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-Unconditional and normalised bases
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N. J. KALTON (Cambridge and Lehigh)

1. Introduction. A Schauder basis (z,) of a locally convex space

H is unconditi i 5
ditional if, whenever _); 0;%; converges, the convergence is uncon-

g =
dll’nlonal. ID.. [16], Petezynski and Singer proved that every Banach spac
w;theraIbali;sn Dossesses a conditional (i.e. not unconditional) basis InSIzshi:
ﬁl tll)-odue Sd_ - g[f:zLI;e}I:a,hse this theorem using the concept of normalisation
V{i sequence (&) is regular if there is a neighbourhood V of zero with
%i v for a]l n; a regular bounded sequence is said to be normalised.
IX there exists a scalar sequence (a,) With (a,,) normalised, then (2,)
is said to be normal; otherwise () is a,bnormal.n ’ )
If (wn.) Is a S.chauder basis of B, then (f,) will always denote its dual
sequence in F ;-rﬁ (f,f),'f=1 is equicontinuous, then (z,) is equi-regular, and
hence regular; if E is barrelled, then any regular basis is equi—re,c,",lﬂar.

o

The sequence space of all o such that D a;x; converges will be denoted.

by A;, and u, is the sequence space {{ f(a:n]));;l; feE'}. I E is sequentially
eomp‘le?e, then (@,) is unconditional if and only if 1, is solid (see [4])
1‘3ha,13 ig if ael, and |6,] < 1 for all n, then (6, a,) <i,. If E is also barre]led,
it can be shown that the topology on B may be given by a collection of’
solid semi-norms p such that

-

2(0) = up pﬁ gl,’ 6::(2)@). .

A sequentially (.mmplete barrelled space with a Schaunder basis is
c?mplete (see [10]); in this paper I shall restrict attention almost exclu-
sively to complete barrelled spaces.

2. Reflexivity and unconditional bases. A Schauder basis (z,) is

n
y-complete or boundedly-complete if whenever ( Y ez;n =1, 2...) i8
o ,
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bounded, then 5’ a;; converges; it is ghrinking if (f,) is a basis for B
in its strong topoloay Tt is shown in [20] that ® is semi-reflexive if and
only if (2,) is y-complete and shrinking. The following results generalise
those of [9] and [19]:

TesoREM 2.1. Let B be o complete barrelled space with an unconditional
Schauder basis (2,); if (%) is not y-complete, then H contains complemented

subspace G isomorphic to o
* n
There exists a sequence (a,) such that { Y a@)s is bounded, bub
=1

does not converge; thus there exists an increasing sequence (7) with
n, = 0, and a neighbourhood V of zero such that, if
nj
Y = Ay
N1+

then y;¢V. Let p be a solid semi-norm, then
n

P ( 2 /31'(1/1‘)
=1

n
= gup |B,|. However, (5 430 =1,2,..
n =1

< 1Bllo ( 2 ),

where ||8lle ) is bounded, and

thus
p( Y b < Elfls

Therefore ¢, = A,; but as (y,) is regular 1, < ¢g, S0 that 1, = ¢
Let ¢ be a solid continuous semi-norm on F such that q(y;) =1 for
all j; if E; = lin (2, iy 1l * e . @) then there exists a linear functional
h; on E; such that &, (yf) =1, and |; ()] < q(=) for z<B;. Define g;<E by

g (@) =Ty Z fu@)ay);
R+l
then |g,(oc)] g(z). Then (g;)52, is equicontinuous, and so possesses
a o', B) cluster point g; obviously g(s;) =0 for all j, and so g = 0.
As zero is the sole cluster point of (g;) it follows that llm g; = 0 weakly.
Let

k
Ty =Zgi(m)yi5
=1
then each 7 is continuous and lim Tj# = Two exists for each @. Therefore
k00 !
by the Banach-Steinhaus Theorem for barrelled spaces, I' is a continuous

icm
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“projection of ¥ onto G = lin (¥;). As @ is complemented in E, @ is barrel-

1 d di ( ) S a Sﬂh d b =
a [ 1Y auder basis of
& ’ G with lu Coy it follo ws that

2. Let E’ be o compleie barrelled space with an unconditional

Schauder basis (av )5 of (@) is not shrinking, then B has a complemented

subspace @ = I*

As (#,) is not shrinking, there exists feE', and a bounded block basic

sequence (y;) sueh that f(y;) =1 (see [12], Theorem 5.4). If 2‘7:1?/ con-
7

verges, then 5‘ loy| converges, and as (y;) is boundedﬂ = . LetG' hn(y )
and define the norm p on G by "

ﬁ(gaﬂw) =§Jaz!,

i=1

then.

2( > wy) = Z lasf (y)] < 2 7)ol

=1 i=1

0
where y = ;Z; %Y;. As the topology on B may be given by solid semi-norms if

2 fil@)f ()],

=1

q(@) =

then ¢ is continuous; thus p is continnous, and ¢ ~ I
Tor z<E, let N

kel
2 Biai;

= 31( X seres, i, -

M1+l n_y+1
for
S 3 stora)] < ator
i=1 ng_q+1
Then T is a projection of B onto @, and p(Tx) < q(x) so that T is
continuous.

Ag B is semi-reflexive if and only if (%) is shrinking and y-complete,
the following theorem is immediate: :

TeEOREM 2.3. If E is o complete barrelled space with an unconditional
Schauder basis, then B is reflexive if and only if H possesses no complememed
subspace isomorphic to ¢, or M

3. Symmetric bhases. Two basic sequences (z,) and (y,) are said to
be equivalent if 1, = 4,; it can easily be seen that if (,) is a Schauder
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basis of B, and (y,) is & Schauder basis of F, and both E and F are bar-
relled, then B and F are isomorphic. Suppose (z,) is & Schauder basis
of B, such that for every permutation o of the positive integers Z, (Tomy)
is a Schauder basis of F equivalent to (m,); then (#,) is said to be
symmetric. Symmetrie bases of Banach spaces were introduced and studied
by Singer [17] and [18]; in locally convex spaces they have been studied
by Garling [6] and [7]. The definition here corresponds to condition
SB, of [7] and [18].

A symmetric basis is necessarily unconditional, as for all v<H, and

permutations o, > Jotey (@) 8oy COTLVETGES to x. The following lemma is
=1

essentially established in [3]:

LemMA 3.1, If (z,) 48 a symmeiric Schauder basis of B, then either
(m,) is bounded, or () is o Hamel basis of E.

TemorEM 3.2. If B is a complete barrelled space with a symmetric Schauder
basis (@), then either B == o, or B o ¢ or (x,) is normalised.

(» is the space of all sequences, and ¢ is the dual sequence space
of all sequences eventually equal to zero; o has the topology f(w, ¢)
(= olw, p)) and ¢ has the topology g, ®))- ©

Let ¢ be a permutation of Z, and let 7 = ¢71; suppose Z a;f; con-
verges weakly to f. Let =t

oo

In = 2 at(i)fi;

i=1

then .
n n
(@) = > fa)fi@) =F( D fi@)a);
=1 i=1
28 (%,) is symmetric, lim g, (@) = g(x) exists, and by the Banach-Steinhaus
N->00
Theorem, g is continuous. Obviously g(@;) = ., and so
g = Z ar(v})fi;
i=1

as (f,) is an unconditional basis of (B', o(¥', B)),

g =2°-¢fa(n
iz,

and so (f,) is & symmetric basis of B’ in 'its weak topology.

By Lemma 3.1, either (f,) is a Hamel basis of B’ or is bounded;
in the latter cage (z,) is equi-regular. If B’ has countable dimension,
then B o= @; if 7 has countable dimension ¥ = ¢; otherwise (2,) is regular
and bounded, i.e. normalised.
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Eliminating the cases of o and p, symmetric bases of complete

barrelled spaces may be treated much like symmetric bases of Banach
spaces.

The following theorem follows from the results of Cac [3]:
THEOREM 3.3. If E is a complete barrelled space with a normalised

symmetric Schauder basis (z,), then the topology on B may be given by & col-
lection of symmetric morms p, satisfying

) = [up § .f. .
r() la,i|£1 1:11}) p(; H,f,(x)a:,(‘)),
where m is the group of all permutations of Z.
Cac’s result is essentially that for fixed =z

{ X 0fi@)a; vell, 16,1 <1
=1
is a bounded set. For each sequence (8,) with [6;| <1 and zell, the map

m»Z 6:f: (@) )
i=1

is continuous by an application of the Banach-Steinhaus theorem, and
s0 this collection of maps is equicontinuous (¥ is barrelled). The result
then follows at once.

Tf (@,) is a symmetric Schauder basis of ¥, where ¥ is complete and
barrelled, then a k-block is an element u(K) = Y ;, where K is a subset

K

of Z with % members; two blocks u(K,) and u(K,) are disjoint if
K, K, =@. Then the following theorems generalise regults of Lin-
denstrauss and Zippin [15]:

TemoreM 3.4. If (u(K,)) is a sequence of disjoint ky,-blocks, the avera~

ging projection
1o = ¥ 3 s}
n=1 " 1K,

" is @ well-defined continuous operator on B.

TeEorREM 3.5. If (k,) 8 o sequence with &y, >1 for all n, then B pos-
sesses an unconditional Schauder basis (y,) with a subsequence (Yn) of
disjoint F-blocks.

The proofs of both these theorems are almost identical to the proofs
of the original results for Banach spaces in [15]; all the calculations may
be carried out with individual symmetric norms. . .
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One further property of symmetric norms will be required. Let &
be a 2"-dimensional vector space and let (mi)%il be a basis of F; then
following Pelezytiski and Singer [16], one may define the Haar system
:)isy of () by

on L an
Yy = Zmi, Yolirs = Zﬁ«;(k,ﬂ)%‘a
i=1 =1
where

1 i (25—2)277% 111 i g (2s—1)gm*1,
AN

Bilkys) =11 i (2s—1)2" %111 2g-9m R
0 otherwise.

The Rademacher system (z)i_, is given by
9k—1 .

—
#y = Z yzk"l—l-s'

§=1
The following results are proved in [16]:

PROPOSITION 3.6. (i) (y,)20, is o basis of B, and for any norm p which is
n
symmetric with respect to (x;), and any sequence (a;)i-,

k 7
D (Zai‘%) <p (i%yi) for 2™
q=1 i=1

(i) (2;)7=, is a block Dasic sequemce with respect to ()22, amd for any
symmetric p, and sequence (a;)r_;

P (Eai pf;i)) > —;—(; ]ai[z)llz.

=1

4. The existence of conditional bases. For convenience, I shall define
a J-gpace as a complete barrelled space with a normalised Schauder basis,
and which has the property that any two normalised Schauder bases are
equivalent. I do not know whether any J-space exists, although it has
been shown. in [16] that there is no Banach J-space. The techniques
employed in this section stem largely from those of [16].

ProrostrION 4.1. If B is a J-space, then:

(i) any normalised Schauder basis of B is symmetric,

(i) B is reflemive, , :

(i) B 4s a J-space in its strong topology.

(i) If (»,) is a normalised Schauder bagis of E, and 9, is any sequence
with |6,] =1, then (6,2,) is a normalised .Schauder basis equivalent
to (,); thus ael, if and only if (0, ) €45 80 that A, i§ solid. Thus ()

icm°®
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is unconditional, and for any =, a Permutation of Z, (#,,) is & basis equi-
valent to (a,).

(ii) This follows from Theorem 2.3, as otherwise B = ¢, @F =
Co® @ F =6, @F or E = 1I'® F, so that by combining a eonditional.
normalised basis of ¢, or I* (see [8] and [14]) with a normalised Schauder
basis of H, one obtains a conditional normalised Schauder basis of E,
contradicting (i).

(iii) Let (f,) be a normalised Schauder basis of B, with dual (z,)
in B; then (z,) is also normalised (see {12}, Theorem 3.4). If (g,) is any
other normalised Schauder basis of B’ with dual (y,) then 2, = 4, and
80l =g, =2 =) =y, = Ay a8 B is barrelled.

If a J-space B exists, then certainly B is not isomorphic to #, for
it it were, A, = u, for any normalised basis (z,) of E; thus ly = 25
and 80 A, =0, and F is a separable Hilbert space, and this is not
a J-space [1].

THEOREM 4.2. Let B be a complete barrelled space with a normalised
Schauder basis; then B is a J-space if and only if every normalised Schauder
basis of H is unconditional.

Certainly, by Proposition 4.1, every normalised basis of a J-space
is unconditional. Conversely suppose (x,) is a normalised Schauder:
bagis of B, and let B, =lin (2, )2, and E, = 1lin (@, )pey; a8 (@)
is unconditional, by an application of the Banach-Steinhaus theorem
E =H0E,.

‘Let (y,) be any normalised Schauder basis of By; then if 2,, ; = ¥,
and 2y, = @,,, (4,) is & normalised Schauder basis of E, and is thus uncon-
ditional. Hence (y,) is unconditional.

Let tyy_; = 231, and Uy, = 2y, +2y,_;; then (u,) is a block pertur-
batilon of (z,) (see Lemma 4.4 of [13]), and is also normalised, as (z,) is.
equi-regular and bounded. Similarly, if v, = 2, and vy, = 21+ 2y
then (v,) is a normalised Schauder basis of B.

The maps Q: B~ F and R: E—E given by

. : o =] 00
Q ( 2 aﬂ%) = gazi_luzi_l and R(g; aﬂ’i) = ._%1{ Qai Vo

are continuous (the Banach-Steinhaus theorem),

WQ(Z.O{ aimzi) =—Q (iaﬁu) = Zm:ai(uﬁ_l—uﬂ)
3 =1 =

=1 2

o o
=2aiuzi—1 :Zai%‘"

3=1 =1
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‘while
—R(jaﬂ?h) = R(Zai('uzi"”zi—l)) = Z Uy = Zaiwzm
=1 1=1 =1 . i=1

80 that (m,,) is equivalent to (y,); as H, and E, are barrelled it follows
that B, ~ B,, and also that F, is a J-space. Further, by the Theorem
3.3, it follows that, as (¥,) is symmetrie, (y,,) is equivalent to both (y,,_,)
and (¥,,); for if p is a symmetric norm with respect to (y,)

P(é%%) =P(§;aﬂ/2i)~

Thus B, =~ B, ®F, ~ 7, ®F, ~ F, and so ¥ is a J-space.
TEEOREM 4.3. Let B be o J-space, and let (x,,) be a normalised Schauder
basis of E; then if (y,) is a normalised block basic sequence with respect
to (@), Ay, = Ay and E(yn) is complemented in E and isomorphic to E.
Let

and let u; = y;—a, @, . As B is barrelled, (v,) is a simple (see [11])
Schauder basis, and the set (,) is bounded. Thus one can define the block
perturbation (z,) by z; = @;, 1 # n; and 2z, = x+u; for + =ny;; (2,) is
@ normalised Schauder basis of E. Suppose fel, =4,; then as (z;) is

hd .
equivalent to (z,), > Bi2,, converges and similarly > By, converges;
o0 =1 =1

thus > B,u; converges. As (y;) is bounded, and (f,) is equicontinuous,
=1 e ]
sup a, | < oo, and so 2 o, fyw, converges; therefore 3’ 8.y, converges
Fl i=1 =1
and so A, < 4,.
As (y,) is regular, there is a continuous symmetric norm p such that
P(y;)>1 for all j. Let h; be a linear functional on lin (wmf_l“, oee Bp)

such that hy(y,) =1 and |h;(2)| < p(z); let g;eE’ be defined by

iy
gj(m)zh,( Z fi(w)%)-

nj_1+1

Then |g;(2)| < p(x), and so the set (g;) is equicontinuous, and thus
strongly bounded in E’; as (y;) is bounded (g;) is regular, and hence is
& normalised block basic sequence with respect to (f,). As B’ is a J-space
{(Proposition 4.1), 1, = J; however, 4, < A = A% = i, and hence 4, = 4,.
Therefore A, = A} = 42% > 1, and so 4, = 4,.
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IfwfsE', f =i_21' f(x)f; in B, and as 2, = %9y 3 f(@)g; converges. For
~ 1
msE,i _21' f(@:)9:(%) converges; as B is reflexive,  is wealkly sequentially

complete and so i§ g9;()w; converges. As i, = 2,,,.2 g:(x)y; converges.
= =1

Let T'(x) =§ ¢:(®)y;; then by the Banach-Steinhaus theorem, T
is a continuous g;ojection of F onto ]i_n(yn).

Levua 4.4. Let B be a J-space, and (z,) be a normalised Schauder
basis of B; then any sequence (v,) of 2™-blocks is abnormal.

Suppose (v,) is a normal sequence of 2™blocks, and suppose (a;)

is a sequence such that }'|e|* = co. Then there is a sequence #; with
7o = 0 such that

'ni .
D la*>1  for all j;

n,-_1+1
i
let my =0 and m; = gz’%‘*"z‘—l. Let By =1lin(@,, 41y -2y %m,), and

leb  (y)mP_ 41 and (#%)nt_ 41 be  the Haar and Rademacher systems
of B,.

If zeH,
m m%
D L@a= D gl
my_y+1 Mg+l

with each g; continnous on B. If my_,+1 < s < my, then for any symmetric
norm p, by Proposition 3.6,

8

2( Y s@y)<n| ff fil@)a).

mp_1+1 mp 141

It follows that (y,) is a Schauder basis of E.

For each symmetric norm p, and each j,p(y;) =p(q;,,i) for some
4; for fk(yj)),‘;‘;l takes only the values -1 and zero, and is mnon-zero
on 2% values of k. As (v;) is normal, (y;) is normal; similarly, (2;) is normal.
Let p be a symmetric norm such that w; = #;/p(;) is normalised; then
(w;) is a normalised block basic sequence with respect to (y;), and so
hy = 2y = 2,. As p is symmetric,

ng
1
;) =>—  (Pr ition 3.6).
p( 2 o_awl) 3 (Propositi )
g1+l
Therefore, a¢l, and 1, < 1%
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Now let g; = (Y fi; i<K)) be a sequence of disjoint 2/-blocks with
Tespect o' (f,), and let w; = (3] #;; ieX;). Then (u;) is normal as for any
symmetrie p, p(u;) = p(v;). By Theorem 3.4, for any z<F,

> 1
2/ ool
=1
converges; suppose (f;4;) is normalised, then it follows that

1
lim —— g, () =
g Y (@) =0
so that ((1/27f;)g;) is bounded in B’ (weakly and strongly).
As

1
?@%(ﬂj“ﬁ =1,
it follows that ((1/278;)g;) is regular, and so (g;) is normal.

By the first part applied to B', 4, < I* so that * = 4, < B, i.e. 4, = B
However I* is not a J-space, as already observed. This is the required
contradiction.

THEOREM 4.5. A complete barrelled space with @ Schauder basis has
either an abnormal Schauder basis or a conditional Schauder basis.

If not B is a J-space (Theorem 4.2); however, by Lemma 4.4 and
Theorem 3.4, B has an abnormal Schauder basis.

With a Fréchet space, one can go slightly further, using results estab-
lished in [2] and [12].

LEMMA 4.6, Let B be a Fréchet J-space; and let & be o closed non-Montel
subspace of E; then G =~ G @E.

There exists in & a closed bounded set .4 which is not compact, and
so using Theorem 10 of [5], 4 is not sequentially compact; however, 4
is weakly sequentially compact, since % is reflexive. Thus there exists
in G a sequence ¥, tending to zero weakly but not strongly. By Theorem
4.3 of [12], there is a subsequence (2, of (y/,,) which. is a normalised Schauder
basic sequence equivalent to a block basic sequence (u,) of (m,), where
(#,) is any normalised basis of . Furthermore, lin (u,) is complemented
(Theorem 4.3), and, as remarked in [12], D = lin (#,) 18 complemented,
and as 4, = 4,, D ~ B.

Therefore

6 -DOH~FOH ~FOEDH ~ FDG.
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TEROREM 4.7. Let B be an F-space with a mormalised basis 5 of E has
an infinite-dimensional normed subspace & (i.e. @ has & norm topology),
then E has a conditional normalised basis.

. Otherwise ¥ is a J-space, and using Lemma, 4.6, G g E ®&, so that
E is a Banach space. However, this is impossible, by the results of [16].
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