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The minimal-norm problem
and Poniriagin’s maximum principle for Banach spaces, II

by

GRAZYNA TOPOROWSKA (Warszawa)

Balakrishnan in his work [1] discusses some classes of control problems
in which the state and confrol variables are allowed to range in Banach
spaces. The system is described by the differential linear equation in
a Banach space, with the rlght side linearly dependent on a control
of the form

dw (t)
dt

= Az (f)+ Bu(t),

where () for each ¢ belongs to a Banach space X, u(?)-control, for
each ¢ belongs to another Banach space X, the linear operator 4: X, — X,
is a generator of a strongly continuous semigroup of bounded operators,
and B: X, - X, is a linear bounded operator.

The minimal-norm problem is considered for this system. It consists
in minimizing the functional |j#(T)—yllx, for a flxed final time ¢ =T
and with a fixed yeX,.

Balakrishnan has proved Pontriagin’s maximu_m principle for
a problem posed as above. ’

Paper [5] includes a generalization of Balakrishnan’s result to the
case in which the system is described by the differential equation, with
the right side non-linearly dependent on a control, of the form

da (1)

P Az (t)+ B(t, u(t),

where B(-, *) is a non-linear operator. Pontriagin’s maximum. principle
is true for this problem (cf. [5]).
This work is a generalization of the results contained in [1] and [5].
Consider the equation

dz (t)

(1) e

= Az (t)—I—B(t @ (1), u(8))
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with the initial value
(2) #(0) = 2,
where: o

2(+) is a continuous function defined in the interval [0, T] with
values in a Banach space X, (i.e. x(-)eC([0, T]; X,));

u(+), the control, is & bounded function defined in the interval [0, T']
with values in a Banach space X, (i.e. u(-)eM ([0, T']; X,)) and Bochner
integrable in [0, T];

A: X, - X,, a linear operator, iy the generator of a C, strongly
continuous semigroup S(2) = ¢4 ‘

B(-, -, -): [0, T1x Xy x X, — X, is a continuous mapping, different- .
iable by the second and the third variable on [0, T]X XX X,, and the
partial derivatives D,B and DyB (D;B denotes the partial derivative
of B with respect to the i-th variable) are continuous with respect o all
the variables in the operator-norms in % (X,; X,) and .#(X,; X,) respecti-
vely and are bounded.

‘We say that the function x(-), strongly continuous on the interval
[0, T'] with the values in X, is the generalized solution of the initial value
problem (1), (2) if it satisfies the integrable equation

i
(3) x(t) = 8(f) @, -+ ofS(i—— 7) Bz, (), (7)) dv
N

TUnder our assumptions we can prove that for each x,¢X, and for

each control u(-)eM ([0, T]; X,) the initial value problem (1), (2) has the
- unique generalized solution.’ This solution may be found by the method
of successive approximations.

Let A be a mapping assigning to every control wu(-)eM ([0, T]; X,)
the final state x(T) of the solution x(-) of problem (1), (2) corresponding
to that control.

The functional space M ([0; 7']; X,), which we denote shortly by M,
will be treated as a Banach space with the norm

(4) ‘ lw(Mar = sup [lu(@)x,.
osi<T
Remember that the linear operator A'(u)eL(M; X;) such that
1 (b 3)—~ A () — A4 () B, = o (Illas)s

where |o(||k]|5) II/ilhl ——> 0 for each weM, is called the strong derivative of

the mapping 4 at 13he point %M,

TEEROREM 1. The mapping A has a strong de'rwa,twe at each point of
M([0, T]; X,).
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Proof. We show first that the solution of the initial problem (1),
(2) is a differentiable function of the control. Let us introduce a mapping

F(y ) OXM -0,
where 0 = (([0, T'); X,) is defined as follows:

. t .
(5) F (@, w)(t) = w(t)——of 8(t—7)B(z, © (1), u(v)) dv— 8 (¥) %,

for (#(2), u(t)) e X, X X, and te[0, T].
‘We show that the mapping # is strongly deferenMa,ble, and, further-

- more, the following formulas are true:

(D1 F (&, u)-0)(t) = o(t)— f 8(t—1) D, B(r, #(z), u(r))- o (v) dr,
“ 0
(6) o :
(DuF (2, u)- 4)(#) = — [ 8(t—7)DyBv, 2(z), u(z)) 4(z)dr,
0

where:

D, F (x, u)eL(C; C) for wel, uel;

oeC, o(r)eX;, D.F(2,u) 0cC;

( F (4, u) o )(t) eX, and it denotes the wvalue of the demva,twe

D, # (z, w) at the point o, at the moment #;

DyB: [0, TIx X, X X, - £(Xy; X,);

D, F (@, w)eZ (M; C) for weC,uel; .

AeM, A(z)eXy, DyF (m,u)-AdeM;

(D7 (w,_u)il)(t)al(2 and it denotes the value of the derivative
D, (@, w) at the point 4, at the moment #;

DyB: [0, T]X X, X X, -~ Z(X,; X,).

By the definition of the strong derivative, we should mvesmgate
the norm

I (2-+ by w) (1) —F (%, w) (1) — (D r?(w %)) (@)|x,
= |\F(z+h, u)(t —F (x, u)(t)—lz(t)+fS(t—r)D B(-r () 7,L(1:)71,('r)clrux1
= Ii(ﬂf—l-h)(ff)——fS(i—T (7, (@+ 1) (v )7%(r))df~6'(t)w1—m(t)+

—l—fS(t-«r Bz, o(z), u(2) dv+ 8 () w,— h(8) +

+J 8@—1)D, Bz, %(v), u(r)) h(7) drllg,

= |!(w+h)(t —(8)— h(t)+fS (t—7)[—B(z, (@+ 1) (z),u(7)+
—i—B(r @ (1), u(v))+ D, B(-r @(2), % (7)) h(v)1drlx,
<K f nle, b(z))dv
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where K = sup [|S(t)], and
te[0, 7]
n(z, h(x)= Bz, #(x)+h(2), u(v)) —
- B(Ty #(7), “(ﬂ)"‘DZB(Ty %(7), “(7))h(1)|\x1-

By the differentiability assumption of B we have

nlz, b(z)) = o{Ih(2)lx,)
for every ve[0, T] and, moreover, ’

0 < {7, (7)) < 2N|h()lx, < 2Nkl
where '

N = sup{|D.B{¢, &, w): 1[0, T], we Xy, ueX,}.

Thus, by the Lebesgue bounded . convergence theorem. it follows
that

T
Kof.n(f, k(7)) dv = of[lhllg),

which proves the first of the formulae (6). The proof of the second formula
iy analogous. . '

We shall prove that the partial derivatives D.F and D,F are conti-
nuous. In fact, if ,(v) = (1) and u,(v) - u(7), then

HDZ-B('W T, () un(f))”‘DzB(77 $(T), u(f))H -0

for every te[0, T], and

”Drg:(ﬂ"n; un)_Dly(mr M)H

T
| <J [86=9)[D:B(r, 0,(0); v, () = DaB(7, 0(0), u(w)||dz =0

by the Lebesgue theorem, because the function N 7) Dy B(v, #(z), u (7))
is bounded. The proof for D,# is similar.

Tiet ®(u) = #(+) denotes the solution of problems (1), (2) correspond-
ing to the control u(-). So equality (5) is of the form

) . F (D (u), u) =0,

where @ (w) 0, wel, F(P(u), u)eC.
‘ The operator D& (2, w), as an integral operator of the Volterra
type, is & continuous linear automorphism of the space C. Hence, by
the differentiation of the implicit function [2], it follows that

DF (6 (u), u) = D,F (B (w), u) o DB (u)+ DoF (P(u), u) =0,
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where DF (®(u), u)eZ (M; C), D.F (D(u), u)eZ(C; C), DD(u)eL(M;0),
D,F (B (u), u) 2 (M; C). Since @(u) is fulfilled (3) and by (7), we have

(8) (DD (u)- 6u)
= ft 8(t—7)DyB(z, D(u)(7), u(7))o(DP (u)- du)(z)dz+

—]—ftS(t—r)DaB(;:, & (u)(z), % (7)) du(v)dv.
4 .

The differentiation of the mapping ®: M>u — ®(u)eC implies the
differentiation of 4. Thus the operator A has a strong derivative, q.e.d.

Now let & = M([0, T]; X,) be a convex, closed and bounded set.
Tet 2,¢X, and yeX, be fixed. Consider the problem of minimizing the
functional

(9) Y(u) = [|4(uw)—Ylx,
on the set G. The control u, for which

W (u,) = min ¥(u)
ueG

will be called the optimal conirol.

TrEOREM 2. If the minimum of functional ¥ is reached at the point
u,e@, then there exisis a Functional z* <X} such that for every ueG the
inequality

(A" (g) ] 2 & [A () 4]
is fulfilled. )

Proof. We shall now use the following theorem:

Tet X be a Banach space, 4, B < X — convex sets, Int A # O,
(Int A) ~ B = @; then there exist a functional 2™ ¢X* and a constant y
such that o*(Int 4) >y and o*(4d)=zy> #*(B), ie. «*(4)>a"(B)
The equality

(10) [4'(@)+2o(T) 1~ Int 8 =@,

where § = {du: [|Au—y[| < m,m = inf[|Au—y|} is true.
une@

The proof of (10) is given in [5] (see formula (11) in that work) and
it is sufficient that A4’ is a weak derivative. In our case A’ is a strong
derivative, and so A’ is a weak derivative also.

Hence in our case all the assumptions of the theorem. quoted above
are satisfied and, as the assertion of that theorem, we obtain.

#*(8) = o* [4' (@) + 20 ()],
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whence after some transformulations analogous to the transmutations
made in [5], we obtain

(A’(uo) th) = (/1 () - w)

for all ue @, q.e.d.

Theorem. 2 is a generalization of Pontriagin’s maximum principle.
Tt does not give the fact that #*(0) is the solution of the conjugate equa-
tion to (1), which holds £01 the classical Pontriagin’s maximum pnnelple
[4] and which holds for the problem presented in [5].
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Banach limits in vector lattices
by

A, L PERESSINI (Urbana, Ill.)

S. Banach ([2], p. 34) defined generalized limits (now commonly
referred to as Banach limits) as positive, linear, shift-invariant function-
als on I° which agsign the value 1 to the constant sequence with terms
equal to 1. Lorentz [4] investigated the linear subspace of I consisting
of those sequences in 7™ to which all Banach limits assigned the same
valne; such sequences were termed almost convergent. In this paper,
we consider the extension of the concepts of Banach limit and almost
convergence to vector-valued sequences. In addition to seeking generaliza-
tions of the known results for the case of real-valued sequences, we also
consider a number of new questions which do not arise in the classical
case. Our primary objective will be to study the geometric structure of
the space of almost convergent sequences and the set of Banach limits
in this more general context. Notation and terminology concermng
ordered vector spaces will follow Peressini [5].

1. If E is a vector lattice, then the collection w(H) of all sequences’
% = (x,,) such that z,eF for all » is a vector latitice for the usual “coordi-
natewise” definitions of the linear operations and order. I (¥) will denote
the linear subspace of w(E) consisting of all order bounded sequences,
that is, all sequences Z = (1,) for which there exist y, z in B such that
y <o, <z for all #n. A linear mapping L: I*(E) - F is a Banach limit
on B if

(1) L is positive.

(2) L is shift-invariant (i.e. L(w)
on I°(B) defined by o((®,)) = (@a41)-

(3) If ¢eF and ¢ is the constant sequence with n™
L{) =

It follows from (2) that L(m) L(o"‘?ﬁ) for each natural number %,
where o denotes the E™-iterate of o.

If F is an order complete vector lattice and if Z = (w,) el (H), then

int sup {x,}
E nx=k

L(o%), where o is the “left-shift”

term ¢, then

lima, = sup inf{z,} and Lma, =
— k azk
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