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ON THE SELECTION OF PAIRS

1. The problem, considered in this paper may be presented in the
following way.

There are given a set S, = {a;, as, ..., a,} of n objects and a func-
tion z defined on the cartesian product 8, xS, and valued in the set
{0, 1} such that z(a;, a;) = 2(a;, a;) for i < j < n.

We want to split the set S, or its subset into disjoint sets B,, B,, ...
satisfying the following conditions:

1° each of these sets consists of two elements exactly;

2° for each set B, = {a;, a;} we have 2(a;, a;,) = 1;

3° the number of sets B;, B,,... is as great as possible.

Suppose that we assemble the copies of a technical system from
ready-made elements. In each produced copy of the system we must
lodge two elements of the series S, of n elements of the same kind, but
of different quality. Suppose that the quality of the elements a,, a; of §,,,
lodged in the produced copy, decides upon the quality of the produced
copy in the same way for each copy and that the quality of the copy
with lodged elements a;, a; does not change, when we put in this copy a;
on the place of a; and a; on the place of a;. Then we can interpret function
z as a criterion of capability of the pair {a;, a;} to be lodged in certain
produced copy (z(a;, a;) =1 in the case of capability).

If we shall lodge in the -th produced copy the elements of a set B;,
then we shall provide a greatest possible number of produced copies.
The capability of the pairs {a;, a;} may be represented by function 2
in many practical technological cases, e.g. in the batch production of
some instruments for comparative measurements. If we have no techno-
logical way to make the dispersion in the quality of elements a, suffi-
ciently small, then the solution of our problem may be useful for econo-
mizing the batch production.

2. Remark, first of all, that we can suppose without loss of generality
that 8, is the set {1,2,...,n} of » smallest positive integers; it is clear
that §, = §, whenever p < ¢q. We call §, the series of length n. We shall



452 J. Blahut

also denote for functions f, g, ... their domains by 4(f), 4(g), ... respec-
tively. The function f may be identified with the set of ordered pairs,
which explains the notation fu g, where f, g are functions.

Definition 1. We say that f is a selection function in S, or that f
is a selection from S, if A(f) = §, and the condition

A {(F@) e ANNEY) A (F6) =)}

ted(f)

holds.
The selection functions have the following obvious properties.

PrOPERTY 1. If f is a selection from 8,, then f is a selection from
Sgy 4= p.

PrOPERYY 2. If f is a selection from S, then f is a selection from S,,
r = max A (f).

ProPERTY 3. If f, g are selections from S,, S, respectively and A (f) N
N A(g) =9, then f U g is a selection from S,,r = max{p, q}, and A(fu
L g) = A(f)u A(g).

ProPERTY 4. If f is a selection from S,, A = A(f),f(4) = A, then
fl 4 is a selection from 8,,r = max A.

PRrROPERTY 5. If f,g are selections from 8,, A(f)nA(g) =9, 4
< A(f)u A(g), A 0 A(f)) = A 0 A(f), g(4 N A(g) = A N A(g), then
(fug 4= (f| (A nAf)) v (g | (4 n A(g))) is a selection from 8,,r
= max 4.

We denote here an empty set by @ and by f| A a function g such
that A(9) = A < A(f) and f(4) = g(7) for ie A(g). Denote for set A by 4]
number of its elements. By P(f) we denote a number p such that 2p

= [4(f)l.

Definition 2. We say that the function z is a capability function
on §, if z: §, %8, - {0, 1} and the condition 2(z, j) = z(j, ¢) is fulfilled
for each ¢,j from §,.

Definition 3. We say that the selection f from 8§, is z-permissible
if 2(i, f(4)) =1 for each ie¢A(f). Denote by B,(z) the class of all z-per-
missible selections from §,, and max{P(f): feB,(2)} by P,(2). We say
that the selection f from S, is z-maximal on 8, if fe B, (2) and P (f) = P,(=).

PROPERTY 6. For p < m the inequalities P,(z) < P, ,(2) <14P,(?)
hold.

Proof. P,(2) < P,,,(2) follows from B,(2) = B,,,(2). Suppose that
feB,,1(2)\B,(2) and P(f) > 1+P,(z) and let A =ANN{p+1,flp+1)},
then f| AeB,(2) and P(f|A)> P,(2). Thus P,,,(2) <1+4P,(2) holds.

PROPERTY 7. Let f be a z-maximal selection on S, and let i, j S, \A(f).
Then z(t,j) = 0.
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Proof. Supposing that z(¢,j) =1 and putting g(:) = j, g(j) =
we get fu geB,(2) and P(fu g) > P,(2), which is impossible.

3. The purpose of this paper is to find the algorithm for construction
of the z-maximal selection from §, for each z and n. We shall show that
we can make it recurrently, constructing for given z-maximal selection f,
on §, a z-maximal selection from §,,, and making it step-by-step until
P2+1 = n.

To begin with, we prove in this section one fundamental theorem.

Definition 4. Let f be a z-permissible selection from S,. Then

we say that the sequence (i1, f(41)>, iz, f(22)), ..., (i, f(3,)> of ordered
pairs is an (f, 2)-path from ¢ to j if the following conditions are satisfied:

(1) 1:1 = ’&, f(’bs = j,

(2) A A\ {i # 9 # f(4)},
ke{1,2,..., s} le{1,2,..., sP\{k}

(3) /\ {z(f(’l’k)7 ik+1) = 1} .

ke{1,2,...,8—1}

We write ¢ 25 j iff there exists an ( fs#2)-path from i to j.

PrOPERTY 8. If 4 L j, then j L

Proof. Let (i1, f(i1)>, ..., 45, f(i5)> be an (f,2)-path from i to j.
Pllt jk =f(ig_k+1)' Then <]17f(.7 >’ M <.731f Js > IS an (f? pa‘th fI'OHl ]
to .

THEOREM 1. Let p<m and let f be a z-maximal selection on S,.
Then:

(1) <f there exists a qeS), \A(f such that 2(q, p+1) = 1, then h =fuy,
where A(g) = {q,p+1}, 9(q) =p+1, g(p+1) =gq, is the z-maximal
selection on S,,,;

(ii) of there exist 1eA(f), jeA(f), qeS,NA(f) and an (f, 2)-path
iy f(81))y v vy (Bg,y f35)> from 4 to j such that z(i, p-+1) =2(j,q) =1,
then for A = {iy,ig,..., 0 U {f(t1), ..., (%)} and ¢ defined by the for-
mulae

A(g) =4 v {g,p+1}, glp+1) =1, g@) =p+1, g(q =],
9(0) =4,  9f (%) =ty 90ke) =F(0), ke{l,2,...,s—1}

h = ( f1{4( \A)) U g is the z-maximal selection on S, ;
(iii) <f both the presupposition of (i) and of (ii) are not fulfilled, then f
s a z-maximal selection on S, .

Proof. In both cases (i) and (ii) we have P(h) = 1+P(f) = 1+P,(2),
thus the thesis follows from property 6.

In case (iii) the inequality P(f) > P(g) is obvious for each geB,(z).
Let geB,.,(2)\B,(2). We shall show that P(f) > P(g), defining the
one-to-one function from A (g) into A(f).
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We have
A(f) = (A(g) 0 A(f)) v (A(/)NA(9),
A(g) = (A(g) n A(NH) v (A@)NA(S)).

Now, let i¢A(g)\A(f).

If ¢ =p+1, then j = g(#)eA(f) and ¢g(¢)eA(g) N A(f) because for
g(t) e A(g)\A(f) from z-permissibility of g follows that there exists jeS,\
\A (f) such that 2(j, p+1) =1, which contradicts the presuppositions.
If ¢ %= p+1 +# g(¢), then g(i)eA(f) N A(g) follows from the fact that f is
z-maximal on 8,. Thus g(¢)eA(g) N A(f) for each teA(g)\A(f).

Define the sequence ¢, q,, ... by the formulae

(4)

9 = g\),
f(q1),

q:

I

Qori1 = 9(Qs),

Qs = f(Qors1) -
Thus, if for certain I, ¢; is defined for ke{1, 2, ..., 1} and if ¢, A(g) N

N A(f), then ¢,,, may be defined. We shall prove, at first, that there
must exist k& such that ¢,¢A(g) N A(f) and q,eA(g) N A(f) for r< k.
We shall show namely that if {q,, ¢z, ..., ¢} = A(9) N A(f), then
qr 7 q;, whenever k<l <s.
It is true for s = 2. Suppose that it is true for certain s—1 > 2 and
let {qy,..., ¢} = A(g) N A(f). We have to prove that ¢, +# ¢, for k <s.
Remark that q,,¢q,,... are of the form

9, f(q), (9N (@), f(gh (@), ---, (g (@), f(gf) (q),--.

where ¢ = ¢, .

Let ¢, = (¢f)"(q) and (gf)"(q) = (9f)(¢) for 1< r. Then, for 1> 0,
we have g(gf)"(q) = f(af)" (@) = f(gH*" (@) = g(gf)(q), which is impos-
sible by virtue of the inductive hypothesis; for I = 0 we have g¢(gf)"(q)
=flgf) "' (@) ed(9) N A(f) and g(gf)(q) =ieA(9)N\A(f), thus (gf)"(g)
= (gf)*(¢) is impossible also in this case.

Let ¢, = (9f)"(¢) and (gf)"(¢) = f(gf)'(q) for certain I < r. Then we
have ¢(gf)"(q) = f(gf)" " (@) = (gH"™ (@) = g(f(gf)')(9). It is impossible
for I < r—1 by the inductive hypothesis and for I = r—1 by the fact
that ¢(j) #j for each j.

Now, let g, = f(gf)"(q) and f(gf)"(q) = f(gf)'(q), Where 1< r; then

f(fah) (@) = (@) (@) = (9N)(9) = f(f(gf)(g), which is impossible by
the inductive hypothesis.
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Suppose, at the end, that ¢, = f(gf)"(¢9) = (9f)'(q), 1< r. For | —r
it is impossible, because f(j) # j for each j; for I < r we have f(faf))(q)
= (af)"(9) = f(af(@) = F(gf) (), Which is impossible both for I — r—1
because g(j) # j for each j as for I < »—1 by the inductive hypothesis.

Since A(g) N A(f) is a finite set, there must exist an s such that
0% ¢ A(g) N A(f), qeeA(g) N A(f) for ke{1,2,...,5—1}. We shall show
that there must be ¢,eA(f)\NA(g9). Suppose that 4 A(g)NA(f). Then
¢; = (9f)"(¢) for an r; we have proved before that f(gf)"~'(q) =gq,_,,
hence g(q) = i, g(f(9f)""")(9) = ¢s- The sequence

gy F(@)>y -y K@), Flaf) Y g)>

is an (f,2)-path from ¢ to ¢,_,. If i p+13£¢, then, putting 4= A (f)\
N{¢1) 92y -5 ¢} and B = {3, ¢y, ..., g5}, We obtain (f| 4) u (g | B)eB,(2)
and P((f|A4) n(g|B)) =1+P(f), which is impossible, because f is
z-maximal on §,. If ¢ = p+1, then

G F(@Dy -y LN D), Flgh) 2 g)D

is the (f,2)-path and =z(p+1,4q) ==2(f(gf)"""(q), (¢f)"(¢)) =1, which
contradicts the presupposition of part (iii) of the theorem.

Put, for each i¢A(9)\NA(f), ¢.(?) = g(%), Qoriq1(2) = g((lzr(‘i))y Qary2(2)
= f(¢2r41(¢)); we can define all g, (i) for k < (i), where

s(3) = max{k: (1< k) = q,(¢)eA(9) N A(f)};

we have proved that ¢ (i)eA(f)\A(g). Thus the function h,(q)
= gy;)(?) is defined on whole set 4 (9)\A (f) and transforms it into A ( AN
\A(g). We shall show that k, is one-to-one.

Let teA(g)NA(f) jed(@NA(f), ¢ #j. If s(i) = s(j), then there
exists an r such that g (%) =f(9f)r(41(i))’ 95y (J) =f(9f)’(ql(j)) and,
since ¢,(¢) # q.(j), k(%) # h,(j); it results from the fact that fy g are
one-to-one. If s(¢) < s(j), then h,(7) =f(gf)r(i)(q1(i)), hi(j) =f(gf)"(j)(ql(j)),

\_s=1_ sG)—-1

") = = 5— =)

and
(fg) O+ (h,(3)) = i A(9)NA(),
(fg) O+ (hy () = (F(gN OO (q.(j)) e A(g) N A(F)

and, since f, g are one-to-one, we have h,(¢) 3 hy(j). Thus h, is one-to-
-one. Put h,(i) =4 for each i¢A(g9) N A(f). Then h = h, U h, is one-

Zastosowania Matematyki XI, 4. 6
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-to-one and transforms A(g) into A(f). Hence P(f) > P(g), which com-
pletes the proof.

4. Let for a given z-maximal selection f on §,, p < n,

= {q: (qu(,f)) A (z(q’p+1) = 1)}’

={red(f): V (2(r,1) =1)}.
1S\ A()

The two theorems of this section shall enable us to construct the
(f, 2)-path from certain ge@) to certain reR if such (f,z)-path exists.
The algorithm of this construction is, of course, an essential part of the
algorithm of construction of the z-maximal selection on §,.

We shall denote by nr(i, f(i)) a function, defined on the set of all
ordered pairs <7, f(¢)>, where teA(f), such that

wrif - 1{1,2,...,2P(f)}

and nr(i, f(i)) < P(f) for ¢ < f(s) and wr(i, f(i)) = P(f)+nr(f(3), i) for
f(i) < i. For nr (i, f(i)) = k we denote nr(f(3), ¢) by k'.Put uy = (1— d;) X
X(1—0;), where ¢, 1is the Kronecker delta symbol, put also z;
= uy.2(f(j), 1), where nr(j, f(§)) = ¢, nr(l, f(1)) = k. Denote at the end by
¢ the function, defined on {1,2,...,2P(f)}x{1,2,...,s}, valued in
{0,1} and such that ¢ =1 iff there exists an (f,z)-path

Q15 F(q1)> 5 Q25 f(q2)D 5 vy {45y F(qs)D

with ¢,¢Q and wr(g,, f(¢,)) = . There obviously holds
PROPERTY 9. The sequence

Chyy fF(k1)D s <koy f(K ooy Kkgy f(Kg)D kieQ,
of ordered pairs from f is the ( f, z)-path iff
s—1
(”0(8) )(l<g/e qr) (zg ziﬂipﬂ) =1

where i, = nr(k,, f(k,))-
For real numbers a, b we shall denote max{a, b} by a-+'b and for
the set {a,, a,, ..., a,} of real numbers we shall denote

n

max {a,, @y, ..., a,} by Z

Let A(¢, %, ...,14,,.,;) be a real function defined
on the set {1,2,...,2P(f)}*"'. Then we denote the maximal value of A
on the set

(1,2,..., 2PN 'x {i}x{1,2, ..., 2P(f))* !
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by
D) Al iy, ey dgyy).
iy=1
PrROPERTY 10. We have
0?1) = Z 0y
F=nr(g, /@)
qeQ
and
S
(s+1) _ '( - ) 5.
(1) Cy 2 ( ” “zqz,.)( 17 0§ppz@plp +1))'
y=t 1<g<r<s+1 p=1

It easily follows from property 9. The intermediate application of
property 10 is not possible in interesting practical cases; for s41 = 50,
2P(f) = 100 the expression for ¢{i™" in property 10 is the maximum of
10" products of the form, like that in (1). However, we can essentially
simplify the procedure described in property 10, in the way, which we
shall now describe.

Let C®) = |||, Z = llewll, U = llugll, Vv = lvikll, where vy, = 1—u,,
t,ke{l,2,...,2P(f)}, te{l, 2, ..., s}. For (m xn)-matrix 4 = lla,]| write

| Pt i| %0
Ay = |, A=
H amt ” a’tn
and
|
e
A, =1 :1, whereA, is (mx1)-matrix.
' Ay

If A = |la,ll and B = ||b;|| are (m Xn)-matrices, then we define the
(m xn)-matrices A A B and A+’ B by the formulae

A AB = @y bull, A+'B 75 1@+ byl

For the matrices denoted by capitals, we shall denote their elements
by corresponding lower case letters, e.g. a;, is an element of the matrix 4.
The elements of a sequence of matrices will be denoted by capitals with
upper indices in parenthesis, e.g. C¥; the elements of such matrices will
be denoted by corresponding lower case letters with upper indices in
parenthesis, e.g. ¢ is an element of the matrix ¢©,

We can, under these conventions, formulate theorem 2 in the follow-
ing way:
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THEOREM 2. Let for given C© be
2P(f)

BO, = ) (C¥ A 7Y,
=1

2P(f)
BY, = M (B aZ) for 1<q<s+1,

=1
Ego) = B(lo)y

2P(f)
EQ, = Y (BY A Z) for 1<q<s,
=1

A©@ — BO A E©;
now, let

W = {w < P(f): [{t: aQ+" af), = 1}| > 1}
and, for non-empty W = {w,, wy, ..., wy} let

T; = {t: afl‘}]’,t—l—' agzt =1} = {ty, tay --os b}, where je{1,2, ..., M};
7

let T4y 79y ...y T, Where K =r, 71, ... 75, be all the sequences of the form

Ty = <t1k17 t2k27 ceey thM>-
Finally, let for 7; = {y, 82, ..., t5) be

M
Ug) — (le A Uw2 A oo A U‘“’M)+Z (Aqtl A le),
=1

B = AP A U9 for 1< g<s+1,
-D.(';?:{)-l = Bg?l’
2P(f)

DY | = 2' (DD AZY  for 1< g<s+1
=1
E{j) — D{?’)
. 2P(f)
B, =) (B) A Z) for1<q<s
=1

and
AD = g A DO,

K
Then CC*Y = 3'AD for W # @ and CC*V = A® for W = 0.
j=1

Proof. It is easy to see that
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a® e (s) ) T T
. . . 7 == j
Pk 2 ( czzﬂ’z@p’pﬂ) and  aj 2 ( ‘3531'% +1) (” “%)v) )
14=Zk p=1 1:=‘tk p=1 p=1

Suppose that W is non-empty. We shall show that

K
v = JI wy

1<g<r<s+1
for given sequence iy, @y ...y Tgqy)-
The equality u; i = =0, q< r, holds iff {i , ¢,} = {w,,, w, ) for certain m.
If 7; = (8,1, .. tM>, then from ¢ = ¢, it follows that r #t, and

s+1

+

II:

841
uful) =0 = nuf”p,

obviously,
s+1

) =0 = [t

also in case where q # 1, # 7.
From the equality

1<g<r<s+l

on the other hand, it follows that if ¢,e{w,,, w,}, then i ¢ {w,,, w,} for
q #+ r; hence, for each m, {w,,, w,} N {@1, Ggy ++ey bgq1} = {4, } for certain
pmeTm and, putting 7; = {P1, P2 ---y P>, We have

s+1

"
[ =1
p=1

Thus we have

s+1

_ Zv ”u(’) and  ¢itD =2 all),
j=1

which completes the proof.
The (f, z)-path {iy, f(é)), ) <"’s+17f(7’s+1 > Wwith 1,¢Q and given

f(isy,) eR we can construct according to the following

THEOREM 3. Let, for given OC*D, it .\ =1, where k,,, — = nr(ig, ,,

f(isyy)) for fig, ) eR(Y); let 0(3“1)3+1 = aﬁc)ﬂsﬂ Let fmally, forl<g<s+1

be k,_, = min{k: afy_,2x, = 1} (such a k must exist).

1<g<r<s+l

(*) We use here notation of theorem 2 according to which 0(s+1) 1 = g) .
must hold for certain j> ks 1 s+15+
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Then

s
" (7) —
a’kppzkpkp+l =1

and the sequence

<Z.1’f(.i1)>’ <7:27f(.?:2)>7 tet <is+17f(is+1)>7

where k, = nr(i,, f(i,)), is an (f, 2)-path with i, Q.
Proof. If W in theorem 2 is empty, then C® = A©®. It W =@,

then there must be ¢f*% ., =af) .., for a j > 0. In both these cases
we have

S
Ila") > I’ Uy g .
L pP = kpkq
p=

I<p<g<s+l

By the definition, there must also be

[]. -

Then, by virtue of the inequality proved before, there holds

cls+h (3+1) —
Chg 1 15+1 (n kpk p+l) ( ” ’“qu,) =1

1<g<r<s+l1
which completes the proof;

5. Let r =min{t: \V2(q,t) =1}; then, for A(f) ={q,7}, flg) =7,
a<t
f(r) = q,f is a z-maximal selection on 8,.

For p+1<mn and for given z-maximal selection f, on §, we
can using theorems 1-3 construct the z-maximal selection on S, ,,
as follows.

A. Let f be a z-maximal selection on §,. If the presuppositions of
part (i) of theorem 1 are fulfilled, then we define the z-maximal selec-
tion g, on §,,,, like in part (i) of theorem 1. If these presuppositions are
not fulfilled, then we go to the point B.

B. We verify determining the matrices C, C®, ..., according to
theorem 2 the presuppositions of part (ii) of theorem 1. If they are ful-
filled, then we construct according to theorem 3 an (f, 2)-path from
certain geQ) to certain reR and define the 2-maximal selection g, on §,,,,
as in part (ii) of theorem 2. If the presuppositions of part (ii) of theorem 1

are not fulfilled, then f is a 2-maximal selection on §,,,.
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6. To illustrate the presented method, consider the following example.
Let m = 12. Define the function ¢: 8, — E?, where E? is the car-
tesian plane, by the table (see also fig. 1).

i 1234567‘8\910‘11}12

o |———— | — | — | — | — i
Zo) | 51811161 2) 4] 9| 8[10) 8 9] 0
Yoy | 2131 7] 4]0 117\7{5 5| 1] 0

where @, ¥4, are the abscissa and the ordinate, respectively, of the

point ¢ (7).
Let 2(i,j) = 1 iff ¢ # j and

max {[Zym— Lol 1Yo — Yo} < 2.

7 QOO
y IR IR IO
6
Am p
5 TP(10) w’fqo(g)
4 J\g(m
—©
5 j,@g(z)
2 AL
4 A‘P(ﬁ) o—
"IN
0©g(12) PR
0 1 2 3 4 5 6 7 8 9 10 1
Fig. 1.

Thus we have
2(1,4) = 2(4,1) =2(1,6) =2(6,1) =2(2,4) = 2(4, 2) =2(2,9)
= 2(9,2) = 2(2,10) =2(10,2) =2(2,11) =2(11,2) =2(3, 7) = 2(7, 3)
= 2(3,9) =2(9,3) =2(4,10) = 2(10,4) = 2(5, 6) = 2(6,5) = 2(5, 12)
=2(12,5) = 2(7,8) =2(8,7) =2(7,9) =2(9,7) = 2(7,10) = 2(10,7)
= 2(8,9) = 2(9, 8) ==2(8,10) = 2(10, 8) = 2(9,10) = 2(10,9) =1,
and z(i,j) = 0 for any other pair (i, j>eS, X 8,.

Now, we shall define step-by-step for pe{1, 2, ..., 12} the z-maximal
selections f, from §,.
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By virtue of the definition of z we have B,(2) = B,(z) = B3(2) =@
and f, = f, = f; =9 (an empty subset of S, X8,).

For p =3 we have z(4,1) =1, hence A(f,) = {1,4}, f.(1) =4,
fi(4) =1 by virtue of theorem 1.

There is 2(¢, 5) = 0 for each ¢ < 5; thus we have f, = f,, because
both the presupposition of part (i) of theorem 1 and that of part (ii)
are not fulfilled (theorem 1, (iii)).

We have S,\A(f;,) = {2,3,5} and there is 2(2,6) =2(3,6) =0,
but z(5,6) = 1. Hence, for A(f;) ={1,4,5,6}, f(1) =4, fi(4) =1,
fe(B) = 6, f;(6) = b, fs is the z-maximal selection from S§; (theorem 1, (i)).

By a similar procedure we obtain the z-maximal selection f, from S,
defined by the formulae A(f,) = {1,3,4,5,6,7}, f;(1) =4, f,3) =1,
f7(4) =1, f7(5) = 6, f7(6) = 57 f7(7) = 3.

Now we shall try to construct the z-maximal selection f, from 8.
We have S;\NA(f,) = {2} and 2(2, 8) = 0. The presupposition of part (i)
of theorem 1 is not fulfilled. On the other hand, we have 2(8, 7) =1,
TeA(f,) and so we must verify the presupposition of theorem 1, part (ii).
For this reason define the function nr for f; (denote this function by nr,).
We obtain

nry(l,4) =1, nr,(5,6) =2, nr(3,7) =3,

nr,(4,1) =4, nr,(6,5) =5, nr,(7,3) =86.
The matrix Z is of the form
000:000
100;000
000.000
000010

000,000
000 000

Following the formulae in theorem 2 we obtain

0 00
0 00
on — g , BO — gg , A0 = 0® = 9.
0 00
1 10

We see that there is no (f,, 2)-path from 7 (we have @ = {7} for §,)
to the points distinet from 3 and that z(3, 2) = 0. Thus the presupposi-
tions of part (i) and (ii) of theorem 1 are not fulfilled and f; = f; is the
z-maximal selection from 8;.
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By similar arguments as for S, p < 8, we obtain 4 (f,) = {1, 2, 3, 4,.
5,6,7, 9}, f(1) =4, £(2) =9, £,3) =17, f,(4) =1, f,(8) =6, f,(6) =5,
H(1) =3,1,(9) =25 A(fu) = {1,2,3,4,5,6,7,8,9, 10}, f,, | A(f,) =,
f10(8) = 10, f1,(10) = 8; fuu = f1o-

For f,, the presupposition of theorem 1, part (i), is not fulfilled and
we must check once more the presuppositions of theorem 1, part (ii).

We have 2(12,5) =1, 5eA(fu), nry(1,4) =1, nr;,(2,9) =2,
nryu(3, 7) =3, nry (5, 6) =4, nry(8, 10) =5, nry (4, 1) = 6, nry(9, 2)
=17, nr; (7, 3) = 8, nry;,(6,5) =9, nry,;(10, 8) = 10.

The matrix Z is of the form

01000 : 00001
0010100101
0000101001
10000 ; 00000

we have, too,

oSO H O OO
oo oo+

on — 0@ = |||

SO oo OoOiIoOHOOO

and, for s+1 =3,

0® = A0 — BO _ || .
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For s+1 = 4 there is

A©® — BO _

the set W is non-empty in this case, namely W = {2, 5}, w, = 2, w, = 5,

Tl - T2 == {3, 4'}.
All r-sequences are

1

T, =43,3) 1. =(3,4), 13 ={4,3), 1, =4, 4).

Hence AY =0,

0100 0100
0000 0010
0000 0001
1000 1000
0000 0001
(2) _ 3) || .0 “4) _
4 0000 ||’ AT = 0000 ||’ 4
0001 0000
0001 0001
0000 0000
0010 | 0001

0100
0010
0001
1000
0000

0000
0000
0001
0000
0010

’

oW =

and so we have 0¥ = A®, but it was necessary to verify this fact.

There is, for s41 = 5,

A® — BO —

01000
00101
00010
10000
00011

00001
00011
00011
00000
00111
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and it is easy to see, that W = {1,2,3,5}, w, =1, w, = 2, w, = 3,
w“=5wdTﬁ=&ﬁLT2-B40LT~—M5LT—%B45}
Hence, we have 36 7-sequences, namely

T, =<2,3,4,3), 7, =<2,3,4,4), 73 = <2,3,4,5),
T, =(2,3,5,3), 7,=¢2,3,5,4, 1, =<2,3,5,5),
T o=2,4,4,3), T3 =4(2,4,4,4>, 1, —(2,4,4,5,
T = (2,4,5,3%, T =<2,4,5,4), 1, =<(2,4,5,5,
T3 =<2,5,4,3), T4 =<2,5,4,4), 1,=<2,5,4,5),
T = <2,5,5,8), Tu=<2,5,5,4), 1, =<2,5,5,55,
T = 3, 3,4,3), T =15,3,4,45, 1, = (5,3, 4,5,
= (5,3,5,3%, Ty = <5,3,5,4), 14 — 5, 8,5, 55,
Tys = <B,4,4,3), T =1(5,4,4,4), Ty = (5, 4, 4, 5),
Tos =<5,4,5,3), Tp =<5,4,5,4), 15 =¢5,4,5,5),
Ty =<5,5,4,3), T =¢(5,5,4,4), 1, =<5,5,4,5),
Ty =<5,5,5,3>, 75 =¢5,5,5,4), 13=¢5,5,5,5).

From the form of 7; we can conclude, that there are af, =0 for
j<13and A9 = 0forj>19. Fors > 5 there is no (f,,, 2)-path of length s.
Hence, f,, = f,, iff afy =0 for 13 <j < 18. For j = 13 we obtain

01000
00000
00000
10000
00000
00000 ||
00001
00010
00000
00100

A0 —

13
There are a{'¥ =1, o)) = 25, = aif) = 10,8 = ag Y= 2= af'd

=2,, = 1. Since 4 = mu(5 6), 1 =mnr;;(1,4);, 10 = nry;,(10, 8), 8
= nry,(7,3), 7T = m'u(9 2), the sequence (5, 6}, {1, 4), <10, 8>, (7, 3),
<9,2) is an (fy,,#)-path. Moreover, 2(12,5) =2(2,11) =1 and the
selection f;, z-maximal on §,, is defined by the formulae A4 (f,,) = 8,,,
f12(1) = 6, f12(2) =11, f12(_3) = 9, f12(.4) = 10, flz(.5) = 127 f12(.6) =1,
f12(7) = 8, f12(8) =17, f12(9) =3, [12(10) =4, f1,(11) =2, f,,(12) = 5.



7. Ermolev and Melnik present in [2] a solution of the following
problem:

There is given a graph G with the vertices a,,a,,...,a, and a set of
links. For each link there is given its length, say d(a;, ,) for the link
{a;, a;}. We say that the sequence » = <{k,, k,, ..., k> is a path in a graph
G iff for each ie{1,2, ...,s—l} there is k; = {a;, a,}, k1 = {a,,, a;}.

For the path a =<a;, a;,, ..., a;, a; > Wwe define its length as

d(a) = Z

For a given class C of paths in G the problem consists in finding
a path x» such that d(x) = min{d(a): aeC}.

Let d(a;, a;) = 1 for each link and define the one-to-one function ¢
transforming the set W of nodes of G onto itself such that ¢~! = ¢. Let
@, B be subsets of W and let acC iff a = <a;, a;,...,0,,a; > a;Q,
ai3+l€-R and ¢; # ¢, #* ¢(¢;), whenever 1l # m.

Then theorems 2 and 3 of this paper provide another method, which
seems to be more efficient too, for solving the problem of Ermolev and

Melnik.

8. Note added in proof. After the paper has been written, the
author noticed that part (iii) of Theorem 1 of the paper may be obtained
as a simple corollary from the theorem of Berge, Norman and Rabin
([1], p. 175). For this purpose, it is sufficient to build the non-oriented
graph G = (X, U), where the set X of vertices of G is the series in question
(say 8,.,) and the set U of edges of G is the family of all {i,j}c X
satisfying the equality 2(¢,j) =1, and to put f(¢) =max{2(s,j): je X \{i}}
for each 7« X (f is to be understood in the sense of [1]). It is easily
seen that the notion of a (f, 2)-path from this paper may be reduced
to that of an alternating chain from the theory of graphs, and that for
a given z-permissible selection g from X the set [{z’,g(z‘)}:ieA(g)} is
a compatible set in the sense of [1] if f is defined as above.
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JERZY BLAHUT (Gliwice)

O DOBORACH PAR

STRESZCZENIE

W pracy podane jest rozwiazanie nastepujacego problemu: dla danego n-ele-
mentowego zbioru 8, i funkeji z: 8, x 8, — {0, 1}, spelniajacej warunek z(i, j) =
= 2(j, 1) dla dowolnych ¢,j z S, znalezé rodzine {B}, ke{l, ..., s} dwu-elemento-
wych zbior6w rozltgecznych taka, zZe

1. U Bk = Sn,

ke(1,...,8}

2. dla kazdego k, By = {t, u} pociaga z(t, u) = 1 oraz

3. nie istnieje dla r > s taka rodzina {B;;}, ke{l,...,r}, by wlasnoéei 11 2 po-
zostawaly prawdziwe po podstawieniu r za s i {B;c} za {By).

Przedstawione zostalo twierdzenie pozwalajace sprawdzié, czy rodzina {Bg},
ke{l, ..., s}, spelnia warunki 1, 2 i 3 bez poréwnywania jej z innymi rodzinami oraz
dwa twierdzenia, w oparciu o ktére skonstruowaé mozna rodzine {Bx}, ke{l, ..., s},
o zadanych wlasnociach. Sugerowany przez te twierdzenia algorytm nadaje si¢ do
zaprogramowania na maszyne matematyczng.

Rezultaty pracy moga mieé zastosowanie w produkeji séryjnej niektérych
poréwnawezych ukladéw pomiarowych itd.

E. BIAXYT (Tausxn)
O OTBOPAX IIAP

PE3IOME

B pabore mamo peuleHue CIeAylouielt MpoGIeMb: NIA IPOUBBOIBLHOIO 7-3ie-
MEHTHOTO MHOmecTBa S, M QyHEUUH 2: 8,X Sy — {0, 1} Takoi, uro z(i,j) = 2(j, 1)
naa i, jeS, nairn cemeiicto {By}, ke{l, ..., 8} Hemepecexkawmuxcs EBYX3JIeMEHTHHX
MHOK€eCTB, TaKoe, 4YTO:

1. U B = Sy

ke{1,...,s}
2. mna mpomssoiabHoro k ms By = {t, u} BHITekaer z(t, u) = 1;

3.eciu r>s m {B,'c}, ke{l, ..., r} — ceMelicTBO HemepeceKaOMUXCA ABYX-
4 !
PIIEMEHTHHIX MHOMECTB, TaKoe, 4o | J B, C 8y, To {Bk} HE YyTOBJIETBOPAET IO MEHb-
ke{1,...,1}
meit Mmepe ogHOMY M3 ycioBmit 1, 2.

Ilpepmaraerca Teopema, mosBoxAwmand auaa {By}, ke{l,...,s} npoepurs,
o6nanaer-nu cemeticto {By}, ke{l, ..., s} cBoitcramu 1, 2, 3, Ges cpaBHuBaHMA {By}
C IpYrUMHU ceMeitcTBaMu MOXMHOMeCTB Sy . JlAI0TCA IBe TEOPEMH, ¢ MOMOIIEI0 KOTOPHX
MOMHO KOHCTpymposarh cemelictBo {Byi}, ke{l,...,s}, oGmapaiomee TpeGyemrmu

CBOMCTBAMM; IOJCKA3HIBAEMBIf ODTUMU TEODEMAMH AJTOPHUTM NPUTONEH IJIA BHYU-
cieHuit Ha 9I[BM.

PesyabTaTH MOJy4YeHHHE B paboTe MOIyT UMeTh NMPUMEHEHUE B MACCOBOM Npoua-
BOJICTBE HEKOTOPHIX YCTPOMCTB [iA CPABHUTENbHHIX WM3MEpeHHUil u T.I.



