect
to the relation of local topological comjugacy contains ewactly 4n elements
[n+1 elements].

The present paper consists of four sectlons In section 2 we study
gome simple facts on U-operators and on Banach spaces. The proofs
of Theorems T and IT are presented in section 4. These proofs are based
on topological facts summarized in section 3.
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2. U-operators. If X is a real Banach space, then by X we denote
the complezification of X, ie. the complex Banach space of ordered pairs
{(@, y); 2, y«X} in which (z;, y1)-+ (e, ¥s) = (@+ 2, 4:--95), (a+if) X
X(#,9y) = (av— By, ay+p2) for a, BB and [(z, y)| = (l=I*+ ") In
the sequel we will denote the pair (z, y) by r@®iy.

By a symmetric spectrum of a linear operator T defined in a real
Banach space X we shall understand the spectrum of the operator Tin
x given by “the formula T(x@wy) Tz®iTy for z,yeX.

‘We recall that an operator TeGL(X) is said to be an U-operator
if its symmetric spectrum is disjoint with %

Let now X be a complex Banach space and let T: X — X be a linear
operator. Denote by X, the space X regarded as the real Banach space
and by Ty the operator T regarded as the operator in Xg (i.e. Tre = Tw).
We define the symmetric spectrum of T as the symmetric spectrum
of TR

ProrosITION 1. If T is an operator in a complex Banach space X,
then o(T) U o(T) = O’(T), where o(T) = {2eC'; Zea(T)}.

‘We omit the proof of Proposition. 1. It is based on the Interior Mapping
Principle (see [6], p. 57, Theorem 2).

By Proposition 1, an operator T in a complex Banach space is an
U-operator iff ¢(T) is disjoint with the unit eircle.

Before stating the main result of this section we recall the following
fact, implicitly formulated in [8] and [16]:

. Lewwma 1. Let X be a real or complew Banach space and let ||-|| denote the
norm on X. Then for every A «GL(X) the following conditions are equivalent: .

a. |[A"| < 1 for some natural number n.

. There exists on X a norm |||-||| such that |||A|}| <1 and the norms
Il and |{|-]]] are equivalent, i.e.
limflg, —zoll =0 4ff Lm|ljw,—xl]] =0
N~>+00 . n—00
Jor every seguence (z,)m, in X.
e. 0(4)c K(0,1) = {eeC; J2| < 1}.

d. im[lA"| = o.

N—>00

Proof. a = b. If A" < 1, then the norm
el 4. - A )

n

[Nalil =

satisfies b.
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The implications b > ¢ and ¢ = d are immediate consequences of
the formula for spectral radius (see [7], p. 864). The implication d = a
is obvious.

ProPOSITION 2. Let X be a real or a compler Banach space. Then
for every AeGL(X) the following conditions are equivalent:

a. A is a U-operator.

b. X,(A) and X, (4) are closed subspaces of X and X = X, (4)® Xy(4).

Proof. 1. First let us assume that X is & complex space.

a = b. By Proposition 1, 4 is a U-operator iff o(4) is disjoint with
8. We write o0,(4) =o(4) NnEK(0,1) and oyz(d) = o(4)N\o,(4). By
F. Riesz decomposition theorem (see [14], chapter XI, §§ 147, 148) it
follows that X = X, X,, where X, and X, are closed invariant subspaces
of 4 and o(4 |x,) = 0,(4), (4|x,) = 64(4). By A|y we denote the restriction
of A to the subspace Y of X. Obviously, ((A | Xz)‘.) < K (0,1). It follows
from Lemma 1 that X, « X (4) and X, c X (4).

‘We shall prove that X, = X,(4) and X,
Then lim||4"z] = 0. Let 2 = u-+v, where ueX; and veX,. By Lemma 1,

Nn00

hm]]A“uli = 0.. Therefore lim|{4"»|] = 0. Since veX,, we have

n—>00

oll < M(Alg)™" 14" for » =1,2,...
It follows from Lemma 1 applied. to the operator (4|x,)™" that
lim||(4 |X2)‘“[I =0. Hence v =0 and X, =X, (4). The proof that

X, = X (A) is similar.

b = a. This implication is obvious.

2. Now let us assume that X is a real Banach space. For M < X
let Re M = {ueX; there exists veX such that u@ive M}

a =b. It follows from part 1 of this proof that X (A) and Xd( )
are closed invariant subspaces of A X=X (A)@Xd( ). Observe that
w®iyeX,(4) iff weX,(4) and ye<X,(4). Hence Re X,(A) — X,(A).
Analogically, Re X,(4) = X,(4). Obviously, X,(A) and X,(4) are
invariant subspaces of A. Let #,eX.(4),n =1,2,..., and lima, = .

. N~ro0
Then 2,®i0eX,(4) for n =1,2,... and lim(z,®0) = 200X, (4).
Thus zeX.(A). The proof that X,(4) is a closed subspace is similar.
Hence X,(4) and X;(4) are closed subspaces of X.

Let us mote that if x¢X, then z = ReP (m@zO)+ReP2(m€r)zO
where P, and P, denote the projections of X onto X (A) and Xd(A)
respectively, such that P,P, = P,P, = 0. This representation of = as
the sum of elements X,(4) and X;(4) is unique. Indeed, let ¢ = a-+b
= c+d ‘where a, ceX (A4) and b, deXd(A), then 0 _u—|-'u for v = a—

= X4(4). Let weX,(4).
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—oeX(4) and v = b—deX,(4). Using the similar arguments as in the
proof of point 1, we get 4 = 0 and v = 0. Hence @ = ¢ and b = d.

The projections # — ReP, (z®10) and = — ReP,(x®10) are bounded,
because P, and P, are bounded. This completes the proof of the implication
a = b.

b =>a. X,(4) and X,(4) are na;turally embedded in X as closed
invariant subspaces of 4.

It is easy to see that X = X (A)@Xd(A) I u@weX,,(A), then.
].unHA"(u@w)ll =0

and if u@’i’ueX:(:l), then

Lm A (u@iv)] =
Thus our assertion follows immediately from Lemma 1.
Let X be a real or complex Banach space with the norm |-[. An
operator A eGL(X) is said to be a strong contraction if there exists on X
a norm |[|- ||| which is equivalent to ||-|| and such that |]|4]]] < 1.

Obviously, strong contractions and their inverse are U-operators.
If A is a U-operator, then operators 4, and 4;*, considered in the spaces
X,(4) and X;(4) respectively, are strong contractions.

‘We call an operator V eGL(X) a pre-isometry if there exists a constant
M such that |V"|| < M for every integer x.

The. formula for spectral radius immediately implies that 0(1;') = 8.
Tt is easy to see that the notion of pre-isometry does not depend on the
particular choice of the equivalent norm in the space.

"\ LmmMA 2. Let X be a real or complex Banach space, let V be a pre-iso-

metry in X. Then there exists a norm |||-||], equivalent to the original norm
on X, such that:

) lIValll =lllalll  for meX.
Proof. It is easy to see that the norm defined as follows
Nelll = sup ||Vl
. —oo<n< 400

satisfies (1) ‘
3. Some topological theorems.

LevMA 3. Let H be a linear transformation of R", given in the unit
vector basis by the matrix
—1


GUEST


266 J. Streleyn

Then the transformation A =3I ond. B = }H are mot locally topolo-
gically conjugated.

Proof. Let us assume that A and B are locally topologically conju-
gated. Then there exists a homeomorphism ¢ of a neighborhood of zero
in R into the neighbmhood of zero in R™ and an & > 0 such that ¢~ Ag ()
= B(z) for K (0, &) = {@: [jg|| < &}. Thus @(s) = 2¢(Bz) for x<H (0, &).
Obviously, there ex1sts a 6 > 0 such that ¢(K(0, &)} = K (0, 8).

We define a homeomorphism F': B" — E" such that F(») = 2F (Bux)
for < R™ as follows. For zeK (0, ¢) we define F, (%) = ¢(x). On K (0, 2¢)
we define F,(2) by Fy(z) = 2F,(Bx). It is easy to see that F, is a homeo-
morphism on K (0,2¢) and that F,(K (0, 2¢) > K(0,26). Obviously,
F, is an extension of F, = ¢. Proceeding analogously, we define #4(x)
on K(0,4e) by the formula Fy(z) = 2F,(Bx) ete. Let F(z) = F, ()
for |z < 2% F i a well defined homeomorphism of R® onto R™ and F
satisfies the equation F'(z) = 2F(Bx) for xeR". Hence if 4 and B are
locally topologically conjugated, then A and B are topologically: eonju-
gated in R™

Regard the n-dimensional unite sphere 8" ag B™* U {co}, the one-point
compactification of B". We extend A to the homeomorphism 4 of §*
onto 8" by the following formula:

Aw = |t T Ee
) if 4 = oo.

Analogously we define the homeomorphisms B and F. Obviously
AF =FB on S™

If f is a homeomorphism of §” onto itself, then by deg f we denote
its degree (see [10], chapter 2, or [9]) We have:

degf = +1 deg(fy) = degf-degyg.
Therefore deg A = degB. But from the last problem of Section D
of chapter 2 in [10] we easily obtain that degd = -1 and degB = -1
. This contradietion completes the proof.
Lemwa 4. Let X and Y be Banach spaces and let A eGLy(X) and
B eGLU(Y). The following conditions are equivalent:

and

a. A and B are locally topologically conjugated.

b. A, and B, are locally topologically conjugated and A, and B, are
locally topologically conjugated.

In particular, if A and B are locally topologically conjugated, then
dim X (4) = dim Y,(B) dim X;(A) = dim Y ,4(B).

Proof. a =b. Let L be a homeomorphlsm of a neighborhood of
zero in X onto a mneighborhood of zero in ¥ such that LAL ‘s — Bz

and
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for # belonging to a certain neighborhood of zero. It is enough to
show that for every

¢ >0 there exists 6,> 0 for ¢ =1,2,3,4
guch that:
(1) L(X(A)nKo b)) = Y,(B) n K(0, ¢y),
(2) L{X;(4) N E(0, 8,)) « Y,(B) n E(0, &)
(3) L7 (T4(B) N E(0, &) = X,(4) nK(O,ea),
(4) L7HY4(B) N K (0, 8,)) = X4(4) N E(O, <,).
If L(Ax) = B(Lz) in a neighborhood of zero, then the equality

L7'BL = A holds in a nelghborhood of zero. Then (1) and (2) imply
(3) and (4). Since X, (4) = X, (4™") and X, (4) = X,(47Y), it follows
from the identity LA™'L™' = B~' (which holds in a neighborhood of
zero) that (1) implies (2). Therefore it is sufficient to prove (1).

In view of Lemma 1, we can assume without loss of generality
that [|4,] < 1. We know that for every ¢> 0 there exists a 6> 0
such that:

1. L and L' are homeomorphisms on K(0, 6);

2. L(K(0, &) = (0, ¢);

3. L'BL(x) = A(x) for z<K (0, 8).

If X, (A4), then |[4A"z| converges monotonically to zero for m — oo.
Hence for zeX,(A) n K (0, §) we have L' B"L(z) = A™(x). Next observe
that if BL(») = L(4x), then BL(0) = L(0). Since BeGL;(Y), we have
L(0) = 0. Since L is a homeomorphism, we have L(0) = L™'(0) = 0.
Hence

Lm [|B*L(2)|| =
N—+00

Consequently, L(z)eY.(B) n K(0,

b = a. This implication is obvious.

By Lemma 4 the problem of classification of elements of GL; with
respect to the relation of the local topological conjugancy is reduced
to the case of strong contractions.

The proof in this case will employ the following results:

THEOREM OF KADEC. All infinite-dimensional separable
spaces are homeomorphic (see [11] and [3]).

THEOREM oF WoNG. If X is an infinite-dimensional separable Hilbert
space, then every homeomorphism of X onto itself is isotopic with I, (see [19]).

THEOREM OF KLEE. In every infinile-dimensional Banach space X,
the unit sphere Sy is homeomorplic to X.

Proof. The proof of the last theorem is based on the following fact
formulated by Klee in {12]. If X is an arbitrary infinite-dimensional norm-

¢). This proves (1).

Banach
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ed linear space, then Sy is homeomorphic to a closed hyperplane of X
(i.e. closed linear subspace of codimension 1).

Now, let 8 be homeomorphie to & hyperplane Y. Let Z be an infinite-
dimensional separable and closed subspace of ¥. Then it follows from
the Bartle-Graves theorem. (see [2]) that ¥ is homeomorphic to Z x Y /Z.
From theorem of Kadec we infer that R'xZ is homeomorphic to Z.
Obviously, B'xZ x Y/Z is homeomorphic to X, so ¥ is homeomorphic
to X. (This proof was communicated to the author by Professor C. Bessaga.)

‘  In the sequel we shall essentially employ the following

COROLTARY 2. If X and Y are separable infinite-dimensional Bamach
spaces und f and g are homeomorphisms of Sx onto Sy, then f and g are
isotopic (in the class of homeomorphisms of 8x onto Sy).

Proof. It follows by theorems of Kadec and Wong that if X and ¥
are separable infinite-dimensional Banach spaces and f and g are homeo-
morphisms of X onto Y; then f and ¢ are isotopic. Hence, by theorem
of Klee, it follows that if f and g are homeomorphisms of Sy onto Sy,
then f and g are isotopic.

4. Proofs of Theorems I and YI. We begin with the following pro-
position: '

PRrOPOSITION 3. Let X and Y be separable, infinite-dimensional Banach
spaces. If A and B are strong contractions in X and Y respectively, then
A and B are topologically conjugated.

Proof. Let Z be a Banach space. If x<Z and A <G L(Z), then we write

—

O, (®) = 0z N A(8z).

—
Oz = {#eZ;z =tz for 1= 0} and

a. It is sufficient to show that if A is a strong contraction in X,
then 4 is topologically conjugated with B = }Iy,. In view of Lemma 1
we can assume, without loss of generality, that |[4] < 1 and, therefore,
104(@)| <1 for zeX. We write

M= U o,

o<i<1
where o, = [zeX;2 = z+1(0 4 (2)— ), weSx}.
Obviously, for every point ze M, there exists exactly one number
t(x), 0 <t(x) <1, such that ey
We put

U 7,

M, ={ye¥;3<yI<1}, M, =
R 0t
where y, = {y<¥; |ly]| = —1t+1}.

L
For y <Y we write ,(y) =0, Ny, 0< 1< 1.
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b. By the theorems of Kadec and Klee there exists a homeomorphism
F: Sx zx Sy. We will define here a new homeomorphism @: § x oo v
by the following formula:
. Az
if #eSy, then G(—) = F(x).
’ azy) =7
] Sinc(? every two homeomorphisms of Sy onto Sy are isotopie, there
exits an isotopy {f}, 0 <¥<1, such that f, = F and f, = G. We define
a homeomorphism L: M — M, by

onto

L{x) = Piz) (f;(m) (];—”)) for xe M.

It is easy to see that if weSy, then L(4z) = }L(x).
We extend L to the homeomorphism L: X o, Y by the following
formula: ‘

1 L(A %)

L) “l-‘)_k for zeA¥(N), —oo < k < oo,

0 for z =0,

. o0
where N = M\ A(Sx). (Note that X = U A*(¥) v {0}.)
Tt is obvious that L is a homeomorphism of X onte ¥ and that
L(Az) = 3 L(z) for eX. ~
Let A be a strong contraction defined on the Banach space (X, [|-|}),

let V be a pre-isometry defined on X. We say that the pair (4, X) satisfies
the condition (t) if

(t) there ewists a norm ||| |||, equivalent to the norm |-, such that
(a) 4]l <1,
(b) [{|Vz]|| = ||lj=]|]] for zeX.

ProPOSITION 4. Let X be an arbitrary Banach space and let GI;(X)
denote the component of identity in GL(X). Let A and B be strong contractions
belonging to GLy(X), and let V be a pre-isometry in X. If the pairs
(4, V) and (B, V) satisfy condition (t), then the operators- VA and VB
are topologically conjugated.

Proof. It is sufficient to prove that the operators VA and }VIy
are topologically conjugated in X. Since the pair (4, V) satisfies
condition (t), we can assume that A} <1 and |[Va|| = |laf for weX.

Let {4,}, 0 <t<1, be a curve in GL;(X) which links together Iy
with A; Ay = Iy, A, = A. The curve B, =A;'V™ joints V' with
ATyl ’
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Analogically as in the proof of Proposition 8 we introduce the following
sets and functions:
—
e(x) = 0z N VA(Sx);
U a;

0<i<1

M=

where o, = {ze¢X; 2 = a+1{e(2)—4), #eSx];

My ={zpeX; i<l <1} = Uy,
i<l

-
where y, = {yX; flyll = —3i+1}, v (o) = V{02 0 yy).
It is easy to see that the mapping L given by the formula

@
L(®) = yyy (B“”)W) for zea, -

is a homeomorphism of M onto M,.
Let 2e8y; then zea,. Hence

© R
Lix) = %(BOTWH—) =V (V7'e) =2

g1 VAZ Y »
4 nVAwu)"“(nAmn)

and

VAx
L(VAz) =y, (Blm) — (A

=1V(z) =LV (La).
Let us set

1 n —-n - n
L) — ‘gv L((VA)™a)  for ae(VAP(MNVA(Sx),
0 for z = 0.

Clearly, I is a homeomorphism of X onto X and I is an extension
of L. Moreover, L(VA#) = 3 VL(») for zeX.

It is well kmown that the group GL(R") has two components which are
arcwise comnected: the operators with a positive determinant and the
operators with a negative determinant. The group GL(C") is arcwise
connected.

COROLLARY 3. Hvery two. strong contractions in the space R, the
determinats of which have the same sign, are topologically conjugated.

Proof. Let K and L be two strong contractions in R™:

() T det K > 0, detL > 0, then the pairs (K, I) and (L, I) satisfy
condition (t), so that K and L are topologically conjugated.
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(b) Let detK < 0 and detL < 0. It is sufficient to show that K is
topologically conjugated to 3 H, where H is the pre-isometry of Lemma 3.
Let ||-|| denote the Eunclidean norm in R", let ¢ be a positive real number
such that |cHE| <1 and 0 < ¢ < 1. Applying Proposition 4 to X = R",
V =H, A =cHE, and B =4I we conclude that cK is topologically
conjugated to $H. It can easily be checked that the operators K and cK
for 0 < ¢ <1 are topologically conjugated, so are the operators K and }H.

Using Corollary 3 and Lemma 3 we obtain the following

COROLLARY 4. Let A and B be strong contractions in R", and let
detd >0 and detB < 0. Then A and B are mot locally topologically
conjugated. .

Applying Proposition 4 to the case where X — O® and V = I
we get

COROLLARY 5. In the space G every two strong coniractions are topolo-
gically conjugated.

Note that the statements of Proposition 3 and Corollaries 3,4 and 5
are also true for the operators which are inverse to strong contractions.

Proof of Theorems I and IL If 4 and B or their inverse are
strong contractions, then Theorems I and IT are consequences of Prop-
osition 3 and Corollaries 3,4 and 5. In a general case, these theorems
follows from the preceding remarks and Lemma, 4.

‘We note that, in fact, the assertion 2 of Theorem IT is a consequence
of assertion 1, but its direct proof is essentialy easier than the proof of
assertion 1.

It is well known that in every infinite-dimensional (not necessery
separable) real or complex Hilbert space H the group GL(H) is arcwise
connected (see [13]). Therefore, in view of Proposition 4, we conclude
that Theorems I and IT also hold in an arbitrary infinite-dimensional
Hilbert space.

It is quite probable that the following generalization of Wong’s
theorem is true. If X is an infinite-dimensional Banach space, then every
homeomorphism of X onto X is isotopic with Iy.

If the answer is affirmative, then in infinite-dimensional spaces
Proposition 4 will be a consequence of Proposition 3. Hence the only
nontrivial application of Proposition 4 will be the cages of X — R™ and
X = (" On the other hand, in contrast with the Proposition 3, Proposi-
tion 4 has an elementary character. . )

It is interesting to notice that S. Rolewicz in [15] gave an example
of operator in ¥, 1 < p < oo, which has a dense orbit. Obviously, neither
the operator of Rolewicz, nor its inverse is a U-operator.

Finally, we remark that A. Douady in [5] proved that GL(L2®¢,)
has infinitely many components.
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Analytic functions in Banach spaces
by
JACEK BOCHNAK (Krakéw)

There are not many papers devoted to the theory of analytic
mappings in Banach spaces, especially in real Banach spaces; recently,
however, a number of papers concerning that branch have been published
(Cartan, Douady, Lelong, Ramis and others). N. Bourbaki in his forth-
coming books [5] (“Fascicule de résultats” is already available) will give
the systematic theory of such mappings.

This paper gives some results on analytic mappings, with values
in a Banach space, defined on open subsets of Banach gpaces (real or
complex). In particular, we prove a natural criterion of the analyticity
of mappings (Theorem 6). Some versions of that criterion were given by
Alexiewicz and Orlicz [1] and Siciak [17]; the author of the present paper
has been inspired by some ideas of [1], and [9].

The plan of the article is as follows. We start in Section. I by proving
some results on formal series in Banach spaces. In Section IT we consider
Gateaux-differentiable mappings. In Section III we state and prove
some criteria of the holomerphicity (Theorem 4, complex case) and ana-
lyticity (Theorem 6, real case) of the mappings. Finally, in Section IV,
we give the applications of the preceding results, namely: a proof of the
Weierstrass preparation theorem for analytic functions in Banach spaces
(another proof of that theorem was given by Ramis [14]), the generaliza-
tion of a theorem of Malgrange, and some other theorems.

Theorem 4 is stated in [5] without proof (see also [9], [21]). The
proof of case I of Theorem C has been communicated to me by
Professor S. Lojasiewicz.

I would like to express my gratitude to Professor S. Xojasiewicz
for his guidance and valuable remarks. I also want to thank Professor

"~ J. Biciak for helpful conversations.

I. FORMAL SERIES IN BANACH SPACES

Let B and F bereal or complex Banach spaces. Denote by How* (B, F)
(resp. L*(E, F)) the space of k-linear, symmetric (resp. k-linear, symmetric
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