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Collogquinm on
Nuclear Spaces and Xdeals in Operator Algebras

Fréchet spaces with a unique unconditional basis
by
B. MITJAGIN (Moscow, USSR)

The main purpose of my lecture is to discuss the various forms of
the theorem on equivalence of unconditional bases in (linear) Fréchet
spaces and related topics of the theory of linear operators, in particular,
of the theory of Boolean algebras.

We recall that a system (e,,n = 0,1,...) in a Fréchet space B is
called. a basis if every vector feE can be represented in a unique way
in the form

(1) f = anem

and the basis (¢) is called unconditional (w.b.) if for every feF its expansion
(1) converges unconditionally, i.e. the series 2'g,fn6, converges for any
choice of ¢, = +1,n =0,1,..

Two bases (¢) and (z) are called equivalent if for some automorphism
T:E— R

Te, = ®,, n=0,1,

We say that a Banach space B has a unique w.b. if any two normalised
unconditional bases in E are equivalent.

The firgt theorem on equivalence of bases in infinite-dimensional
space has been established(!) by E. Lorch in 1939. He proved [30] that

(1) After my leeture prof. W. Ruckle kindly paid my attention to the Kothe-
Toceplitz’s paper, 1934, where the following theorem has been proved:

Let 8 be a melric normal sequence space (i.e. S = (v == (mn)n o) and xeS = go
= (g wn)n=osS Jor any gn» |gnl < 1) and let 8 be linearly Tomeomorplic to 12. Then there

ewists such a sequence d = (d,)‘i that
S '—-:(tjdi : () Elz).
Lorch’s theorem is clearly eguivalent to this statement.

Some facts on normal sequence spaces are given in the report of Ruckle [43] in
the present Conference.
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in a Hilbert space H every wv.b. (z,, ue M), llz,l =1, is equivalent to
an orthonormal basis in H.

The proof is based on a general idea of avareging. More precisely,
the wb. (., ue M) induces the Boolean algebra of projections (P, me M),
or the represantation of the compact group Z¥ = (g: g(p) = +1) in B,
namely for f = }'f,@,

el

(2) Pof = Dfuw, and  T(o)f = 3 g(wf,a,,

pent pel
where Z' denotes the Cartesian product of many copies of the dyadic
group Z,. The unconditional convergence of series (1) and the principle
of uniform boundedness for F-gpaces imply the uniform boundedness
of operators P,, and T(g), i.e. for some constant ¢ the inequalities

(3) 1Pull, IO <O, ¥m < M,Vgezl,
hold. :
Then the new inner-product
(4) (2,91 = [ n(T(9)w, T(g)y)dg
zM

generates an equivalent norm in H, the system () is orthogonal with
respect to the new inner-product and the new norms of (z,) are uniformly
bounded from above and from below, i.e.

(5) 0<1/0<lz,) < C < oo,
8o the expansions (1) and Pythagoras-Bessel theorem give the equivalence
of the basis (x) to the canonieal basiz in the I*(M). Hence,

Buvery Hilbert space has a unigue uw.b. .

This statement has been reproved by Gelfand [17] in 1951 and after
1951 many authors call it Bary-Gelfand [2] or Gelfand theorem.

It should be noticed that in every Hilbert space there exists a (non-un) .

conditional basis (Babenko [1], 1948; McCarthy and Schwartz [31], 1965;
see also [16] and [36]). This means that there is a normalised basis ()

such that for some % in H itg expansion kb = 3'Iy®, is convergent but not
k=1

unconditionally convergent. Such a basis has been constructed by Babenko -

in 1948; namely, the system.

(1) =t*sinkt  in L2(0, m)
With |a| < 1/2 provides the desired example. Various examples of this

type of hases have been given by C. McCarthy and J. Schwartz and by
other authors. Therefore,
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There ewist two bases — fhe orthogonal basis and Babenko’s basis —
which are not equivalent.

Further results are due to Dragilev [8], [9] who discovered in 1958 - 60
new phenomena in the basis. theory. Now,"disregardjng the chronology,
I will discuss the case of Banach spaces and I shall conclude with the
recent results of J. Lindenstrauss, A. Pelezyriski and M. Zippin.

The analogue of Lorch theorem is false in the space I for p #1,2, co.
Indeed, Pelezyinski [417 showed in 1960 that for any increasing sequence
of infegers w;, there is an isomorphism 1 5 () Where dim 2 = n.
For an arbitrary countable family of Banach spaces H, the symbol (By)
denotes the Banach space of all sequences z — (), e By, such that
the series Z‘Hm,,,H%,ﬂ converges and its sum. defines the norm of z. Then
for any tuple of complete orthonormal systems 9,8 =Ny +1,..., Ny,
N, = 21 7\7”/,, in lf,,k, the system f; = 8™ gk, N, _, < i< Ny, is an unconditional
basis /E/", 7 which is mot equivalent to the canongeal basis.

An analogue of Babenko’s basis has heen shown by Pelezynski and
Singer [42] in 1964 to exist in every infinite-dimensional Banach space
with & basis. Their proof is not constructive but gives even a continuum
of mutually non-equivalent normalised conditional bases. It is based on
o carefull analysis of abstract Haar and Rademacher systems, Khintchin’s
ipequality and block-systems of bases, The block-system basis (2;) has
by the definition the following form:

k1

i
Ry == 2, @y, gl =1,  my— oo,

(R PR
Boluenblust [6] has given in 1940 an axiomatic characterisation of
¢y and ¥ as spaces X with such a wn.b. (#) that for any block-basis (2)
the operator

N n
Tz: Zch:mht g chczlr
Jimal k=1

is an. fsonietry. (Lt should be mentioned that A. Kolmogoroff and M. Nagumo
bave proved in 1930 essentially the same result; their papers [21] and [37]
are hardly known now.) Zippin [50], 1066 improved this result replacing
the isometry hypothesis by an isomorphism, i.e. assuming that for every
block-busis the following inequalities should hold:

(8) C,(2) “ i’ﬁ%zk“ < ” ‘iLI “10%” < 0;(2) H Zn A2y, ||7
T 1 1

Le. the subspace Z spanned by (2,) is isomorphic to X and T: @, -» 2
iy an isomorphism,
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As a corollary we infer that if in o Banach space X all unconditional
basis sequences are equivalent, then X is isomorphic to 1% This result is due
to Peltezynski and Singer [42].

Furthermore, a very surprising fact has been discovered by Linden-
stranss and Pelezyriski [27]; namely, they proved that

In It and ¢ all un.b. are equivalent.

This result is based on the Grothendieck theorem: every bounded
operator from 1+ to a Hilbert space is absolutely-summing (for details seo
Kwapieni [26]). It should be noticed that the following fact has been also
proved. in [27]:

For every bounded Boolean algebra # of projections in L' (or L™)

for some constants €, and 0, depending only on & the following inequal-
ities hold:

(9) 0, Y Pyol < I ijka <0, I,

VoeL' and (P,) is a disjoint system, or
n
C,max ||Pr2| < “Zl’kw H < Cymax ||P2l, VaeL™
<k<n 1 I<k<sn

This series of papers has been completed by Lindenstrauss '.M:d
Zippin [28], [29] who proved the following results:

If a Banach spoce X has a w.n.b. (@) and every w.n.b. (y;,) is eguivalent
to (x), that is the operator

(10) T: o — vy,

s an automorphism, then () has the property (8).

So by Bohnenblust-Zippin theorem X must be igsomorphic to 17,
1<p< ©0; 0T 6o and, by the example of Pelezytiski, p is necessarily
1 or 2. Finally, by Lorch theorem, p may be equal to 2 and, by Linden-

strauss-Pelezyniski theorem, X may be isomorphic to I* or [T
Hence,

Only three Bamach spaces (12, I* and ¢o) have a unique w.n.b.

This is a very nice result and at first it seems to be the full solution
of the problem of equivalence of u.n.b.’s in Banach spaces. But a simple
example shows that the hotion of equivalence is not natural for uncondi-
tional bases. If ¢} (¢2) is the canonical basis in I* (), then for any monotone
integer sequences 4, my, the system
(11) 01,6;,---;6;17351

2 1 1
“eir Omgy Brggay eey Engy ees
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is a wn.b. in the direct product X = *x 12 and varying n; and m; we
may construct a continuum of non-equivalent u.n.b.’s in X though all
of them are permutations of the same basis.

Now, we call two w.b.’s (@) and (y,) quasi-equivalent (or quasisimilar)
if there exist such a permutation s of integers, a sequence of positive
numbers (r,) and an automorphism T: B — B that Tay, = rYsu, & = 0,1,...

All bases (11) in I* X I* are evidently quasi-equivalent.

ProsreM 1. Describe Banach spaces X with the following properties:

1. X has a ub. (6);

2. every w.b. in X is quasisimilar to (e);

3. X is not isomorphic to 12, 1* or c,.

The spaces ¢,X 1* and I* X 1? have these properties as Edelstein [15]
has recently proved.

It was M. Dragilev who suggested in 1958 the notion of quasi-equi-
valence and gave a non-trivial example of an F-gpace with a unique up
to quasi-equivalence w.b. He investigated the space H(D) of all holo-
morphic functions in the open unit disk D = (2<C': [¢{ < 1) with the
topology of uniform convergence on compacts in D or, equivalently, with
the countable system of norms

bid

(12) e = (5= [ aeras] ",
0

7‘C

and the canonical power basis (¢f, k¥ =0,1,...) in H(D).

It was discovered [8], [9] that

(a) any basis in H (D) is an unconditional (and even absoluie) one, and

(b) quasi-equivalent to the power basis.

At the same time, after the appearance of papers by Schwartz [44.],
Gelfand and Kostyuchenko [18] and essentially Grothendieck’s memoir
[19], the notion of nudlear space came to an analysis as well as the notion
of appromimative dimensions introduced by Kolmogoroff [22] and Pel-
czynsgki [407. Then in 1960 Dynin and me [13] showed that

Any basis in a nuclear F-space is unconditional (and absolute).

The puclearity of F-space is essential in this statement since, as has
been recently proved by Wojtyniski [46] and [47],

In any non-nuclear countably Hilbert space with o basis @ non-uncon-
ditional basis may be constructed and in any non-nuclear F-space with
a basis a non-absolute basis cam be constructed. .

Tollowing these remarks I shall discuss the quasi-equivalence of
unconditional bases only.
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" The space H (D) is an example of a Hilbert scale. More precisely, let
H be a Hilbert space and A be a positive operator, 4 > 1, and for ¢ >0
let H, denote the Hilbert space

{meH: weDyo ie. [ 2d(Bfw,a) < oo}
with the inner-product

(@, 0), = (42, 4°0) = [ P"4(B's, »),
0

and let, for a negative a, H, denote the completion of H with respect

to the norm (», z)jii on H. The family H,, — co < a < oo, is a Hilbert

scale, and we call the F-space B = () H, (for some a, < oo) with the

a<ag
topology of convergence in each H,, a < a,, a center of the Hilbert scale,
finite or infinite as is a,.
It H =1 and A is the operator-multiplicator with the multiplies

(an)y i.e. Ae, = a,6,,n =0,1,..., and if ¢, = 2" then
H(D if a4y <
B=(H, -~ (D) Gy < 00,
a<og H(Ol) if Gy == 00.

This is a simple consequence of the Cauchy-Hadamard formula
for the radius of convergence of power series and Taylor expansions of
holomorphic functions,

In the general case the operator A®: H, = H, , is an isomorphism,
and so all finite centers for the operator 4 are isomorphic.

By analysing Dragilev’s proof [8], [9] of quasisimilarity of bases
in H(D) I showed [32], [33], §6, in 1961 that this theorem is true for every
nuclear center, finite or infinite, of a Hilbert scale. The nuclearity of B
means that the inverse of 4, 4, = 4™, is a compact operator and the
series 3'22(4,) converges for any positive 6 in the case of finite center,
and for some positive 6 in the case of infinite center. Here 1,(A,) are
the eigenvalues of the operator 4,.

It is evident that in this case the space F is isomorphic to the Kitho
space of sequences with the Kothe matrix M, = (a,)". All conecrete
spaces of holomorphic and infinitely differentiable functions are wswally
nuclear centers of Hilbert scales.

In 1965 Dragilev [10] found a wide class of nuclear spaces with an
unconditional basis unique up to quasi-equivalence. In some sense this
class is a generalization of centers of Hilbert scales. Employing some
of my results [33], §5, on Hilbert scales, Zaharyuta [48] proved the
uniqueness theorem for u. bases in centers of Hilbert scales in the cage

* ©
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where the operator 4, is compact. Just before this Conference Dragilev
and Zaharyuta [12] proved that

Any direct product of finite and infinite (nuclear centers) of Hilbert
scales has a wnique .b.

In particular, it is true for the space H(D™)x H(C").

Recently I proved the analognous uniqueness theorem for every
center of Hilbert scale without any assumption on the operator A but strict-
positivity. )

The second part of my lecture is a sketch of the proof of this theorem
(see also [34] and [35]). .

At first it should be noted that without loss of generality I can
agsume the operator A4 to have a complete orthonormal system of eigen-
vectors in H, i.e. Ae, = ¢,, where v« N and N is a countable set. Indeed,
otherwise I may consider the Hilbert scale generated by the operator

A =T4] = fm [A]dE4.
0

Then (1/2).4 < 4’ < A, and the operator A’ generates the same
seale. The system (¢,,»<N) is a wb. in the center B = () H,; so0 in the

‘. q<a0 .
sequel T shall compare an arbitrary wb. (z,, pe M) with the basis (e).
The first step of the proof is to construct, for a given w.b. (z), a new
scale-representation of the F-space B, B = () G, with the generating
b

<a

operator B =1 in @ such that ! ‘

(3) the system () is & complete orthogonal one in every space @, of the
new scale, i.e. [, @] = 0, u # 4';

(b) the wvectors (x,) are eigenvectors of the operator B, i.6. Bz, = X%,
we M.

Tor this purpose we first average, following E. Lorch [45], all
inner products («,y), and get an equivalent system of inner products,

(o, 9% = [ (T(9)m; T(9)9)dg,

M

and the corresponding scale of Hilbert spaces which may be no?; a Hilbert
scale. Then, in the case of a finite center, the unit ball of, H,is boun@ed
in B and there exist constants D, such that DgS(G) = S(H,), i.e.
Di(z, @), = (@, 0], for every wek,. TFor the new inner product

[w, ]y = e =

holds and @, is contained in G, H, for b, a <0.
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Choosing a sufficiently small b, < 0 (cf. [33], §5) and taking the
Hilbert scale for the spaces G,')D and G,, we get the desired operator B
and the new scale-representation of £. In the proof of the equivalence
of the two systems of norms we essentially make uge of the interpolation
theorem for Hilbert scales.

In the case of an infinite center analogous interpolation arguments
give the desired reconstruction of a new scale. In order to make the dif-
ference between these cases clear, now I give one statement and a ques-
tion.

The complemented subspace X of a finile center of a Hilbert scale is

asomorphic to a finite center of o Hilbert scale.

(Some closed results has been given by Bessaga [4] and [5].)

The proof of this statement is also based on an averaging with respect
to the group Z; = (j:Pi(l——P)), where P is the projection onto X in T
I cannot prove this statement for infinite centers by means of the same
method because the operators B,, defined by

[my ?/](lx = [Baa"a Bay]n’

may be not commuting. When we consider a u.b. (%) and the corresponding
representation 7'(g) of the group Z, the operators B, are commuting
because they have a mutual complete system of eigenvectors (%) and

we may not only inferpolate bubt also extrapolate some inequalities
concerning operator powers.

ProBLEM 2. Is the complemented subspace of an infinite center of
a Hilbert scale also an infinite center of a Hilbert scale?

The second step is the comparison of spectral properties of operators
4 and B generating two scale representations of the space E. One can

show that there exists a constant B such that for every interval [u, »),
0<u<v< oo, the equalities

Am B, -1 < dim B, < dim By

hold, where (#) = Ru®, #1 is the inverse function and B is the spectral
resolution of the indentity for A.

The main point is here a Paley-Wiener type statement; namely,
if weF and B, » = , i.e. the element & belongs to the interval [w, ) in
the A-representation, and BP0 =0, t = r~(u), r(v) = w, i.e. in the

B-representation the element # belongs to the complement of the interval

[t,w), then z = 0.
In connection with thig step I want to ask some questions on spectral

resolutions of the identity for an operator with a cyclic vector or, more
generally, on maximal Boolean algebras of projections.

@
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ProBrEM 3. Let & and 2 be maximal Boolean algebras of operators
in an infinite-dimensional Bamach space X. Give some o?dditit?nql hypo-
thesis (%) on # and 2 wnder which the following condition is satisfied:

() for any positive ¢ there exist infinite-dimensional operators Pe P
and Qe2 such that |PQ| < e.

A positive answer to this question would help in the problem of con-
tractibility of the linear group of concrete Banach spaces. Indeed,

The Kuiper and Neubauer arguments [25], [38] may be formulated

as @ general scheme for a proof of comtractibility of GL(IT?),
where essential analytic problems are connected with t].ae existence of
“goodl” families of projections. In this way I Edelsteu,l, E. Semenov
and me have recently proved the contmotibility]of the 'lmear groups4 of
o, 1], L*[0, 11, €0, 1] and other spaces of L - an_d C-type (see [1 ])ci

The third step of the proof is purely combinatorial. Put y, =1 an
Vi1 = 7{yx), and putb

Ny ={weN:y <A < Viiids
My, = {pe M: p, < 2 < ypya)-

Then the J'nequalﬁies between the dimensions (')f. the invariant sub:
spaces Hil,H and B, give the following inequalities for the powers
of sets N, and M, and their unions:

n-1 » 3 n+1 )
l U ZW“,,H-i < 1 U Neri! S i ‘Ljo J'Im+1" for any m and P
[25% ] =1 d=
\d
There exists a 1-1 correspondence s: ¥ ™ M such that, for every &,
$(N,) & My, W My, U My, ‘ _
: l‘)Then 1]:11@ oper;tar T: e, — oy is an automorphism of F, and thus
the uniqueness theorem is proved. ) ‘
In %he proof of the existence of the desired 1-1 cor%espofnddi%lefae Ifé
T exsentially use Hall-Konig theorem ([20], Ch. ?D)ht')n& choice ics) usedelalso
fives the system of finite sets. is theorem sed
represontatives from. the sys ' om I8 used e
in ics-mathemati dels, for instance, in the op
in some economics-mathematical models, : e
i i : I have to note that it was my
assignment problem. [39], and : _ e
Wiﬂi these topics, which led me to the idea of a construction of a suitab!
rimutation. s. ‘
P I‘E“The operator Ay = A~ is compact, then the function i (1%)
. . | - . 1
= dim B¢, has only finite values, dim E;‘fu = d(v) d.(u), »and 1cﬂs
suffiuien‘u(wgg”consider only d(w). Then the inverse function is exactly
R J /hich have not prop-
2) It ] tod that there are examples of 2 a.nfl 2w
erty é—g)ltfsi;glisgelz(?tifre, prof. C. A. McCarthy kindly informed me about such
an example in the Hilbert space I2(0,1).
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J(4,) and instead of the inequalities for dimensions of B4 and B” we
have to prove the inequalities between s-numbers; and this is a simple
geometrical fact. The problem of permutation s in the compact ecase is
degenerate also because a suitable correspondence is yielded by the fact
that the sequences A,(4,) and A,(B,), B, = B, are decreasing.

As a corollary to the uniqueness theorem for w.b.’s in arbitrary
Hilbert scales, I give an example of four non-isomorphic non-Banach
and non-Schwartz F-spaces.

Let a, = 22", b, = 2™ H — (H,)a, where H,, ave infinite-dimen-
sional Hilbert spaces, and A: H — H, (Ah), = a,h,, B: H—H, (Bh),
= b,h,. Then the four spaces, namely, the finite and infinite centers
of the Hilbert scales, generated by the operators 4 and B, are not iso-
morphie. '

I am indebted to C. Bessaga, Z. Ciesielski, I. Edelstein, K. Geba,
G. Henkin, G. Neubauer, A. Pelezyniski, W. Wojtynski and V. Zaharyuta
for valuable discussions during the preparation of the present lecture.
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Nuclear Spaces and Xdeals in Operator Algebras

Small operators between Banach and Hilbert spaces
by
R. M, DUDLEY (Cambridge, Mass.)

1. Let B be a Banach space and let H be a Hilbert space with inner
product (-, ). We shall study operators from B into H which are suffi-
ciently “small” to decompose continuous linear random processes on. H.

Here are some definitions. Let P be a probability measure on & space £.
Let L°(Q, P) be the space of all real P-measurable functions on £ modulo
functions vanishing P-almost everywhere. I (2, P) has its usual topology
of convergence in measure. Given a real topological linear space S,
a continuous linear process on § is a continuous linear map L from 8. into
some L'(£2,P). 8 denotes the (dual) space of continuous linear real-
valued forms on S. I is called decomposable iff (i.e. if and only if) there
ig & mapping w — L, from Q into §' such that for every z in 8, L,(®)
= L(#)(w) for almost all w. A continuous linear map C from another
topological vector space X into-S will be called L’-decomposing itf LoC
is decomposable on X for every continuous linear process L on 8.

The following result has been stated by S. Kwapiei:

THEOREM 1. An operator A from B imto H is L°-decomposing iff
A = JoO for some Hilberi-Schmidt operator J from H into atself and
bounded operator C from B into H.

The proof to be given here uses the following probabilistic result
which may be of independent interest. (I do not know what would be
the largest possible function of o in place of a%/+.) )

Limvyva 1. Let Ay, ] = 1,2, ..., be independent events, and a>0.
Let By Ay for all § and P(B)) = aP(4;). Then

P(J B> a*P() 4)/4.

Proof. It P (._;1j) =0 for all j, there is nothing to-prove. Otherwise
we have a< 1. If, for some j, P(4;) > a/2, then

P(By) > a*/2 > a?P( 4))/4.
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