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A remark on (s, t)-absolutely summing
operators in L,-spaces :
by

NICOLE TOMCZAK (Warszawa)

In this paper we prove a.theorem on the composition of the p-absolu-
tely summing and (s, t)-absolutely summing operators which is a gener-
alization of a theorem proved by Pietsch (see [7]) concerning the compo-
gition of p-absolutely summing operators. The proof of the theorem
follows Pietsch’s proof. '

As an application of this theorem we prove that for some class of
spaces the ideals of (s, ¢)-absolutely summing operators have properties
quite analogous to fthose of idealy of (s, t)-absolutely summing operators
in a Hilbert space provided 1/t—1/s = } and ¢ < 2. The proof is quite
analogous to that of the theorem stating that A,,(, X)ed(l, X) if
r<<2 (see [b]). )

Definition. Let X and ¥ be Banach spaces, let T<B(X, ¥) and
let 1<g<p<<co. Put

apa(T) = it {0 (1T} < O sup (X [ (@) [7)12
. 4 <1
for meX,i=1,...,m and n =1,2,...}.

An operator T is said to be (p, g)-absolutely summing (T edpq(X, X))
i apg(T) < oo oo :

It turns out that A,.(X, ¥) with the norm a,,(:) is the Banach
ideal. : ‘

Prorosrrion. Let X, ¥ and Z be Banach spaces, Tedpy(X, T) t‘md
Sedy (¥, Z). Then the operator ST <B(X, Z) is (1, q)~absolutely summing,
where . . .

z +—-<1
r

RS
«-!)—‘

Ry |
N
R
|-

and a,o(8T) < 54(8) app (T).
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Proof. Since the operator T is p-absolutely summing, there is a re-
gular positive Borel measure # on the unit ball K* of X* such that
w(E*) =1 and

71l < 00 (T)  f10° (@) dp(@")  for weX

(see [6] and [7]).
Let (w%)N eX be an arbitrary finite ﬂequence Put

o = ( flo* ()| du (") e, forn = 1 LN,
=

Applying the Hélder inequality and the faet that § is (s, t)-absolutely
summing, we obtain

(X8 T2} < (Z 18T n| )”S(Z flw (o) | s (0 )“”

< a(8) sup (V" (Tan)l Y fsw ()| dpa ()1

[/a] =S D)

Since T is p-absolutely summing, the diagram

O(K*SIP (K™, w)—,
4.
X—— Y

=N

is commutative where Z is a Banach space, ¢: X —C(K*) is the canonical
isometry  — (2%), and I: C(K*) — L (K*, u) is the identity map f - f.
Let E denote the closure of Ii(X). Consider an arbitrary functional y* < Y.
Then the formula :

By (i) = y* (Tw)

determines a functional Bm on . It follows from the Hahn-Banach
theorem and from the fact that [I,(K*, x)]* is isometrically isomorphic
to Ly« (K", i) that there is an element feL, (K% u) such that

¥'(T0) = [ o o (a") du(a"

and

([IF@")" au™ < app (1) 19"
By Hélder's inequality, we obtain
v (Za) < [ lo" (@) |f(0")] du(a")

= J1" @ (Ta™ @)\ &)} 1)1 du (")

<(J1o" @A™ [1a" @117 au @) 176" du(@®)"

icm°
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1 and for n =1,..., N
f |2 () | F () 17" s () il |f(a* )]”'dﬂ )"f

Hence for arbitrary y*e Y™, [y <
|J (T‘Gn

Finally, we get .
(31" (T < sup (371" (@) P15 du(@")""
< pp(T) SuP (ZI-” (@) )1/5.

sl kX
Consequently,

(ZIISTw Iy <

Thus, by the definition of the norm a,,(S; T), we have
» g (85 T) < 54(8) app(T).
This completes the proof.

a1(8) - ap »(T) “i}'&gl (%'Ix* (@)

THEOREM. Let X be a Banach space isomorphic to a subspace of an

Ly (u)-space for some measure u, and let ¥ be an arbitrary Banach spoce.

Then for 1<r<2 :
A1 (X, Y) = 4y (X, ¥), where 1fr; =1[r—1/2.

Proof. First, observe that 4,,(X,Y)c 4, .(X, Y)
= $—1/r; (see [4], 0.7).
The inclusion A,12 (X, ¥) = A,,(X, Y) results from the Proposition

since 1—1/r

and from the following facts:

(a) If X is isomorphic to a subspace of an L,(u)-space, then every
operator SeB(l,, X) is 2-absolutely summing (see [2] and [6]). 7

(b) Let T:X — Y be a linear operator from a Banach space X into
a Banach space Y. Then Te4d,,(X, Y) if and only if T'Sec4,,(lw Y)
for every SeB(l,, X).

To prove (b), assume that T'¢4,,(X, ¥). Then there is a sequence
(#,) € X such that the series ) x, is unconditionally convergent, but
3 [Zaf = oo.

Put 8(a,) = Zanmn for (o) el
convergent, SeB(l,, X) (see [1]).

Since ' ||T@.||” = oo, there exists a sequence of real numbers 7,

n

such that limz, = 0 and D (7, T2.))" = oo. Since

SUIST (aenll = 3 |1 Tomaall” = oo,
0,1,0,...), TS¢A,,1 (Teos

. Since the series ) o, is unconditionally

where ¢,(0, ..., Y), and this completes the proot

of (b).


GUEST


100 N. Tomezak

COROLLARY 1. Let X be an &, -space (see [6]). Let L <7 <2, 1<p <2
Then for every Banach space Y we have

A, (X, ) =A4,,X,Y), where 1/ry = 1jr—1/2.

rl,
This corollary is a special case of the Theorem, since %, is a subspace
of %, (p) for some measure u (see [6], Section 7).
COROLLARY 2. Let 1< 72 ond 1 <p <
space Y we have

2. Then for every Banach

Ar,l(lln Y) = Ar1,2 (lm Y)1
Ay (Lp(0, 1), X) = A, (L, (0, 1), T),
where Lfry = 1/r—4%.

Definition. We denote by H, the sp,,uce of Lebusgue -integrable
functions on the circle such that

[e™f(tydas =0 form=1,2,...
(see [3]).
COROLLARY 3. Lot 1 <7< 2 and let Y be an arbitrary Banach space.
Then
1 1 1
Ary (Hyy ¥ Ah,z(ﬂl; Y), where ;; =TTy

"I wish to thank Professor A. Pelezyniski for the inspiration of the
problem and for his kind advices.
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The estimation of an integral
arising in multiplier transformations
by

ELIAS M. STEIN (Princeton) and STEPHEN WAINGER (Wisconsin)

The aim of this note is to prove the following general estimate:
THEOREM. Let a) < 5 < ... < a, be fized non-negative real numbers
and let by, ...,

b, be real numbers. Then
2 A a dz
{ [ exp (ol + 0o+ B[]} S| < K, 0, 0a),

where K does not depend on by, bsy ...y by

(The integral is defined by integrating over &< |z| <
letting B — co and ¢ —0.)

For fixed real a the symbol [#]* may stand for either |»|* or sgnax |2|®

The proof of the Theorem is based on the following Lemma of Van
der -Corput:

LeMuA 1. Let f(t) be a real-valued differentiable function on u <t << 0.
Suppose f'(f) is monotonic and that |f'(f)] >21 >0 for u<t<v. Then

R and then

]f exp[if(H)]dt < 1/A.

_For the proof of Lemma 1, see [3], p. 197.
To apply Van Der Corput’s Lemma, it is necessary to obtain estimates
on the measure of the set on which an expression of the form

(1.1) g(x) = d a1+ d, a2 ..+

Cm—1 “n
% +z

is small.

LEMMA 2. Let g(x) be defined by (1.1) with d; veal and ¢; = 0. Assume
further that ¢; > ¢;_;+1,2 <j< m, and that oy > 1. Then the graph of
g () for 1 < < oo consists of » intervals {Ir} on each side of which g(x)
is monotonic. On each of the intervals Iy, &k =1,...,7, |g(®) =1 except
on a subinterval of length at most py; and what is most important v and the
numbers py, may be chosen $o as nof to depend on the numbers dy, dyy ...y Gy
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