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STUDIA MATHEMATICA, T. XXXV. (1970)

On equations with rotations

by
D. PRZEWORSKA-ROLEWICZ (Warszawa)

If an equation contains together with the unknown function z(t)
of & complex variable the values z(e;i— a,), ..., 2(ext— ax), Where &, ..., ey
are N-th roots of the unity, aj, ..., ax are complex numbers, then it will
be called equation with rotation.

The case N = 2, a; = ... = axy = 0, was solved completely in paper
[3] on equations with reflection. The purpose of this paper is to solve
equations with rotation (for some az). The method is based on properties
of involutions of order N (see [17).

An ordinary differential equation with rotation will be considered
as an example.

1. Tet 8 be an involution of order N, i.e. a linear operator acting
in a linear space X (over complex secalars) such that
(1.1) V=1,
where I denotes the identity operator, N > 2, and there is no polynomial
P(t) of order less than N such that P(8) = 0. The following properties

of involution of order N, proved in [1] (see also [3]), will be used.
Let us write

1 N-1 . .
(1.2) P,:fze—’”s", y=1,2,...,N,
k=0

where & = &4V,
Since e is the N-th root of the unity (with the smallest argument),

we have ¢ = 1 and

. N-1 0 form=1,2,...,N—1,
1.3 & =1 gF = NF &= e
(1-3) ’ ! k2=10 N for m = N. '

The operators P, are disjoint projectors giving a partition of unity:
~
(1.4) Py—szémPv;. Z‘P’u:I7
r=1
where 4,, is the Kronecker symbol. Moreover,
(1.5) 8P, =P, (»r=1,2,...,QN).
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From this it follows that the space X can be decomposed in a direct Similarly we prove the following
sum PrOPERTY 1.3. Under assumptions of 1.2,
6 X =2X ®D... (—BX N o) 5
(1.6) ® @) ‘ P,D*=D'P,,, for v=1,2,...,N-2,
of gpaces X such that Py_D* =D*P,, PyD'= D*P,.
@n Xy =2PFX and Sz = fofor weXy (r=1,2,...,N) PROPERTY 1.4. Under assumption of 1.2, the operator DV is commuting

with S and P,:

and every element z¢X can be written in & unique manner in the form
D¥8 = 8D and D¥P, =P, DY (»=1,2,...,N).

(1.8) @ = Lyt By, where @y eX(),
‘ PrROPERTY 1.5. Let
if we put m(,)=P,m(w=1,2,...,N). N1
A linear operator transforming X into itself is permuting an involution Qi) = g’n qxt

der N acting in X if both super ositions SD and DS exist and .
§ of order & pere ) be an arbitrary polynomial (of complex variable t) with constant complex

(1.9) DS = ¢8D, where & = Pl . coefficients. Let S be an z’nvohction of order N. Then
T4 will be shown further that a permuting operator D and its powers ) = RS P
: I, Q(8) = 3 Q(HP,.
permute the spaces Xy, vy Xy determined by decomposition (1.6). =
PrOPERTY 1.1. For arbitrary positive integers k and m, if D is permuting Indeed, formulae (1.4) and (1.3) imply
an involution S of order N, then : N Na W
) 8) = > ¢f = (D P
(1.10) gt = s D™, ‘ U8 = 3wl = 3 & (ZP)
N N-1 N N-1
Proof (by induction). By assumption, (1.10) is true for m =k = 1. =33 48"P) = 5 e P,
Let us suppose (1.10) be true for m = 1. Then D! = (DS)§F! v=1(k=o ) v;l #=o
— s8(D8") = e DR = 1§D, Let k be arbitrarily fixed. Then, .= SO ,
supposing (1.10) to be true, we obtain = v;l [é; (€)' Py = ‘;Q(s )P,
LSk = D(D™EY) = D(mgED™) = &™(DS" D™ ProPERTY 1.6. Let
N-1 N1
— gkmélcskl)m+1 — sk(m'{'l)SkDm'l'l. i Q(t) _ 2 qktk, R(t) _ 2 ’I’;Jk
k=0 k=0
PropERTY 1.2. If D is permuting an involution 8 of order N, then be arbitrary polynomials (of & complex variable t) with constant complex
PD=DP,, forv=1,2,..,N-1, coefficients. Let S be an involution of order N. Then
PyxD = DP,. y o, )
Rl : Q(8) E(8) = ZIQ(E)R(S )B,.

Proof. By definition, we have for » =1,2,... N o
Indeed, formula (1.4) and the preceding property imply

1 N-1 1 N-1 1 N:’1 .
P.D == _hvsk)p = ~h GFT) e ~t» o~k ) g N ' ~
" (N 2 ¥ PR QRIS = [JOPIY REIP

1

1 N
= D= Z 8—k(ﬂ+l)sk7
N k=0

i

N
PRIGHIGIES

I

and for » = N we find ¢~ *¥+D) — ¢~*, Hence PyD = DP,. For » = 1,2, S S
X R(")6,.P, = 3 Q()R()P,.
v..; N—1 we obtain P,D = DP, ;. i ,,MQ('S) (&) O v:lQ(a) )
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COROLLARY 1.1. Under the assumption of Property 1.6, @(8) R(8) = al, 2. For any linear operator T transforming a linear spa.;:e X into
where a is an arbitrary scalar, if end only if Q() B(e) = a for » =1, itself we denote by Dr the domain of T and by ZT the kernel of T: Zr
2 .., N. = {weDr: Tz = 0}.

COROILARY 1.2. Under the assumption of Property 1.5 there ewists
QY(8) if and only if Q() %0 for »=1,2,..., N and

.
Q' (8) = Z]'Q_l(e")l)
This and Property 1

Let & be an involution of order NV acting in a linear space X and let D
be permuting S. Let us consider the operator
5 imply

A = a(8)—b(8) D,
where
N-1 N-1
aty= Y af® and b(t) = Y bit"
N k=0 k=0
K — vk . — 9
(L.11) 8 gf P, for k=0, 41, £2,... are arbitrary polynomials with constant complex coefficients. In this
. ) section we assume that
ProrERTY 1.7. Under the assumption of Property 1.5 .
- (2.1) a{¢’) #0 and b(¢) 20 for »=1,2,...,N.
8) = £T™P, m= +1, +2,...).
Q"8) Vé’:Q( ) ( +1, £2,..) Under these assumptions we shall determine the set Z.
Indeed, LEMMA 2.1. The equation Az = 0 is equivalent fo the following system
Q("8) = 2 Guls™ S Ajz, ok g ( g P ) of equations:
Jos= p=1 ’ _D.’l!(l) = ch(N),
N N— b gip N N- - (2.2)
— Z(ZQEmS ) 2(2 QC m "_P)
= g:l (kzo gre ™ P, = g Q)P

PROPERTY 1.8.

Dy = Cn®my (M =1, 2,...,N-1), _
where Ty = Pus and on = a(s™[b(e™) % 0 (by assumption) for m =
=1,2,..., V.
Proof. Property 1.5 and (1.4) imply

Under the assumption of Property 1.5, of D is permuting . ¥

8, then 2.3) Pna(S) = Pn Z‘a(s”)P, = Xa()Pn
DQ(8) = Q(e8) D
Indeed_, according to Property 1.2, = 5’ “(8 )3 P = ") P
N ; =
DQ(S) =D ;:Q(Eu) ZQ(E DP, = Q(¢) DP,+ ZQ Similarly, P,b(8) = b(a )P,,. Hence
Ppd =P, [a(8)—b(8)D] = Pna(S)—Pnd(8)D = (™) Py —b(e™) P D
= Q(s)PyD+ ZQ(S”)PMD = [@ (") Py+ }3 Q"R D ‘
v=2 =1 ' and, by Property 1.2,
— vy+1 -Pv .D —_ _D m — my f — 2 .
L;Q(E pra| Q(eS) 2.3) Pod = a(e") Pn—b(e") Pmyy  for m , 2,
. a(e¥) Py—b{s") DP,
COROLLARY 1.3. Under the assumption of Property 1.5, if D is permuling
S, then - ‘
D"Q(8) =Q("8) D  for m=1,2,..., N—1,
DYQ(S) = QD"

.y N-—-1,
for m =N«
Applying formulae (1.6), (1.7) and (1.8), we infer that the equation

Az = 0 is equivalent to the system of equations
. PaAp=0

(m=1,2,...,N).
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According to (2.3'); the last system can be written as follows:

for m =1,2,...,N—1,
for m = N.

[4(6™) Pr—b (") DPyp]o = 0
[a(e¥)Py—b{e") DP)]z = 0

Since Pn@ =z and b(") # 0 for m =1,2,..., N, we obtain
finally the system (2.2).
LEMMA 2.2. Z4 < ZpN_;1, where
A= €6y... CN = -ﬂe;l;éo
1<vEN b(e")

Proof. Let weZ4, i.e. Aw = 0. According to Lemma 2.1, the equation
Aw = 0 is equivalent to the system (2.2). Let us consider z, = Py
From the system (2.2) we obtain

Dayy = onwy,
Dzmu) = D(Dm(l)) = en Doy = evon_10w-1);
- Da-’b‘(x) = D(Dﬂm[l)) = exoy_1 DTy = CNCN_10n 2 BN-2),

N N
D¥apy = DDV @) = ox0y1--- 0 Doy = CyON_1.-. 0050 = Amgy .

Hence (DN —A)zg) = 0 and 2y eZpN iz Similarly, we can show
that oy = Pu@eZpN_jz (m = 2,3,..., N). Since %meX(m and the
space X is decomposed into & direet sum of spaces X(m), we obtain

N

© =3 tumyeZpN_sr,
. =1

which was to be proved.

LeMMA 2.3. ZpN_j;= . @ Zp_ g, where Ay are N-th rools of A

oh<N-1

‘ N
(2.4) M = VA el +miN |

where ¢ = Arg ) (0 << 2n),k=0,1,..., N—-1L.
Proof. Let us remark that

(2.5) DY —il = (D— X&) (D—}zl) o (D—AN_q).

The operator D satisfies the polynomial identity DY —AI = 0 on the
space ZpN_;;. Similarly as in (1.6), we can prove (see also [3], part A,

Chapter II) that Zpv_;; = k®N Y and ye Yy if and only if Dy = Ay,
0k N~1 .

because A, .., Ax_; are N-th roots of the equation t¥ — 4 = 0. Therefore

Yi = ZD_;%[ for k = 0, 1, ey N—-1.
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THEOREM 2.1.
N1
Zpv_gp={zeXiz = 3 @.8%;5¢Zp a)-
P 7

Proof. First we remark thab

(2.6) = lodt for k=1,2,...,N—1.
Indeed,
N_ ¢+2nki . N_ i’l. gﬁ
=Vie ¥ =Vie¥ (¥ )= (k=1,2,...,N-1).

Let us suppose that 2eZp_;, 7. We show that z = §%u, where u eZp_1,1-
Indeed,

Dz = Iz = Aoa"z and &V FDz = imekSN"kz.

But Property 1.1 implies 8V~*Dz = e~ DS¥~"2. Hence

DS = dodt N F Ve = 1,87 2.

Therefore u = 8 reZp_s,r. But 2 = 8"z = SERN-Fy — Sy,
Conversely, we show that for any 2eZp_s we have S"zeZDJLJ.
Indeed,

DSz = 85 Dey = £ lgr = Mg 85z = 18"z

Hence Skz:sZD,lkI.

To find the general form of the set Z4 we shall determine first this
set in a particular case.

PrOPOSITION 2.2, If dimZp_;; =1, then

No1
Zy=|peX:2=d] Y a8 2;2eZp sy and
k=0
N
the scalar @ is arbitrary, dx = 3 A ™Ci0s...Cm Vim),
- M=1

where by Vim we denote the subdeterminant obtained by cancelling the
(k-+1)-th column and the m-th row of the Van der Monde determinant V
of numbers &, &, ..., &, & and on = a(e™) [b(e™).

Proof. Since Z4 = Zpv_;r (Lemma 2.2) and dimZD_;,OI =1, we
have zeZ4 if and only if

N-1

k
2 = 2 a8 20y

2geZp_ sl
K=0
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is arbitrary, and the coefficients o; are chosen suitably. Let us write
N-1

a(8) = 3 aplt.
i k=0

Then z = a(8) 2, = D a(¢’) P,#, and Pm;z = a(e™) P2, Hence, by
Pe=1

formula (2.3) in Lemma 2.1,

[Cma(sm)Pm_a(sm_'_l)-DPm..H]z(] =0, m=1,2,...,,N—1,
low a(eV)Py—a(s) DP, ]z, = 0,
where ¢, = a(")[b(").
But
DPyy12y = PpDzy = Ppig2y = AgPpz, for m = 1,2,..., -1,

DPyzy = PyDzy = PyAg2y = AgPp#;.

Hence the last system .can be written as follows:
[0171(1(3”1)—/10,‘1 (ﬁm_)-l)]szo (m=1,2,...,N-1),
[ey a{e™)— Ay a(e) ] Py2y = 0.

Let us remarlaithat P2, # 0 for m = 1, 2;..., N, if 2, % 0. Indeed,
let us suppose that for an m we have P2, = 0. This means that

(2.7)

N-1

—k
> S = 0;
k=0

but ‘ﬂ}cis implies lihear dependence of all elements z, Sz, ..., 85 'z,

Bgt S ZyeZp_x,r, and the space Zpy_;r is a direct sum of spaces Zp_ayr;

this implies 8%z, =0 for k¥ =0,1,..., N—1. In particular, & = 0,

a contradiction. Hence, z, being arbitrary, Corollary 1.1 implies that

equalities (2.7) hold if and only it

(2.:8) cﬂla(em)“lua(51n+1)=0 (m=1,2,..., N—1),
oxna(eN)—Aale) = 0.

We obtained finally the system of N homogeneous equations with N
unknows a{e), a{e?),..., a(s"). The determinant 4 of this system is

¢y —A O 0o ... 0 0
0, —A- O ... 0 0
A= 0 G —Ay ... 0 0
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The expansion of A with respect to the last row gives
l—2% © 0 ...0 0.
) l ¢ —A 0 ... 0 Oi
A== 0 g

jes —4 0 ... 0
0 6~ .. 0
+@W¥exio 0 g ... 0

0 0 0 ..oy

Then first determinant has zeros only above the principal diagonal

and the second one, only under the prineipal diagonal. Therefore.
4 = (=" (=2 (=1 eyer6p.. 03
= (=R A= —2+2=0,

because Ay = A. _ e

Since the first subdeterminant of order N —1 is (by assumption)
different from zero, we solve the system (2.8) by caneelling the last equa-
tion and by putting

a(e) = a,

where o is an arbitrary complex number. We obtain

2 ‘1
a(e?) = Ta,
0

G
a(g™?) = —a(e™) for m=2,3,...,N—1.
Ao
Hence
: , ConCm_1.++Cy
ale™) = ey
0
a is-an arbitrary complex number (m =1,2,..., N—1).

We have determined

N_1 "
a(sm+1) — Z! akg(m-i.l) .
k=0

Now we shall determine the constants az. We obtain the following
system of equations: :

N-1
B s L S
2, € =

R (m=1,2,..
li=0 0
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If we remark that by definition
N-1 N-1
a=a() =3 g =3 et TR
k=1 k=0
and A =4, cyey_y...00 = 4, We can write this system as follows:
(2.9)

N1 sy _ CmOm-1..-01
S gtV s ———— (m=1,2,..., ).
K=0 Ao
‘We have obtained the system of N linear non-homogeneous equations
with N unknows a, ..., ay. The determinant ¥V of the system (2.9) is
the Van der Monde determinant of numbers &, &, ..., &" *' = & different
one from the others. Hence
V= (sk—em) PR
1<k, mg N, kzm

Let us denote by 7y, the subdeterminant of ¥V obtained by cancelling
the (k-1)-th column and the m-th row. The unique solution of (2.9)
is then of the form

. ‘
a Cqe4.C

a= VLY (h=0,1,...
v PR

M=)

, N—1).

Since o is an arbitrary complex number, write d = «/V and we
obtain the thesis of the theorem if we put

N
dy = 2 l{mal...oka,m.
m=1

Now we prove the general theorem without any assumptibn concerning
dim Z D gl

THEOREM 2.3.

N1
Zy="{peX:2 = de‘ d;,Skzu;zerD_zoz and the seular d s arbitrary,
=0

N
dy = 2 lo‘mc]...c,,LVk,m},
M=1
where we denote by Vi . the subdeterminant obtained by cancelling the
(k41)-th column and the m-th row of the Van der Monde determinant V
of mumbers &, ..., &%, & and cm = a(e™)[b(™). '

Proof. Since Z, = Zpy_y; (Lemma 2.2), we infer that zeZ, is of
the form

N

%

g = kZ 2, 2peln s
=

e ©
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(Theorem 2.1). If we write d(8) = —a(8)b"'(8), we infer that the
equation

Az =[a(8)—b(8)D]z =0
is equivalent to the equation ‘
(2.10) [D—d(8)]z =0.
We write

N-1
al) = Y dn8™.

M=0

Since 2eZpN_z;, We have

N-1 N-1 — N-1
De=DJY S =3 DS =) 8Dy =3 18 .
k=0 k=0 k=0 k=0
Hence, if z¢Z4, then
N-1 N-1 N-1
0 = [D—d(8)]z = 3 &aSau— Y d8)Sa =Y £18%
k=0 k=0 =
N_1N-1 ’
=3 3 @nS" .
k=0 m=0

Since &z eZD_;iI (Theorem 2.1), all elements &2, are linearly inde-
pendent. This implies that equation (2.9) is equivalent to the following
system equations:

(dn— Zo)zn+dN_lzl+ d_z\'_zzzﬁ-‘ . .+d1zN~1 = 0,
.82+ (dg— eho) 821+ Ay 182, +...+ A2 82y 1, = 0,

1 85 gk Ay s S8V ey g 8V gt (o — & T A 8V v = 0.

Acting on both sides of the k-th equation with the operator §y-E
(k=0,1,..., N—1) and using the identity 8Y =1, we obtain the
following system of equations:

(do— Ao)%ot A 121+ -+ &12n_1 =0,
dlzo+"dn—51n)z1+---+daz.~". =0,

Ay_120+ dx_221+.. .+ (du'—‘gN‘I}*u)zN——l =0.

(2.11)

Let us consider the matrix M of the system (2.11). First we remark
that this matrix does not depend on the dimension of the space Zp_sr.
This implies also that the rank of the matrix M does not depend on the
dimension of the space Zp_z1. An immediate consequence of Proposition
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2.2 is that rank M = N—1 in the case dimZp_;; = 1. Hence we must
have rank M = N—1 also in the general case. Further considerations

follow the same way as Proposition 2.2:

3. The notation and agsumptions of the preceding section remain
unchanged. We now determine the general form of solutions of the non-
homogeneous equation Az = .

Levua 3.1. Let d(8) = a(8)b7*(8). Then
’ N-1
Il a(e"8) = il.
M=0

Proof. Property 1.7 implies

N

N
d(ams) — Z d(am.;.v)Pv — Z “(87114_1:)2)._
=1

r=1

HmMMYP, (m=1,2,...

Property 1.6 implies

N-1
[]dte"s) =

We consider the coefficients in the last sum. For » =1 we have

A

(e e = 3 T o]

=

N-1 “(5711.4_1)
= 610p...Cn = 4.

B ale)a(e’)...a(e")
b(e™Y T b(e)b(e)...b(eY)

M=0

. For arbitrary 1'< vy <N we obtain a produet of N numbers a(s"*")
for N different values m-+ ». Using the equality ¢ ™% = & fork =1, 2, ...,
N, we obtain the product of the same numbers ¢, ..., ¢y but in different

order for each ». Hence

N1 !

a
HW:Z for v=1,2,...,N:

M= R

Therefore Corollary 1.1 implies
Mol

IT a("8) = u

Me==()
Levma 3.2, Let A = DV-14 T, where
T = a(e" ' 8) DV 2 a( T 8)d (N2 8y DV - a(eV18)... A(e* S)D

; A S).. . d(eS).
Then

(3.1) . (p—a(8)4 = A(D—d(8)) = DV—aI.
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Proof. Let #<X be arbitrarily fixed and let u = [d(S)— D]« Then
Dy = d(8)x—u. '
Acting on both sides of this equation with powers of D and applying
Corollary 1.3, we obtain successively:
D'y = D[A(8)z—u] = d(e8)Dz— Du = d(e8) [d(8)s—u— Du]
= d(s8)d(8) 52— d(s8) u— Du,
D*s = D[d(e8)d(8)]o— d(e8)u— Du = d(£8)d(e8) Dz —d(s*S) Du—D*u
= d(e28)d(e8) [d(8) 2 — u]— d(e28) Du— Du?
= d(s28)d(e8)d(8)s— d(28) d(eS) u— d(228) Du— Du?,
Vi = AV 18). .. d(8) 2 — [d(eV 1 8)...d(e8)+ d(e¥ ' 8)...d(*8) D+
Ao A1) DV DY
‘ Lemma 3.1 implies DV# = Az— Au. But u = [d(8)—D]s. Hence
(D —i)s = —4 [d(S)— D]z = A[D—d(8)]=. Since & was arbitrarily
chosen, we find DV — Al = A[D—d(8)].
To prove the first part of formula (3.1), we show that
(3.2) - d(8)d = DT+I.
Indeed, by Lemma 3.1 and Property 1.8,
A®) A = a(8) DY - 4(8)T
= d(& Q) D+ aA /)T
= Da(N18) DV 2+ AN 8) D x
X[a(e"8) DV a(eV T B)d(e" ) DV

2 A28 d(e8)]+ A 8)d(s 1 8)... d(e8)
= DIAE""8) DY a(eV 1 8)d(N ?8) DV
o AN 8). .. A(e8) ]+ A (N 18). .. d(e8)d(S) = DT+ AL
On the other hand, by definition
(3.3) DA =DV DT
It follows from (3.2) and (3.3) that
[D—a(8)]4 = D¥+ DT —(DT+T) = DY —1I. -

LEMuA 3.3. Let Ry = —Ab~(8) (where 4 is determined in Lemma 3.2).
Then Ryd = ARy = DV —1I.

Proof. Since

D—d(8) = D—a(8)b~(8) = —b (84,

b () [a(8)— B(8)D] =
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we find
DY = A[D—a(8)] = A[—b1(8)4] = [—Ab}(8)]4 = R, A.

On the other hand,
DYl =[D—a8)]4& = b1 (8)44.

Hence — AA — b(8)(DV— AI). But Property 1.4 implies that (DV— AI)
is commuting with S. Therefore b(8) is commuting with DY —2I and
— AL = (DN—AI b(8). Hence

DYl = —AAb Y (8) = A[—Ab™'(8)] = AR,.

From Lemma 3.3 it immediately follows

PROPOSITION 3.1. The operators A and R, are commuting.

LEyva 3.4. If & is a solution of the equation (DY =iz =y, then
x = R,% is a solution of the equation Aw =y.

Indeed, by Lemma 3.3,

Aw = AR5 — (DY — D)5 = y.

Now we can formulate the main theorem:

THEOREM 3.1. Let 8 be an involution of order N acting in the linear
space X (over complew scalars) and let D be permuting 8. Let 4 = a(S)—
—b(8)D, where

N-1
a(®) = 3 ab*,  b(S)

N-1
= 2 by S*

are polynomials with constant complew coefficients, sich that a(e’) # 0
#£b(&) for v=1,2,..., N and & =™, Then every solution of the
equation Az =y 18 of the form

2 =Ru24d 2 &2y,
where:
Bq= —[D"4d(e" 7 8) DV a (" 8)a (" 8) DY+
HotA(TE).. A(e8) 17 8);
a(8) =" (8)a(8);
@ is aNsoluﬁon of the equation (DV—AI)d =1y;

A= TI om;
m=1
om = a(e™)[b(e");
d is an arbitrary complex number;
N : N ka
& = mzl " N—1), =V,

g=Argl (0

Oka,m (k = 0,1, iey
@ < 2m);
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Vim 8 the subdeterminant obtained by cancelling the (k-+1)-th colummn
and the m-th row of the Van der Monde determinant V of numbers &, &3,
e m=1,2..,N;k=0,1,..., N—1);

2, 48 an arbitrary solution of the equation (D—A,I)z = 0.

The proof immediately follows from Theorem 2.3, Lemmas 3.2,
3.3, 3.4 and from the linearity of the operator A.

4. Let S be an involution of order N acting in & linear space X and
let D be permuting S. Let us consider the ‘operator 4 = a(S)—b(8)D,
where a(S) and 5(S) are polynomials with constant complex coefficients.
In the two last sections we have assumed that a(s’) 50 3 b(¢") for
y=1,2,..., N. Now we will drop this assumption. We shall consider
some most ty'pmal cagses.

Similarly as in Lemma 2.1, formula (2.3), the equation

(4.1) Az =y
can be written as an equivalent system of equations

a(e™) Tymy— b (8m)Dm(m+1) = Y(m) N-1,

form=1,2,...,
a(e¥) @ — b(e") Dapy = Yy, '

(4.2)
where @y = Pm®, Ym = Pny. Of course, if a(d") =0(s") =0 for
m=1,2,...,N, then 4 = 0 (Corollary 1.1).

1° If b(s™) =0 for m =1,2,..., N, then the solution of (4.1) was
given in [1] (see also [3], p. 89), and it is of the form

r =

-
= Payt+ D, 7
m:a(gm);eo G(E ) " m:afeT”‘l)=0 i

< N and a(e™) # 0, the
= () under the

(the first sum runs over all m such that 1< m
second one over all m such that 1< m <N and a(e™)
necessary and sufficient condition

Pny =0 for all m such that a(c™) =0,

where 2 is an arbitrary element of the space X(m] =P, X.

2° If a(e™) =0 for m =1,2,..., N, then we solve equation (4.1)
with respect to the unknown Dz. We reduce our problem (similarly as
in 1°) to the equation

Dz = y,,
where
1
Yo=— D m Pay— St (m=1,2,...,T),
m:b(eM) s 0 (3 ) mib(eMy=0
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under the necessary and sufficient condition P,y = 0 for all m such that
b(e™) = 0, and zpmyeXm are arbitrary.

3° Let us suppose that a(e™) 5= 0 for all m and b(e™) = O for at least
one m. Without loss of generality we can consider the cage b(e") =0,
From the last equation of (4.2) we obtain o) = a e )y(N), and solvmo-
the system (4.2) successively, we have

By = (8 ) Yo
By = (t Yomy+ biam)) Dapnyy  (m=1,2,...,N—1)
Hence, by Properties 1.2 and 1.3,
my = (tm) [y(m)—I— alza(“i:)l) m+1)+' -+ ZE;")F'I b(j\(;,} DN"”'Q/N]
_ a,(t’")[ et alzifz)l) DPpyyt ..t bgsll b(j: \1,)) DN“W’PN]?/

and

. N
T = Zm(m)

b(e") b(e").. () N_m]
———'—-—D .
Za() [ gy Dt gy 7

M=1

In a similar way we determine the solution of (4.2) if b(¢™) =0
for an m == N. )

5° Let ns suppose that b(e™) % 0 for all m and a(e™) = 0 for at least
one m. As previously, we consider the case a(e = 0. Then we determine
%y from the equation

1
Dogy = — 5057 &y e

obtained from. the last equation (4.2). Having @), we successively solve
the equations
-1 a(e™)

Dm0y = Ty Yot gy o (mh= 1,2,..,N—1)
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obtained from the first ¥ —1 equations (4.2). Similarly, we solve equation
(41) if a(e™) = 0 for an m # N.

5. Example. Let us consider on the complex plane the differential
equation

N-1 N-1
(5.1) P akx(s’“t+ﬁk)+k§ b’ (14 Bx) = 9 (1),

where ay, by, f are constant complex numbers and s = ™%, N> 2.
Let us consider the following operator:

(8)(t) = (et +Bo)-

It is an involution of order N in the space of all functions of one
complex variable. Indeed, it is easy to check that

(5.2) (87a) (1) = @ (™t Bo (™ &+ b e 1))
Hence
(8¥2) (1) = (e t+ o (¥ ...+ e+ 1)),
But & =1 and, by formula (1.3), £~ '+...4e41=0. Then

8V z)(t) = > (2).
The differentiation operator is permuting S. Indeed,

(D8z) (1) = [w(et+Bo)] = e (et+Bo) = £(8Da)(?).

Hence all previous considerations can be applied to equation (5.1)
if we assume additionally, according to (5.2), that

(8.3) Br = Bo(s" ' +...Fe+1) for k=1,2,...,N—1.

For example, if

—1 N-1

”‘)~2ake”"‘;&0¢b ’")—Zb (m=1,2,..,N),

according to Theorem 3.1, to solve equation (5.1) it is sufficient to know
all solutions of the equation #'— 21,2 = 0 and a solution of the equation
2™ — % = y, where

N

2= [] a(™)/b(™)

M=1

and
Ao = ;l/meq’im) p = Argi.
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On an equation with reflection of order n»
by

BARBARA MAZBIC-KULMA (Warszawa)

If a differential equation contains together with the unknown function
#(t) the funetion x(—1), then it is called & differential equation with 9‘efl¢c-
tion. ) :

D. Przeworska—Rolewicz gives in [1] the general solution of an
equation with reflection of order 1, i.e. of the equation

aom(0)+bow(— 1)+ ay &' (1) + b, 2" (—1) = y (1),

where a,, a;, b, and b, are scalars.
In the present paper we consider the differential equation with
reflection of order =,

1) () + bt (— O+ ..+ @™ )+ b 2™ (—1) = y(1),

where the coefficients ay, ..., @y, by, ..., b, axe constants. We give a general
form of the solution of (1) under the following assumptions:

1° al—bL # 0;
2° aj_par—b; by #0 (E=0,1,...,n and j = k+1,..., k+n);

3° the polynomial ZLL,-t" has single roots only for £ =0,1, ..., n,
izo

‘where
i
ch,-k for 0 <j< m,
. =0
(i) =1 5
> oy for m<j< 2n,
k=j—n
(i) e = (— 1Y " (a;_so— by_zcbe) (an— b3y .

1. Let S be a reflection: Sz(f) = #(—¢). Sinee § = I, where I
is the identity operator, S is an involution. We write

(2) Dx(t). = o' (£).
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