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An extension of Choguet boundary theory
to certain partially ordered compact convex sets
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D. A. EDWARDS (Oxford)

1, Introduction. In Choquet boundary theory [6,8,18,21] one
studies the Choquet simplex #(2) of all probability Radon measures
on a compact Hansdorff space 2, together with a wedge ¢ of continuous
real functions on‘ 2. Under suitable hypotheses #(Q2) can be partially
ordered by writing u & » whenever [ gdu> J gdv for all g%, and the
theory then has much to say about the maximal elements of #(&) for
this ordering, and about semicontinuous or continuous funections on Q
that are ¥-convex, in the sense that f fdu> flz) whenever u & &. For
all this it is enough to assume that ¢ separates the points of £, containg
the constant functions, and is such that max(f, g)e¥ whenever frge%.
Then, by the Weierstrass-Stone theorem, ¥—¢ is dense in the space
#(Q) of real continuous functions on £, and so inter alia & is a partial
ordering for Z(£).

Most if not all of the results of the theory can be reformulated as
statements about #(02) and the affine extended-real functions on P().
Adopting this kind of setting for the theory, I show in the present paper
that much of it can be established under much weaker hypotheses: in
the revised theory the pair (#(Q), %) is replaced by (X, &), where X
is & compact convex set and & is a wedge of affine real continuous functions
on X that contains the constant functions, separates the extreme points
of X, and is such that the family {ge &: g<f} is npward filtering when-
ever f is affine real and continuous on X. What malkes this modification
possible is the use of the generalized Weierstrass-Stone theorem of [15, 16]
to replace the ordinary Weierstrass-Stone theorem.

This more general formulation of Choquet theory has some ad-
vantages: (i) it is in some ways easier to work with — it has in fact led
to mew results for the classical case (see e.g. Theorem 14); (ii) decompo-
sition of maximal elements into extreme maximal elements can be given
a simple treatment in this setbing (see §§ 7, 8; for. treatments of a special
case see [23,1]); (iii) the basic hypotheses survive restriction to suitable
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subsets of X (for particulars, and an application, see § 8); (iv) the theory
applies directly to the natural ordering on caps (§9).

Partially ordered compact convex sets have been studied by Lumer
[17], Rogalski [22], and Alfsen and Skau [1]. What distinguishes the
present paper from these works, where there is overlap, is the systematic
use here of the filtering condition on &. )

I have not attempted to include Choquet’s theory of conical meagures
in the present worlk,

2. A maximum theorem. Throughout this paper X will denote

a non-empty compact convex subset of a locally convex Hausdorff
topological vector space V over the real field, and & will denote a non-
empty family of upper semicontinuous affine maps of X into [—oo, oo).
We associate with & the quasi-ordering > of X defined by writing y & »
(or # < y) whenever ¢(y) = g(x) for all ge &. For each <X we define
RxERx<g)={y5X:y%'w}7 N

and
[#]l =[2]; ={yeX: ¥y & » and & & y}.

An element ¢ of X is called mawimal for the above quasi-ordering
if B, = [#]. The set of all maximal elements of X will be denoted by
Z4(X) or simply by Z. Following Lumer [17] we define the &-boundary
of X to be the set 9,X = X, ~ Z, where, for any convex set K < V, K,
denotes the set of extreme points of K.

THEOREM 1. Hach function in & attains its X-maximum on 0zX.

This is essentially Lumer’s [17] extension of Bauer’s [4] maximum
theorem, and the proof is similar [17, 22]. Since Lumer’s proof was barely
indicated in [17], and ‘since Rogalski [22] treats a special case, it seems
desirable to prove Theorem 1 here.

By an &-stable subset of X we shall mean any subset ¥ such that
R,c Y for all z¢Y. By an &-face we shall mean any non-empty closed
face of X that is &-stable. By Zorn’s lemma every &-face of X covers
an &-face that is minimal for the partial ordering of set inclusion. If 4
is an &-face and ge &, f = max{g(x): wed}, then

B = {zmed: g(z) = f}

%s an &-face of X. Consequently, if 4 is in fact minimal, then B = 4;
it follows from this that, when A is & minimal &-face, A = [«] for all
zeA. Since each closed face K = @ of X meets X, we deduce that the
minimal &-faces are precisely the sets [#] with z<d,X.

}*Tow let f be any element of &, let o = max{f(s): w<X}, and
consider

F = {eX: f(z) = d}.
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This is an &-face, and so it covers some minimal &-face, and there-
fore meets 0zX.

COROLLARY 2. 8,X + @,Z;(X) # 9.

A quite different method for proving Corollary 2, based on a sharp-
ening of the Hahn-Banach theorem, has been discovered recently by
Vingent-Smith [23] and Andenaes [2].

COROLLARY 3. If Y is a non-empty compact convex &-stable subset
of X, then Zg(X)~ X,  @. In particular, Zg(X) ~ (B.), # @ for all
weX.

The first part of Corollary 3 merely says that 9, Y s @, where &,
is the set of restrictions {f]¥: fe &}. The second part, viz. the special
case Y = R, is interesting in that it shows that, among the maximal
elements of X that majorize a given element x, extreme points exist;
we shall return to this fact in § 8. :

One of Bauer’s theorems is a special case of Theorem 1:

COROLLARY 4. Hvery upper semicontinuous affine map f: X —
- [—o0, co0) attains ils X-maximum on X,.

For proof, one takes ¢ in Theorem 1 to be the set of all such upper
semicontinuous affine maps.

3. A class of partial orderings for X. We consider here some circum-
stances in which the guasi-ordering of §2 is a partial ordering. Until
further notice & will be a wedge, that contains the constant functions,
in the space . (X) of all real continuous affine functions on X. We shall
say that & satisfies the filtering condition if for each fe o (X) the family
{ge &: g < f}is upward filtering.

When & satisfies the filtering condition so does #— &. To see this
suppose that u, v, Uy, v1€ &, fe o7 (X) and

(—2) V (uy—w) <f.
Then
(ut01) v (ur+0) < f+o+01,

and so there exists a we & such that

() V {8 +0) < w < fHv+0,,
whence
(u—2) v (uy— ;) < w—(v+2v1) < f.

Since we know [15, 16] that a linear subspace & of # (X) that contains
the eonstant functions is dense in +/(X) if and only if (a) {fe.Z: 1<}
is upward filtering for each fe & (X), and (b) £ separates the points
of X,, we are led to the following result:
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THEOREM 5. If & satisfies the filtering condition, then the following
assertions are equivalent:
(i) & separates the points of X,;
(i) & separates the points of X;
(i) &~ & s dense in s7(X);
(iv) the quasi-ordering on X induced by & is a partial ordering.
The implication (i) = (iii) hag just been discussed. The implications
(ii) = (iv) = (i) are trivial. Finally, (iii) = (ii) requires only the (Hahn-
Banach) fact that <7 (X) separates the points of X.
Until further notice we shall suppose that & satisfies all the conditions
of Theorem 5. We shall study the associated partial order on X, and
various classes of monotone functions on X.

4. Affine decreasing functions. We characterize here, among the
continuous or the semicontinuous affine extended-real-valued functions
on X, those that are decreasing Such characterizations generalize similar
theorems about the %-convex functions (see §1) of ordinary Choquet
theory [5, 7, 9, 13, 19, 22].

For each upper bounded map f: X — [—oo, co) and each xeX we
define .

f (@) =inf{g(@): ge— &, 9> f},

so that § is an upper bounded upper semicontinuous decreasing function,
coneave in general but affine if fe &/(X). If fe— &, then f = f. When
2eX and fe o (X), we shall write & (f) = f (). It is easy o see that &
is a real-valued sublinear functional on =7 (X).

By a positive functional on «#(X) we mean a functional @ such
that €(f) > 0 whenever f> 0. A positive linear functional @ on 7 (X)
such that @(1) =1 is called a state of 7 (X). If x <X, then the functional
&, defined on &7 (X) by e,(f) = f(#) is a state, and the map » — &, 18 well
known to be a bijection of X onto the set of all states of o7 (X). If @, ¥
are two functionals on o/ (X), we shall write & <¥ to mean that @ (f)
< Y(f) for all fe o7 (X). For instance, ¢, < d for all zeX.

PROPOSITION 6. Lot weX and let @ be a linear functional on o (X).
Then ® < & if and only if ® = y for some y in X such that y & .

. §uppose that ¥ & @. Then for all ge— & we have g(z) > g{y). Hence
€x =Y = gy

Conversely, let @ be linear and such that & < . By considering
the action of @ on {he o(X): k< 0} and on the constant functions +1
one sees t]}at @ i a state ¢, of o/ (X). Whenever ge— &, we have g(y)
= &(g) < % (g) = g(=), which shows that Yy & 2.
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COROLLARY 7. If fe & (X), then, for each xeX,
@ F@) =max{f(y): y & a}.
By the Hahn-Banach theorem we can find a 'inear form @ on (X}

such that ® <&, &(f) = #(f). By proposition 6, & = ¢, for some y & &,
so that f(y) = O(f) = &(f) = F(2), and hence ) :

7 (@) <max{f(y): ¥ & o}

Since the converse inequality is obvious, the proof is corflpletle.

We shall denote by #(X) the space of all upper semicontinuous
affine maps of X into [—oo, co). Corollary 7 can be extended to % (X)
as follows:

PROPOSITION 8. If fe#(X), then {ge— &: g>f} is a downward
filtering family, T is affine decreasing and formula (1) remains true for all
reX. )

By a theorem of Mokobodzki [19] the set {hest (X): h>f} I8
downward filtering. Given gy, gse— & With g; A g» > f Wwe can therefore
choose he oZ(X) so that g, A g,>h>f and hence ge— &, 50 that
G AG>g>he ) .

Tt remains only to prove the formula for f (z). For this we use
a variant of the Dini-Cartan theorem. Let £ be a compact Hausdiorﬁ
space and let & be the set of all upper semicontinuous maps of Q into
[~ o0, co). . o

TEMMA 9. Suppose that ues is the infimum of a downward filtering
family # < & and that F is o non-empty closed subset of Q2. Then

infmaxh(w) = maxu(w).
he# . weF el

The proof is an obvious modification of that for Dini’s theorem.

To apply Lemma 9 note first that whenever ge— &, he #(X), and
g > h>f, we have R R

g(@) =§ (@) =h@)=F(@).
This, with Mokobodzki’s theorem, shows that
F (@) = inf{h (z): he #},
where # = {he #(X): h> f}. Taking Q=X,u=fF =R, and F
as just defined we have, by the lemma,
F(@) = int{h(z): he #}
= infmax{h(y): ¥ & x}

het’
=max{f(y): ¥ & «},
as desired.


GUEST


182 D. A. Edwards

PrOPOSITION 10. For each fe#(X) the following assertions are equi-
valent:

G f=71;

(i) f is a decreasing function;

(iii) if zeX, and y & @, then f(y) < f(@).

If, in fact, fe #(X), then these statements are equivalent to

(iv) fe — &.

The implications (i) = (ii) = (iil) are obvious. If f satisfies (iii), then
by proposition 8 we have f (#) = f(@) for all x¢X,. Since fand f are both
in %(X), it now follows from Corollary 4 thas, if he o (X), then h > f
it and only if A > f. By Mokobodzki’s theorem this in turn implies that
f=f, and so f satisties (i).

Condition. (iv) obviously implies (ii). On the other hand, if f in
o (X) satisfies (i), then, by Dinis theorem and the filtering property,
f satisfies (iv).

ProPOSITION 11. If f: X —(—o0, c0] is a lower semicontinuous
decreasing affine function, then the family

(2) {ge—&€: g <f}

is upward filtering, with pointwise limit f.
Suppose that he o7 (X) and b < f, so that h+e < f for some &> 0.
Then for all ¥ & # we have

)+ e<fly) <f(@),

whence, by Corollary 7, ﬁ(m)—lr ¢ < f(w). Since {ge — &: g > 71} is downward
filtering to the limit & < f, we can find ge — & such that h<h < g <f.

Since {he o (X): h<f} is, by Mokobodzki’s theorem, upward
filtering to the limit f, it follows that so is the family (2).

5. The maximal elements of X. Choquet and Meyer’s characterizations
of maximal measures [9] adapt easily to the present situation.:
TEEOREM 12. For each meX the following assertions are equivalent:
(i) zeZ;
(ii) & is @ linear functional on o (X);
(iii) 2 = ¢, on H(X);
(iv) & =&, on 6.

Suppose that (i) is trme. By Proposition 6 and the Hahn-Banach
theorem we deduce (iii) and hence (iv).
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Now suppose that (iv) is true. Then & and e, agree on & U (— &),
Therefore, if u, ve &,
")+ (—v) = u(@)—o(@) = e (1—0)
< & (u—n) < & (w)-+8 (—0),

and hence &(u—v) = u(x)—v(z). It easily follows that z is linear om
£— &. Next, if fe #/(X) and > 0 we can choose he &— & such that
h—e< f< h+e Hence we have

B (f) <@ (h+e) < & (h)+ o2 (1)
= h(z)+ e < flz)+2e.

Therefore on «7(X) we have #< s, < 2. That is, we have shown
that (iv) implies (iii).

Obviously (iii) implies (ii). To see that (ii) jmplies (i) note that (ii)
rivially implies that e, is the unique linear form on &7 (X) that is mat-
jorized by #. By Proposition 6 this means that z<Z. This completes the
proof. ) )

If fe o/(X), then f—f is affine, upper semicontinuous, and non-
negative. It follows thaf

' By ={weX: | (2) = fla)}
is a @, set, and a face of X. By Theorem 12 we now have )

PROPOSITION 13. Z = () {B;: fe (X))} and, consequently, Z 18 a face

of X. If & (X) contains a strictly increasing function h, then Z = B,.

Concerning the last part of Proposition 13 note that if X is met-
rizable, then & contains & countable dense set {g,,} of non-zero elements,

and hence = (X) contains a strictly increasing funetion, e.g. 3 ¢,(2" gD
n=1

We know (see [10], appendix B14, and [14]) that the Choqueb
boundary is a Baire space for the relative topology. It does not seem to
have been observed before that the same thing is true of the set of maximal
elements:

THEOREM 14. For the relative topology from X the set Z of all mawimal
elements is a Baire space.

The proof is a mild complication of the argument of [14]. ' We shall
make use of 2, the space of all functions of the form fi VfaV oo V fuy
where n is an arbitrary natural number and the f, are in «(X). The
space ¥ will denote the set of all functions formed in the same way from
elements f, of — &. For each zeX, P (z) will be the set {fe#": f(z) < 0}.
Finally, for any given f: X — [—o0, co] we write

Uy = {yeX: fly) <0}, Fy={yeX: f(y)<0}.
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TievuA 15. Let @ be an open subset of X, let weG ~ Z, let fe A with
f(@) < 0. Then there is a function geZ(z) such that g > f and F, = G.

Let f=fiVfeV...Vf,, where the f, are in &/ (X). Since z<@,
we can choose p =1 and f, 1, vy forp I &7 (X) 50 that e U, = @, where
U=Fo1 V eoe V forp. Writing v =f v w we have, forr = 1,2, ..., n-tp,

fr(w) = fu(w) <o (z) <0.

For each r we can therefore choose g,<— & so that g, > f, and g, (»)
< 0. Taking g =g, Vg V ... V Gyip, W& have ge ¥, g > v and g(x) < 0.
Evidently, g > f; and also g > u, which implies that ¥, < G.

For the proof of Theorem 13, consider a sequence {V,: n =1} of
relatively open dense subsets of Z. Let V, % @ be open in Z. We shall

show that M V, # @.

n=0, .

By Lemma 15 we can suppose that Vo= F; ~Z for some
foe2 = U {2(2): xeZ}. For each n > 1 there is an open subset G, of X
such that V, =&, ~Z. We shall choose a sequence {f,: n>1} in 2
so that, for n =1,2,...,

fn—l < fn

Suppose that fy, fi, ..., f, have been chosen, where n = 0. Evidently,
U;, ~ Z is non-empty and open in Z. It therefore meets V,.,, in some
point y. Thus f, e P (y) for some y <G, ; ~ Z. By Lemma 15 we can choose
Jur1€2(y) 50 that f, ., > f, and Fy o, S Gppa- A sequence of the required
type therefore exists.

Now let f = ﬁf‘fn- Then f is a lower semicontinuous, decreasing

and x n (= Gn .

(convex) function. It therefore attaing its X-minimum at some point
z of Z. Since the F; have the finite infersection property and are closed,

F,=NF, +0.

n=0

Thus

2y~ 2 = () (), ~ ),
n=0

and. a fortiori (M V,, = @.
=0
6. Uniqueness. By Corollary 3 every element # of X is majorized

by a maximal element, i.e. B, always meets Z. Adapting a theorem of [9],
we arrive at ' '
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THEOREM 16. For each ze<X the following statements are equivalent:
(1) R, meets Z in just one point;

(ii) for each fe &, f is constant on Ry;

(iii) if fe& and & 3 zeZ, then F(z) = f(2);

(iv) & is additive on &. ,

Suppose that (i) is true, that fe &, and that x < z<Z. Then by
Corollary 6 we have f(2) =f(2).. If now » -3 y, then B, < R, and so
R, ~Z = {#}. By the same reasoning 7 () =f(»), and (ii) is clear.

Next if (i) is true and fe &, and if # € z<Z, then, by Theorem 12,
fl2) =Ff (2 = f (), i.e. (iii) follows from (ii).

That (iii) implies (iv) is obvious. To show that (iv) implies (i), assume
(iv) and consider u,ved. Writing ®(u—1v) = @(z)—% () we obfain
a well-defined linear form & on &—¢&. It is obviously positive and
@(1) = 1. By the extension theorem for positive linear forms, @ extends
uniquely to a positive linear form on &/ (X). The extension is a state
s, of &7(X) and we have, whenever ue & and y & Z,

u(z) = B(2) = W(z) > u(y) = w(y),

which shows that z & ¥. Thus = is the final element in R, and so we
have deduced (i) from (iv).

When condition (i) holds for every s <X, we shall call the pair (X, &)
simplicial. By an atonic function on X we shall mean a function fon X
such that f(») = f(y) whenever z,yeX and % 3 . The set of all atonic
functions in &7 (X) will be denoted by.%Z(X). By Proposition 10 we have
B(X) = N ( ——E’). In. addition to the characterizations of simplicial
pairs given by Theorem 16 there is another, which is & weak analogue
of the separation theorem in [12], though the following formulation and
proof is closer to [T7].

PROPOSITION 17. The following statements are equivalent:

(i) (X, &) is a simplicial pair; -

Gi) if f, —ge &, f<g,weX, and £> 0, then there exist u, —ve &
such that f<u<v<g and v(z)—u(r) < &

(i) if f, —ge &, f<g, and e>0, then there ewist u, —ve & such
that f<u<v<g and v—u < ¢; }

(iv) if f, —ge & andf < g, then thereis an he B(X)suchthat f < h << g.

If f, g, & o are as in (i), then we can find ve— & such that f<v < g
and v(x) < J (®)+ e Given that (i) is true, f is atonic, by Theorem 16,
and hence increasing, and f < o. By Proposition 11 we can find wed
sueh that F <u< o Then f<u<v<g and v(z)—u(z) < e Thus (i)
implies (ii).
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To show that (ii) implies (iii), consider the set ¢ of all functions
y—u, where u, —ve & and f<u<v<g. Bvidently ¢ is convex. If ¢
is disjoint from the open convex seb {he &7 (X): kb < ¢}, then by the Hahn-
Banach theorem there is a state ¢, of =/ (X) such that w(x) > ¢ for all
we0d, contradicting (ii). Thus (ii) implies (iii).

Next, if (iif) is true then we can choose two sequences {t,} 5 {—,}
in & such that :

1
— Uy, <

f< un < un+1 < ’Un+1 < vn < g7 'un n

for all m. Then «, and v, tend uniformly to a common limit e Z(X),
and f<h<g, so (iv) is clear.

Finally, to prove that (iv) implies (i) note thatb if fe & and he Z(X)
with % > f, then f (#) < h(#) = h(x). Hence, using (iv), we have, when
Yy ez

F@)=Fy) =int{g@): ge— &,9> 1}
> inf{h(y): he B(X), h> f}
= inf{h(2): he B(X), h>f} =] ().

Thus all terms here are equal and so f is atonic for all fe &, and (i)
now follows by Theorem 16. ‘ ' : ,

PropoSITION 18. The pair (X, &) is simplicial if and only if the
functions of B(X) separate the points of Z.

This was suggested by Corollary 3.5 of [7].

Suppose that (X, &) is simplicial and that @, y<Z with a(2) = h(y)
for all 7e B(X). It fe &, then by part (iv) of Proposition 17 we have

f@) =Fo) = ini’{h(m):»heﬂ(X),h>f}
= int{h(y): he B(X),h>f} = F (1) =f¥)-

Thus f(») = f(y) for all fe &, and by Theorem 4 we have z =y.

If, conversely, #(X) separates the points of Z, then not two elements
of Z can belong to the same set R, for z<X. That is, for each x<X, B,
meets Z in just one point.

It does not seem possible to sharpen Proposition 17 to make it look
like the main theorem of [12] without further hypotheses. A similar
remark applies to Proposition 11.

7. Relationship to standard Choquet boundary theory. We enlarge
here on some of the comments of §1.

Let Q and #(0Q) be as in § 1, and let ¢ be a wedge of continuous real-
valued funetions on 2 that contains the constant functions, separates
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the points of 2 and is such that f v g% whenever f,ge%. If & is the
space of upper semicontinuous maps f: 2 —[—oo, oo), then there is
@ natural order-preserving bijection a: & —» % (X). defined by (of)(s)
= [ fdpu, which maps ¥(2) linearly onto &/ (X). It is easy to show that,
on taking & = a%, X = #(Q), all the conditions of Theorem 5 are met,
so0 that the preceding theory applies. The ordering > defined in X by
writing u S if [ gdu > [ gdv for all ge¥ coincides with the &-ordering
< used above. The Choquet boundary Che® of 2 relative to & is, by
definition,
{wef: u & &, implies that x = &}
Since we know that X, = {¢,: we@}, it follows thab
05X = {g,: weChgO}.
One can easily show moreover that if f is defined for f & by
f(w) = inf{g(w): ge—%,9>f1 (0e@),

then a(f) =/a} for all fes. Similarly, « maps %-convex and %-concave
functions in & onto increasing and decreasing functions, in #(X), re-
spectively. These considerations allow one to regard much of Choquet
boundary theory as formulated in [6, 7, 8,11,13,18,21] as a gpecial
case of the preceding theory. !

We can also, however, relate the work of §§ 4-6 to standard Choqueti
theory in a different way by means of a construction of Alfsen and Skau
[1], based on a special case treated by Vincent-Smith [23]. For this one
+takes # to be the set of all functions on X of the form fy v fo v ... Vv Ty
where > 1 is a natural number and the f, are in &. Taking @ = X and
@ =.4, we find that the basic hypotheses for Choquet boundary theory
as just described are met. The S-ordering > of measures X is known
from that theory to be a partial ordering.

ProposITIoN 19. If pe#(X) and xeX, then u> e, if and only if
¢, & = If pis an S -mapimal measure of #(X), then ¢, eZg(X).

If u > e, then ¢, & o follows immediately from the fact that & < &
(as remarked in [1]). If, conversely, ¢, & @, then when Ffisfay ees Jne €
we have

p(maxf,) > maxu(f,) = maxf,(o,) >maxf,(2),

s0 that u > &,-
If 4 is #-maximal, then, by standard Choquet boundary theory,

u(f) = u(f) for all fe & (X). In other words, 7 (¢,) =f(c,) for all such f,
g0 that, by Theorem 12, ¢, eZg(X). ‘
ProPOSITION 20. (Alfsen and Skau). 0,X = Ch,X.
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This result is based on a special case considered by Vincent-Smith
[23]. In fact, Alfser. and Skau prove this result without the filtering
condition on &. In "phe present context a very simple proof is possible.

Suppose that wef,X and p > ¢,. Then ¢, & zeZ, hencec, = » (X,), .

and hence u = e,. Therefore zeCh, X.

Conversely, if #eCh,X and y & «, then e, > ¢, and hence y = g,
which shows that z¢Z. If ¢, = , then u > ¢, and hence y = g,, which
shows that #eX,. Thus Ch,X = 0,X, and the proof is complete.

COROLLARY 21. 9;X is a Baire space.

This follows from Proposition 20 by the theorem of [14].

It is possible to develop these considerations so as to deduce the
results of §§4-6 from the standard Choquet theory associated with 4.
The proofs given in §§ 4-6 are, however, much more direct.

‘We have seen that the centroid of every . -maximal measure lies in Z.
Proposition 20 allows us, by standard Choquet theory, to state the con-
verse: every point of Z is the centroid of an J-maximal measure. By
Proposition 20 such measures are carried, in the appropriate sense, by
0y X. In fact, we can write, without inconsistency,

(o) = inf{g(@): ge—s, g>f},

whenever fe%(X) and weX. Defining B,, as before, as {z: [ (z) = f(2)},
we have, by Proposition 20 and standard Choquet theory,

0sX = () {By: fe?(X)}.

A measure ueZ(X) is #-maximal if and only if u(B;) =0 for all
fe#(X). We thus have .

PROPOSITION 22. For cach z<Z there ewists a measure u in P(X)
with barycentre =, that is carried by 05X in the sense that u(B;) =0 for
all fe#(X).

In the circumstances of Proposition 22 we shall say that xis a boundary

measure. representing 2.
A We shall say that a semicontinuous function on X is affine on Z
i u(f) = f(w) whenever z¢Z and ue2(X) with ¢, = . By a straight-
forward adaptation of the proof of Theorem 16 we arrive at the following
uniqueness theorem :

ProposITION 23. The following statemenis are equivalent:

(i) for each weZ there is a unigue boundary measure representing m;
(ii) for each fe# the function | is affine on Z H

A(.iii) if ®weZ and p is o boundary measure representing ®, then u(f)
= [ (®) for all fesy

(iv) the map f — f (%) is additive on £ for each x<Z.
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8. Stable subsets. Consider a non-empty compact convex &-stable
subset ¥ of X and let &; denote the set of restrictions {f| ¥: fe &} We
shall show that the pair (¥, &;) meets the conditions of § 3, so that the
preceding theory applies to it. The only non-trivial agendum here is the
proof of the filtering condition. :

PROPOSITION 24. For ecach fe o/ (Y) the family {ge— &1z 9> [}
is downward filtering.

By the Hahn-Banach theorem the set of restrictions {R| ¥: he & X}
is dense in &7 (¥). It will therefore be enough to prove the filtering prop-
erty for f of the form f = h|Y with he o/ (X). Let g1, gse— &, be such
that g, A g, > f. Then for some & > 0 we have g, A gs, > f+ & For each
zeY we can find y &  such that R (z) = h(y), so that, for r = 1,2,

h(@) = hy) < g () —e < gr (@) —e.
This shows that
MY <g1A g

By the filtering condition on. & and a standard compactness argument
we can therefore find ge— & such that g > and g{¥Y < g1 A Ga. This
completes the proof.

The theory for the pair (X, &) can be related %o that for (¥, &y)
in various ways. It is obvious for instance that

Ze(Y) = ¥~ Zg(X);, 06T = T, Zg(X)-

A special case is of interest. If z¢X, we may take Y = R,. In this
way we obtain existence of extreme points of E, ~ Z, the theory of
§§ 4-6 for R,, and the representation (Proposition 22) of each maximal
element of Z that majorizes r as a weighted mean of extreme elements
of R, ~ Z. The last remark generalizes to the present gituation a theorem
of Vincent-Smith [23] (also treated by Alfsen and Skau [1]). In addition
we also now have (Proposition 23) criteria for the uniqueness of such
a decomposition.

The existence of extreme points of B, ~ Z (see Corollary 3) generalizes,
as Vincent:Smith [23] has shown, the theorem of Carathéodory which
states that each point of & compact convex subset K of R™ is representable
ag o convex combination of affinely independent points of K,.

9. Universal caps. Let ¢ be a cone in ¥ that has a compact universal
cap X (see [21]). We can partially order X by writing # < y whenever
@, yeX with y—xeC. We shall now take & to be the class of all functions
in &/ (X) that are increasing for this partial order.

THEOREM 25. When X and & satisfy the above conditions, {ge&: g < f}
is an upward fillering fomily for each fe o (X).
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It follows that all the conditions of § 3 are satisfied, so that the
preceding theory applies. For this special case some parts of that theory
are elementary (e.g. the density of &— & in 7 (X)), or have been treated
by other methods (see e.g. [21]).

Results in somewhat the same spirit as Theorem 25 have been given
by Kung-Fu Ng [20] and Asimow [3]. Writing

y(X) = {fe Z(X): f(0) = 0},

we can state Ng’s result as follows: the set of functions {ge o+, (X): 0 < ¢
<1} is upward filtering. Asimow’s theorem generalizes this, and both
authors state converse theorems.

For the proof of Theorem 25 we can suppose without loss of gen-
erality that ¥V = 0—0 and that the topology of V is the weak topology
oV, ,(X)). This implies that V is the dual of the Banach space .7,(X)
and that X is just the intersection of ¢ with the-unit ball of V, so that,
by the Krein-Smulian theorem, ¢ is a closed set.

Levwa 26. Let L* be the dual of a Banach space L, and let K, F be
compact convex and closed convex subsets, respectively, of L* (for the topology
o(L*, L)). Then E--F is a closed set for o(L*, L).

We can suppose that K, F are non-empty, and write W = K- 7.
We can also suppose that ||lz]] < 1 for all zeK. For each 7> 0 we write

W,=WnZX, F=FnZ,

where X, = {zeL: ]l < 7}. Since K < X we have, for all r3 0,
W, E+F,,,.
Consequently,
" W, = (E+Fppy) ~ 5.
Both terms in this intersection are o(L* L)-compact, and hence:

80 is W,.. Since W is obviously convex, it follows now by the Krein-Smulian.
theorem that W is closed.

Now let gy, g, be non-negative elements of & and consider, in the:
product space V X R, the sets '

K, ={@,1): 2eX,0<t< g,(@)} (r=1,2).

These are compact convex, and so then is K, the convex hull of
K, VEK,. :

Lmvma 27. If @, yeX, 2 2 9, and if (%, t) K, then (y,1) e K.

We can find (1 ) e Ky, (4, 85) e K, and real numbers Ay A= O
such that

tde =1,  Awy+hw, = @y Myt Aty =1,
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Now let 2 =y—x and write

s = max{e: s+oeeX}, s, =max{e: x,+azeX} (r=1,2).

Evidently s>1. We write 242z =w,x,4s5.2 =w, and claim
that A, w;+ A,w, = w. In fact, since X is convex we have

B4 (A181+1285)2 = Ayw, 4+ Ayw,y e X,

which shows that ;8,4 4,8, < 5. On the other hand, since O\ X is convez,
the same reasoning applied to 2,(w,+ e2)-+Ay(w,+e2) shows that
A(81+ &)+ Aa(s2+e) =8 for all ¢> 0. Consequently, A,w,--Aws = .

It follows that the convex hull of the parallel closed linear segments
[y, wi], [£a, ws] contains the segment [x,w], and in consequence the
point y. In fact, since 4,8,+1,8, =s>1 we can choose 7, so that
0<n <8, and A9+ A.me =1. We then have, writing vy, = z+1,2,
MY1+ Ay, =y. Now, since the functions ¢, g, are increasing, we have
(., 1) e K, for » = 1, 2. Consequently,

(¥, ) = A1y 1)+ 42(¥s, 1a)
belongs to K. o -
Now we suppose that fe o (X) with f> g, v ¢,, and we define

F = {(a,f(0): 2eX}, Fy=F—C.

LEMMA 28. The sets K and F, are disjoint.

Suppose, if possible, that (x,t)eF; ~ K. Then for some yeX with
¥ & »we have (¥, t) ¥, that is, ¢ = f(y). By the preceding lemma (y, ?) s‘K,
and so we can find (v,, ) XK, such that (v, 1) is & convex combination
21(¥15 81)+ 2a(¥a, 1) . We now have 1, < g,(y,) <f(y,) for r =1,2, and
hence

b= Ayty+ Aots < 2 f (1) Aaf (92) = F9),

which contradicts ¢ = f(y). The lemma is therefore proved.

We can now prove Theorem 25. By the Hahn-Banach theorem there
is a closed hyperplane H in VxR that separates the closed convex set F,
from the compact convex set K. This hyperplane must be of the-fo.rm
{{z, h(®)): 2V}, where h is a affine functional on V whose restriction
to X is continuous. We clearly have

GV G <hX<f, »

and it remains only to show that % is increasing. If not, then for some
zeX we have h(z) < h(0). Since h—h(0) is a linear functional we have

h(—n) = h(0)+n(h(0)—h(z),

s0 that, foi‘ large positive n, h(—nw) > f(0). But that contradicts the
agsumption that H separates K from F,.
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10. Note on the filtering condition. For some parts of the preceding
theory the conditions of § 3 can be replaced by the following: & is a wedge
in <7(X) that contains the constant functions, separates the points of X,
and is sueh that £— & is dense in 7 (X). In effect, these are the hypoth-
eses used by Alfsen and Skau [1]. The reader will find that the omission
of the filtering condition from the revised hypotheses complicates the
previous theory in two ways: (i) the funetions f, where fe#(X), are now
concave instead of affine, (ii) the sets B; (where fe s/ (X)) and Z are in
consequence not faces, but only unions of faces. The effect is to make
the argument more measure-theoretic and to weaken many of the
conclusions.
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