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Colloquium on
Nuclear Spaces and Xdeals in Operator Algebras

Duality of linear spaces of functions
and nuclearity of solution spaces*

by
YUKIO KOMURA (Tokyo)

In the previous paper [4] the author gave a duality theory of linear
spaces of (generalized) functions on R", similar to the theory of Kothe
spaces. But this duality theory were restrictive in two senses. First, we
treated only such spaces whose elements have compact supports or
duals of such. spaces. Second, we imposed some artificial conditions
(o-invariance). So it iy a problem to take these restrictions away.

In § 1 we explain, briefly the theory of Kéthe spaces. In § 2 we consider
-the duality theory without the condition of o-invariance which are
imposed. in [4]. In § 3 we study linear spaces of functions without con-
ditions on, supports.

We should remark that in this paper the convolution f#g means
fnf(m—y)g(y)dy ag usual, notRif(w+y)g(y)dy ag in [4]. But this does
R

not give any essential change.

1. Kthe spaces. We shall sketch the duality theory of Kéthe sequence
spaces. Denote by o the set of all sequences (z,) and by ¢ the set of such.
sequences (#,) that , = 0 for all but finite #'s. The a-dual A* of a subspace
Ac w iy defined by

B = {(m) €0 Z|2,Yn] < 00,V (Yn) €2}

Such a gpace A that 1 = A** ig called a Kithe space or a perfect space.
The space w is the largest perfect space. We define the reqular subspace
A of a perfect space A by .

J, = the B(4, 4*)-closure of ¢,

* Tn the conference the author gave a talk on duality of linear spaces of fl.lnctions
and on nueclearity of solution spaces of linear partial differential operators with con-
gtant coefficients. The content of the latter subject is found in [5] and [6], hence
only the former is discussed here.
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where f(4, ") means the strong topology of A with respect to . We
denote by A’ the topological dual of A with respect to §(4, A%). Many
interesting properties of perfect spaces are known (see for example Kothe
[2], Komura [3] and Pietsch [7]), but we cite only a part of them:

1° A perfect space A is complete with respect to the strong topology B(A, X).

2° I* =1, for any perfect space 1.

3° A perfect space 1 is separable with respect to §(4, MY if and only
if A=14. _

The theory of perfect sequence spaces was extended to the case of
perfect function spaces by Dieudonné [1]. In this ease the notion of
regular subspace is not defined. In the following we shall sketch the
theory of perfect spaces of functions on R™.

£ denotes the space of all locally integrable functions on R*, and

& the space of all essentially bounded measurable functions with compact
supports on R™ For a subspace 4 < Q ‘

e z{fteR!; f9law < oo, vged)

is called the a-dual of A. A is called a Kithe space or a perfect space if it
is equal to the bidual A™. We consider usually the strong topology
B(A, 4. It should be noticed that this is even true for non-perfect spaces.
Hence we call (A4, 4*) the natural topology of A, and denote by A’ the
dual of A with respect to the natural topology £(4, 4™). Evidently, we
have A* < A'.

Regular subspace is not defined. For ingtance, the largest perfect
space Q is not the topological dual of any subspace of & with respect
to the natural topology. Thus main properties of perfeet function spaces
are a little different from properties of perfect sequence spaces:

1. A perfect space A is complete with respect to the natural topology
B4, A7)

2'. A perfect space A is separable with respect to the natural topology
B(4, 4%) if and only if A’ = A%,

2. f-perfect spaces. We shall make use of two notations as in [4],
7- and o-operations: :

@) = f+a), (o)) =f(%)=f(gi —'“’—)

The convolution f*g(x) of two funections f5 92 iz defined by

frg@) = [flo—y)g)dy = (v, o_10.

R
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The convolution operator défined by f: g— f+g is identified with the
function f itself. In [4] we defined a generalization of convolution operators
and. identified these operators with generalized functions. We studied
only c-invariant spaces F (i.e. B = o, B for a s 0). This is mainly for
the fact that our spaces confain sequences approximating the Dirae’s
measure J. This fact is very useful to discuss the duality of linear
spaces of functions. But the property of o-invariance seems to
be artificial, s0 we try to remove that in this chapter. We shall give often
only outline of proofs, since there are little essential difference from [4].

For a linear operator T: @ - Q, the transposed operator 7' is defined
always as an operator: @ — Q.

Definition 1. A linear operator T:®— Q is called an operator
of function type if it satisfies

1) 7 (If) = T(z,f) for any feD(T),
(2) : T =0T,

where o_, T is defined by (¢_,T)f = o_,(To_,f).

The set of all operators of function type is denoted by F.

PRrOPOSITION 1. An operator TeF is closed and densely defined with
respect 1o the weak topologies o(P, ) and o(2, D).

Proof. It is clear that the operator o_,T = ‘T is closed with respect
to the weak topologies. The closedness of T implies that the adjoint ir
is densely defined with respect to the weak topology. Hence T = o_;0_,T
=Y is closed and densely defined.

PROPOSITION 2. If a linear operator T: @ — Q satisfies condition (1)
and condition

@Y o, T<'T (T is single-valued and so D(T) is o(P, 2)-dense),

there ewists a unique extension T of T which is in F.

Proof. It sutfices to show I =*(o_,T). Since D(T) is dense with
respect to the weak topology o(®, 2), there exists a net {f;} = D(T)
which converges to the Dirac’s measure 6 with respect Fo the weak tc_)pology
o((M),, (0)), where (C) means the space of all continuons functions on
R* and (M), the space of all measures with compact supports. Then
for feD(*T) we have for any he®

UTf)ko_yfy by = (Tfa, by = fay "T(F*R)>
- ((TF)*R)(0) = <hy o1 (TN
Thus we may say that (If;)*c_, approximates o_/T with respect

i i imates & linear
to o(Q, @). In general, if a net of fu.t}ctmns {g,} approxi
0peratc;r L from & to 2, ie. o(2, @)-hingl*f = If for feD(L), then we
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have Ly = ¢(Q, @)-lilma_lgl*g. Hence D(‘L) > o_, D(L). In our cage it

holds that D(*T) = o_, D(*T), or “(¢_,T) > 'T'> ¢_, T. Since o _,T) is
a minimal closed extension of o_,T, we have *(c_,T) =T, q.e.d.
If an operator 7' of function type satisfies

T-D(T) = 2, (={fef|f has a compact support}),

then we say that T has a compact support.

Definition 2. Let § be an operator of function type and T an
operator of function type with compact support. The operator U of
function type which is the unique extension of the operator

fxg—(If)*(8g)  for feD(T), geD(8),

is called the convolution of T' and 8, and denoted by T*S. The existence
- of such an operator U follows from Proposition 2.

For the convolution the associative and commutative law holds good.
Note that Tf = T'sf for feD(T).

Definition 3. For a subspace B = F, the f-dual is defined by
(3) B = {TeP|(o_,T)*8 <L, for any SeH},

where Lj;, means the space of all measurable locally essentially bounded
functions. .

Remark. If F contains an operator with non-compact support,
all elements in B have compact support, since our convolution T8
is defined only in case one of the pair 7, § has a compact support.

We shall introduce & scalar produet for a dual pair & and EF. Let
d¢(Lis)’ be an extension of the Dirac’s measure 5. We define a scalar
product

T, 8>3 =<(T*0_,8, g}

Definition 4. A subspace B = F which is equal to B ig said +o
be -perfect. For a f-perfect space B the 8 (¥, B)-closure of B+ & is called
the regular subspace of B, and denoted by H,.

; Though our scalar product depend on the choice of the duality measure
8, almost all topological properties of A-perfect spaces or of regular
subspaces are independent of it ‘

We do not know whether every B-perfect space F is total on B by
the scalar product ¢ ,>3. It is our conjecture that §¥ — {0}. On the
other hand, the §-dual ¥ of the space §, = {TeF|T has a compact
support} contains all entire funetions of exponential type (see [4])

Main properties of f-perfect spaces are as follows:

o © .
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THEOREM. 1° A B-perfect space E is complete with respect to the strong
topology f(B, BP), if the B-dual FP contains o total subspace whose elements
have compact supports.

2° If a B-perfect space B is total on FP, then B® = H,.

3° If a p-perfect space E is separable with respect to the strong topology

B (B, BP), then E is equal to the regular subspace E,.

Proof. 1° An operator o_, T'in o_, (B?) is considered as a linear operator
from B to L$,: 8 — (o_, T)* 8 for Se<E. Hence if the space Ly, is endowed
with the topology of uniform convergence on every compact set in R",
the space o_, (B¥) determines the limit projective topology = on the space E.
Let 8, be an element of the 7-completion of E. We can define the con-
volution of 8, with any element o_, T in o_, (&) by

Sexo_ T =lim8*o_,T in Ly,

where {S,} is a net in ¥ satisfying §, = -lim#§,. BEvidently, this con-

volution is well defined. Since by assumption the dual FF contains a total
subspace H whose all elements have compact supports and since for any
TeH and @eD(T) we have

T(pxg) = (Teykpe®, B ro T(p+g) = (8o _T)xo_gxo_rpeli,

the set {fe® N Ef|Syxo_,feLis} is total on B. Thus Sy is densely defined
as an operator from & to Q. Since Sy* sadiisfies the conditions of Pro-
position 2, 8, is identified to an element S, of §: Sero_,T = Sero_,T

“for any TeEP. This implies SyeE.

Since this topology v is weaker than the strong topology A(E, EF)
and stonger than the weak topology o(Z, EP), the 7-completeness of E
implies the (B, Bf)-completeness of H. :

9° Here E, means the topological dual of the regular subspace E,
with respect to the topology induced by A(F, E¥). Since ¥ is total on
F* by assumption, B+ ® is also total on B’. Hence E, > B’. Let us verify
the converse inclusion relation. )

Tirst we shall. show that B,xo_, B < (C). Note that (Ex®)*o_, B
— (Bxo_,EP)%® < (C), and that the set {7,T|w<K} for an element TR
and for a compact set K <= R™ is bounded in EP. It a net {8} =« Ex®
converges to §e<B, with respect to f(E, EP), then (S,xo_,T)(x) converges
to (S*o_,T)(z) uniformly. in z<K. Since K is an arbifrary compact seb
in R" we have Sxo_,Te(C) for SeB,, T<F. More precisely, 7,8 is
uniformly = (¥, B’)-continuous in weK, hence the set {z.8|weK} i
7(B, Bf)-compact, where v(#, B) means the Mackey topology of B with
respect to FP. From this it follows that (T, 8>e(C) it a bounded net
{T,} = B converges to T with respect to the weak topology o(E;, B,),

Studia Mathematica XXXVIII 25


GUEST


386 Y. Komura

since a weakly convergent bounded net converges uniformly on a compact
set. By Proposition 2, we easily see, that 7' is identified to an element
Tin %, and that TR, Since any element 7' in F, is a weak limit of a boun-
ded net {T,}, the proof is completed.

3° Let B be separable with respect to (B, Bf). For any T <E' there
exists a sequence {T} = B¥ which converges weakly to 7. That is, for
any SeF and x<E", the sequence (7,8, T};> converges to <z,S, T>. Hence
(z,8, T) is measurable in #. Local boundedness of <z,8, T> is clear. By
Prolgosition 2 theire exists an element TeB’ which is identified with
T:Txo_ 8 = (z,T, 8)s = {7, T, 8) for a.e. weR". But the separability
of ¥ implies that the both ternis <f,j, 8> and {7, T, 8§ are continuous
in & (see [4]), and so we have (7, T, 8> = (z,T, §). This means E*/B+ = F'.
Since B' = B} and since K, = F’(E}, we have B’ — H,. The regular
subspace E, is by definition cloged in ¥, hence B = H,.

Remark. If a p-perfect space B contains a sequence which appro-
~ ximates the Dirac’s measure 4, then the regular subspace B, is necessarily

separable (see [4] or the proof of 3° of the theorem in § 3), but we do not
know if a regular subspace is separable in general case.

Example 1. The space Lf,, for 1 < p < oo is the set of all locally
p-power integrable functions on R" This space is f-perfect and eqiial
to the regular subspace. The dual (L) is the space L = the set of
all ¢-power integrable functions with compact supports for 1/p+1/g = 1.
On the other hand, the space Ly, is f-perfect and its regular subspace is (C).
The dual (Lfy,)? is the space (M), = the set of all measures with compact
supports. The regular subspace of (M), is equal to Q,(= L}).

Example 2. Let B be the set of all linear partial differential operators
P (D) with constant coefficients. F is a subset of §. We have

B = (), = (&), B =@, —(&),

where (&) means the space of all infinitely differentiable functions and

(&”) the space of distributions with eompact supports.

3. g-perfect spaces. In this chapter we shall give a trial to remove
the restriction on supports of functions. For this purpose we must define
general convolutions of two operators of function type whose supports
are not compact. We consider a condition on an operator of function

type T:
(4)  There ewists a function ¢ in D(T) such that oyppeD(T) for bk =1,2, ...
and {p,1> = [pdw # 0. .

T.he set of all elements of & satisfying (4) is denoted by F,. In the
following we treat only subspaces of F,. )
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Definition 5. If for a pair T, S, there exists a function pe®
such that [pds 0 and

]T(Ullk‘P)]*IS(O'l/k‘P)IEQ) oyrpeD(T) N D(8) for k=1,2,...,

we say that the pair T, 8 is p-convolutive. The convolution T* 8§ of a ¢-con-
volutive pair- T, 8 is the extension Ue, of the operator

Ok P * Oy P > (Tovpe) * (Soypp) for ¥ =1,2,...

Making use of Proposition 2, we see without difficulty

PROPOSITION 3. For a g-convolutive pair T, Se,, the convolution
T+8 s uniquely determined (independently of the choice of ).

We consider the following condition on a subset H < &,:

(4") There exists afunctioﬁ @ eD such that cl,kqaelg D(T) fork=1,2,...

and [pds # 0.

Definition 6. For a subset B c &, sabisfying condition (4") the
p-dual of E is defined by o

B°® = {T<g,|for any SeB the pair §, o_,T is ¢-convolutive, and
Sxo_yTeLj}.
Such a space B that B = F* is said to be @-perfect.

We fix an ultra-filter & in the set of all natural numbers %5 such
that lim% = co. The duality measure is defined by
x

"

. )
(8) 8 = 1131[11——~—<¢ 2 Oy P* Ok Py
: 1yt

and the scalar product of T'eF and S<E” by (T, 87 = T*0_,8,8).
" PROPOSITION 4. A ‘p-perfect space B is total on the ¢-dual EF.
Proof. This follows immediately from relation (5) and the following
TEnvMA. A g-perfect space B contains o_y (o1 * Ouk P) fork =1,2,...
Proof. The fact oypeD(8) for Se¢B® implies S*oyppe hence
S 0y @k oy g0 € Qx 0P e L. . Hence o_; (o190 * o) € B = B.
' More precisely, we can prove without difficulty
PROPOSITION 5. For any element T in & @-perfect space B and for
any bounded set B in D, the st N (Toyrp)* oyt B 18 bounded with respect
to (B, B®), where N(Toyp) is the normal hull of Toype: {feQ1lf]
< \Toyppl}
Definition 7. For a g-perfect space H, the _subspace FE, = the
B(E, E%-closure of Eyx® is called the regular subspace of H, where E,
= {Te<B|T has a compach support}. }
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Our main results ave:

THROREM. 1° A g-perfect space B is complete with respect to the strong
topology (&, E®). :

2° B = B, for a g-perfect space X.

3° A g-perfect space F is separable with respect to the strong topology
B(E, E®) if and only if B = B,. '

Proof. 1° Let T, be an element of the f(H, E¥)-completion of B,

that is, T, = (&, E*)-lim T, for some net {T,} = F. In the same way .,

as in the proof 1° of the theorem in § 2, the element T, is identified to
an operator in §,. We have only to show that 7, is convolutive with
any element S in E°. Since N (8*o0,;p)*0y,p*B is bounded in H? by
Proposition 5, we obtain

AT o19)% ]y 9 = <TLooup*fy ¢ uniformly in feN (8*oyp), geB.

Hence the met of functions |T,o,;@|*|S*oy,e] is eonvergent in Q
with respect to f(Q, ©) and we have |Tyoy;@[*|S* 0,0 < Q.

2° Here F, means the topological dual of the regular subspace E,
with respect to the topology induced by 8(Z, E*), and, the proof is similar
to the proof of the theorem in §2.

3° We ghall prove only the separability of B,. Let O(K) = {fe(O)|
Ff(z) = 0 for |z| > K}. C(K) is a Banach space with respect to the topology
induced by (C), and the induetive limit space (C;) of ¢(K), K =1, 2, ...,
is an (LF)-space. Note that HyxP*ay,e < (C,) and that (Co)*y ¢*oype
< By« ®. Since the seb

LI_CJEn* D% 0y % Oy 1P

is dense in E,*® with respect to p (&, E®), the §(ZE, E°)-closure of the
set Lk)(Gn)*ol,kqa*crukq; is equal to the B(H, E?)-closure of Hy*®. But

since the space (C,) is separable and since the convolution operator
O *: [ oyppxf is continuous from (0y) to E with respect to §(F, E?),
the set (Cy)*.0,,9* 0y is separable with respect to the topology induced
by p(B,E*’). Hence the B(H, E")-closure of (J(0)* Oy P* Oy = the
B(E, B®)-closure of H® is separable. k /
Example 1. Let ¢ be an arbitrary function in @ such that Jodz 0.
Then the space L” for 1 < p < oo is p-perfect and the ¢-dual is the space
L7 for 1/p+1/q = 1. The regular subspace LZ is equal to I? itself. The
space L™ is g-perfect also, and the regular subspace L is the space
{fe(0) Eig;f(x) = 0}. The dual (L*)? is the space M* of all bounded

‘measures. The regular subspace of M' is the space L'
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Bxample 2. Let ¢ be an arbitrary function in the space (2) of
Schwartz such that [gde 5 0. Then spaces (&), (2) and () of Schwartz
are all p-perfect, and their g-duals are respectively (&), (2') and (&
These six spaces are all separable, hence they are equal to their regular
subspaces.

Tn these cases p-duals do not depend on the choice of ¢. It is interesting
to introduce a notion of dual independent of g. We may say that a pair
of function type operators is convolutive if for some ¢ it is g-convolutive.

- Let us define the §-dual of a space B < &, by

B = {T<%,|for any SeH, the pair T,¢_,8 is convolutive and
Txo_Selip}-

Bach g-perfect space E in the above examples satisfy that B = E*.
A space B may Dbe said to be S-perfect if B = B, Tt seems more natural
to consider S-duals and S-perfect spaces. But this leads us to complicated
problems. We do not know for instance whether an S-perfect space F is
complete with respect to the strong topology B(E, E°).
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