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It is known that for a locally eompact group G with left invariant
Haar measure, if [[¢(@™'y)f(@)f(y)dody exists (ie. the integrand is
integrable) and is non-negative for every choice of f in L'(@), then ¢ is
almost everywhere equal to a continucus positive definite function. In [2]
the question is posed as to what happens if the hypothesis is modified
to require the integral to exist and be non-negative for every f in L? n L7
(where 1/p+1/g = 1). They construct an example to show that ¢ need
not be almost everywhere equal to a positive definite continuous function
for non-discrete @. There construction depends on the idea that the integral
positive definitess of ¢ is reflected in the positivity of the Fourier trans-
form of ¢. They constrnct a ¢ by looking at its Fourier transform but
make sure that ¢ is not an L®-function. Their construction is essentially
limited to groups which are either compact or Abelian since these are
the groups for which Fourier analysis can most readily be used.

The purpose of this note is to suggest an alternative construction
which avoids the use of Fourier analysis, and so applies to all non-discrete
locally compact groups. Our argument, like that of [2], represents @
as a limit of continuous positive definite functions.

Let K be a compact set of positive measure. Choose the real number
M so that 1/M and M respectively are lower and upper bounds for the
modular function of @ on the compact set K. Let k be any real number
such that k>1. Let U, be a measureable subset of K satisfying
0 < m(U,) = ¢ < 27", where m denotes Haar measure on @G. (It is here
that we assume that @ is not discrete.)

Let f, be a measurable real-valued function on G which vanishes
outside U, and which satisfies 0 < fol) < ke, and [ f,(@)de = 1. (For
example we could take f, (2) = 1/3 if #isin U,. If U, is open and k> 1,
we could choose f, to be a eontinuous function, or even a C* whenever
that makes sense.)

Writing f, —1-f, and applying the Schwarz inequality yields

< fulBen 50 [[fulf=> 1/e,. On the other hand, the-function f,(zy) eon-


GUEST


224 N. W. Rickert
sidered as a function of x, has IP-norm at most EMe,0~P/ Using the
integral form of the Minkowski inequality it follows that if we define

(@) = [ Fulon)ful9) @y,
then
Hen gn”p < kzl/[e’l"lp .

Thus, by comparison with a géometric series, we see that the series
e, g, converges in I? (for 1< p < co) and (since the terms are non-
negative) almost everywhere to -a function . Evidently, ¢ is in L” for
1< p< oo It is easily verified that each g, is a continuous positive
definite function. It follows from the Lebesgue monotone convergence
theorem thab '

[f e@9)h(@) by) dwdy

exists and is a non-negative real number for every continuous & with
compact support.

Tt can easily be verified that ¢(x~'y) = @(y'2). Thus, using the
integral form of Minkowski’s inequality, if & is in I7, f o(x ™ y) h{z)dw
is & funetion in I” with norm at most |lp|,, [All, . Ifp > 1and 1/p+1/qg =1,
then ¢ is in L% and using Holder’s inequality f o(x ' y) h{z) dz is a function
in Z* with norm at most |igll, iAl,. If, in particalar, 1 < p << 2, so that
p < g < oo, then we can conclude from the convexity of the L”-norms
([1], p. 524) that fzp(m*ly) h(z)dz is in I? with norm at most
(max {|lpll;, lgll ) 1Bll,- Thus if k; is also in I? it follows (using Fubini's
theorem) that [[ ¢ (xy)k(2)h, (y)dedy exists and is bounded in absolute
value by (max {|gll, lgll}) 1Al,11kdl,. Thus the hermitian bilinear form

(b, 1) — [ [ @@ y) k(@) by (y) dwdy

is continuous on I?x I”.

In particular, [[¢(z~'y)h(z)h(y)dedy is a continuous function of
b in IP. Sinee it is non-negative for continuouns » with compact support,
it is non-negative for all & in I? (1 < p < 2) by continuity.

Nevertheless ¢ is not almost everywhere equal to 2 continuous positive
definite function, because it is not in I*. For the L®-norm of ¢ is at least
as great a8 |lagi+...+ & 0ulle = &10:() ...+ e, 0,(6) (the last equality

since g; is continuous positive definite). But g:e) = filh=1 [e; 50 @l =m0

for arbitrary m.

Thus we have proved:

TH:EOREM. .Let @ be a non-discrete locally compact group. There is
-a function ¢ which is not in L% (and thus fails to be almost everywhere equal
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to a continuous positive definite function), but which is in every I* for
1< p < oo and for which the integral

[[ e ph(@)n(y) dody

exisis and is non-negative for every h which is in some IP (1 < p < 2).

The theorem of [1] is a corollary:

COROLLARY. There is a function @ which is not in L™ with the property
that if 1< p< oo and h is in LP n'L? (where 1/p+1/q = 1), then

[[ ¢ hia)hiy)dody

exists and is non-negative.

Proof. Simply note that under these conditions & is also in I* and
apply the theorem.

Remark. If G i3 metrizable (respectively a Lie group) and if the
U, are chosen to be symmetric, a basis for the neighbourhoods of the
identity, and such that U. is contained in a compact subset of U,_;,
then the series defining ¢ is a finite sum in a neighbourhood of any point
other than e, so that if the f, are chosen to be continuous (respectively C)
functions, we see that ¢ is continuous (respectively €*) except at e.
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