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1. It was observed by Marcinkiewicz [7] that the Haar system,
#H ={h,: m =1,2,...}, constitutes an unconditional Schauder basis
for each of the spaces LP[0, 1], p > 1. The proof amounts to a demon-
stration that a certain norm on I” defined in terms of the Haar functions
is equivalent to the ordinary norm, a fact, Marcinkiewicz noted, that
follows easily from a theorem of Paley [9] concerning Walsh series. The
norm in question is obtained in the following manner. Let f be an element

of I¥[0,1], p > 1, let 2 a, h, be its Haar expansion (3¢ is a basis for each
of the IP-gpaces [10]) and let

6 = I 3 &1

From the theorem of Paley follows the existence of positive constants
A and B, such that A4,G,(-)<|ll, <B,G,(-), so that each series

£,0,h,, With &, = 41, must converge, a condition equivalent to the
n

n=1

unconditional convergence of Z‘a,nhn (see, for example, [1]).
n=1

Motivated by this result Gaposhkin [2] proved that a basis @
= {p,: n =1,2,...} for I”,p>1, is unconditional precisely ‘when
the norm @, defmed. by the relation

N =1l Zaat,  whore = 5 o,

is equivalent to the customary norm. Subsequently Gaposhkin [3] and
others extended this result to include the reflexive Orlicz spaces as well.

One cannot but wonder why this peculiar norm should play such
a prominent réle. An answer, on one level, is derived from an inspection
of the original work of Paley, There one finds that the Khintchine ine-
quality (see, for example, [6]) concerning series of Rademacher functions
occupies a central position in the proof of the critical theorem. The
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connection of the Rademacher system with the notion of unconditional
convergence is furnished by the cliterion, cited above, concerning the

convergence of each of the series Z‘ &, Gy @, Where g, = 41, for each N.

Thus motivated, it is a not too dlthcult task to show that the analogue
of the Marcinkiewicz-Gaposhkin result continues to hold in a very broad
class of function spaces, and the present work is devoted to that end.

2. Let X be a Banach space, let {,};-; be a sequence of elements
of X, and let {¥,}3, be a sequence of continuous linear functionals on X.
The sequence {,, Yn}n_ is biorthogonal if Y, (2,) = 6,.,, for all natural
number pairs (n, m). blorthogonal system {z,, Y,} is a Schauder basis

for X if, for every # in X, 2 Y, (@

Let {u,}n., be an a,rbltrary sequence of elements of X. The series

), converges to x.

> u, is unconditionally convergent if, for every permutation s of the
fn=1 )

o .
natural numbers, 2 Uy cONVerges. One of several useful criteria for this

mode of convergence is the following: 2 &, u, converges for every sequence

: N—>{—1,1}.

A Schauder basis {#,, ¥,} is an unconditional basis for X if every
o

expangion Y ¥,(x)x, converges unconditionally.
n=1

Gelba,u;n. [4] has examined unconditional convergence of basis
expansions in- a Banach space X in the following manner. Let G denote
the set of all sequences ¢: N — {—1,1}, and, for each # in X, let C(z)

00

denote the subset of @ for which a Y, (z)w, converges. Let Z(2) be

given the discrete topology. If @ be endowed with the group structure
of (Z(2)) and with the corresponding product topology, then the normalized
Haar measure p on & is the product measure induced by the normalized
Haar measure on Z(2). The sets C(«), for each #, and O = (0 O(x) are
xeX

shown to be measurable, and an application of the 0-1 law shows that
each of these sets has Haar measure either 0 or 1. Because ¢ proves to
be a subgroup of @, it follows that either u(C) =0 or ¢ =@.

By virtue of the measure-theoretic equivalence of the Lebesgue
meagure space on [0, 1] and the measure space associated with @, the
above results can be put in a form more suitable for the demonstration
of the theorem that follows. Let {r,: # =1,2,...} denote the ortho-
normal system of Rademacher, so modified as to make each 7, right
continuous. Since to each ¢ in @ there corresponds a unique element 0
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of [0,1], one finds that {H 2 1 (0) ¥, ()2, converges} is, for each =z,

Borel measurable and has Lebesgue measure 0 or 1. Without great danger
of confusion, these sets are also denoted by C(w), and the intersection
of all such sets is again denoted by C. Either € is a (Borel) null set or
C = [0, 1], so that the basis is unconditional if and oniy if |C] is positive.

Certainly it is clear that if {z,, ¥,} is an unconditional basis for X,
then each function Tp: X — X, 0¢[0,1] (T,: X -+ X, ec@), given by
the relation

Tox _Er )Y, (#)x,, 2eX,
(T, = Y &, X, (#)x,, eX),
n=1

is a bounded linear transformation on X. Moreover, Gelbaum (see also
[5]) has observed that the family {T,: ec G} ({Ty: 8¢[0,1]}) is (uniformly)
bounded, a condition that is, of course, also sufficient for the uncon-
ditionality of the basis.

3. Let X be a Banach space whose elements belong to .#[0, 1],
the set of all measurable real-valued functions on [0, 1], where the norm
is determined by another subset ¥ of .#[0, 1] according to the formula

llell = Sup{oflm(t)c(t)]dt: ce%).

In order to exclude the more pathological members of this species,
agsume that there is an 1nereasmg sequence {F,},_, of Lebesgue mea-
surable sets such that [0,1] = U B, and yg,  belongs to X for all n.

=1
The Orlicz spaces (in particular, the IP-spaces with 1< p < oo), I, I™,
and the Lorentz spaces are familiar examples of this type of Banach
function space.
Let {z,, ¥,} be an unconditional basis for X and, for each » in X, let

&) = 3 o)z

A routine calculation reveals that G is a norm.

Levua (cf. Orlicz [81). There is a positive constant B such that G (z)
< Blz|| for oll z in X.

Proof. If

3
Sn =k2 Yo (z)ay, n=1,2,..,
=1
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then (lims, = &) lim[s,|| = [lll, and limG(s,) = G(x). According to the

Khintchnine inequal;bty for L', there exisgs a positive constant 4, such that
4,5 n@ator < f| 3 no L@, 0/,

so that, for each ¢ in %,

T3 (@) ()% le ()] dt < f { f PRACRALENCLD lo(0)lat

=1

(NS

1
4, f
[

E:

=

1

1 1 =n

= JJ1 3 7(0) Y@ a0 lo(t)| at) do.

0 k=1

(Bach of the functions (8, ¢) ~ 7,(8),(t) is measurable on the square.) But

1 n 1
[1 3 7(0) Yu(@) (0] le(0)] dt = [ |Tys,(t)] lo()] dt
0 k=l [}
< Tosall < s, |l
where K is a bound for the family {T,: 0e[0,1]}. It now follows that
4G (s,) S Klis,ll, n=1,2,..,

and the desideratum iy obtained by taking Hmits,

THEOREM. If, in addition to the above hypotheses, X is reflexive, then
there is a positive constant A such that A ||z < G(2), for oll z.in X.

Preliminary remarks. («) Under these conditions, therefore,
the norm @ is equivalent to [[-|. (8) The reflexivity condition forces all
‘bounded linear functionals on X to be integrals. (For this and other
pertinent facts concerning Banach function, spaces, see, for example,
[12].) In the argument that follows, this property is used only to insure
that each coefficient functional is of integral type. Accordingly, a slight
modification of the proof will produce a more general result. '

Proof. I, for each measurable y,

1

Iyl = sup{ [y ($) ()] dt: [l < 1),

0

then [j-|' proves to be a norm on X' — {y: Iyl < 400}, and (X, |- ])
is again a Banach function space, known as the associate space of X,
It develops that fyll' may also be calculated by taking the supremum of

(fy@oma: o) <1)

Unconditional bases 173

and that, for each z in X,

izl = sup{oflw(t)?/(t)ldt: ' < 1}
= sup{lofw(t)?/(t)dtlr Iy < 1}.
The functions ||-|| and |||’ are further connected by a generalized

Hblder inequality; viz.,

Of =0y (@)t < lla)- ]l

for all # and y in #[0, 1].
One consequence of the reflexivity of X is that X’ coincides with

X*, the dual space of X. That is to say, for every bounded linear functional
Y on X, there is a ¥ in X' such that

1
Y(')=of(')(t)?/(t)dt and  yll" = | 2"

Let ¥, be the element of the associate ‘space that corresponds to the
coefficient functional ¥,. Because {7, Yo} 18 a basis for X, {¥,,x,}
is a basis for 4% the closed linear span of {¥,: n =1,2, ..} in X%
Because the mappings T, where

T:Y = Zl""n(e) Y(mn) Yn!
=

for ¥ in X*, are the adjoints of the transformations T,, it follows that
{¥,, @,} is unconditional. For each y in A, the subspace of X’ correspond-
ing to A%, define

n
&) =3 PP,
where Y is the linear functional determined by y. By virtue of the lemma,
there is a positive constant B’ such that G/ (-) < B'||-|".
Given Z in X* and  in X, let
m
Ziy () =kZ: Z () Xy ().
It is clear that limZ, (#) = Z(z). Moreover, the operators
" m
Z 2y =D Z(w) Y,
k=1
are the adjoints of the operators

" .
& > 2 Y (@) 2y,

k=1
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and are, consequently, uniformly bounded. Let the positive congtant
K be chosen so that

12" < K |2]*,
Let 2 be an element of X, let

Sn Zkg;l Yk (w)wlu

and let the positive number ¢ be given. Choose 2z in. X* so that [jz||’

m=1,2,...

1
lsall < Iofsn(t)Z(t) dt|4-¢[2.
Let Z be the element of X* to which 2 corresponds, let m be a natural
number exceeding n such that

|Zm(8n)_Z(sw)l < E/2$
and let z,, be the correspondent of Z,, in X’. Then

lsall 1S 80 (82 () ] e

Because 7, 27 (2;) ¥;, the integral standing in the right member
reduces to
1

ké Yy(@)Z (@) = of g’ Y (@)@ (8) 2 (m) y () it

k=

-

thus,
lsall <1 f

TM:

ch (@) a3, (1) Z (wy) Y (1) At |+ &

M=

|3 (@) 2, ()7 @)y (1) i+ o
]1/2[2 ZZ mk
||[ Ti(@a]"| H[EZZ (@)Y P+ e

= G’(ZZ(wk i)+
S G(s) BIZ +e

< B'KG(s,)+ e,
from which follows

FJ:

N

S c%,_. o)
b
'|L

&
[}

Y3 ()} ( LR drt e

VAN
M§

k-
1
-

A lisall < G (sy)

with 4 =1/B'K. Again, the required inequality is btai i
to the limit. ’ ! v 8 obiainel by passing

<1, and
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