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1. In the present paper we shall deal with continuous solutions of
the functional equations

(1) 9(®) = (s, 9[f()])
and
(2) e[f(®)] = gl», ¢(@)},

where ¢ is the unknown funection. The theory of continuous solutions
of equations (1) and (2) has been developed in [2], [3], [4] (ct. also [5],
Chapter III) under the condition that

#1,

oh
a_y (&7

d
#1, resp. ’%(57’7)

where the point (&, n) is characterized by the property that f(&) = &
and h(&,n) = 7, resp. g(&,n) = n. The indeterminate case

oh
(3) a—y(§,n) =1, resp.

g
- =1
has been dealt with [1] only in the case of the linear equation

(4) ¢Lf(@)] = g(@)p(2)+ F(z).

In the present paper we are going to extend some of those results
to the general case (1) and (2). Instead of (3), we shall assume that the
functions g, k fulfil the Lipschitz condition with respect to y:

(5) |h (2, Y1) —h(z, ¥:)| < y(2) |Y1— Y2,
resp.
(6) lg(, ¥)—9(z, ¥2)| < y(@)ly1— Y.,

in a neighbourhood

(7) U: lz—¢l<e, ly—yl<d, e¢>0,d>0,
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of the point (£, ). The indeterminate case is that where limy(x) = 1;
' ¢
nevertheless, most of our results vre valid also in other cases. The be-

haviour of continuous solutions ot the equations considered will depend
essentially on the behaviour of the sequence

n-—1
®) G, @) = [[vIFi@], n=1,2,..., Gi2)=1.

=0
{Here f*(x) denotes the i-th iterate of the function f(x): fo(z) = «, "+ (x)
= f( f"(m)), n =0,1,2,...) The sequence G,(zx) fulfils the recurrence
formula
9) G (@) = y(@)G, [f(x)], =»=0,1,2,..

2. First we consider equation (1). The given functions f(x) and h(z, ¥)
will be subjected to certain conditions.

(i) The function f(z) is defined and continuous in an interval I and,
for a certain £elI, it fulfils the inequalities

(f(#)—2)(6—2) >0 for wel, z + &,
(fl@)—&)(E—a) <0 for wel, & + &.

Let us note that the above conditions imply that f(z)eI for every
zel, f(§) = & the sequence f"(x) is strictly decreasing for =z > &, xel,
and strictly increasing for x < &, zel, and limf"(x) = £ for every zel

n—>o0

([6], p- 21, Lemmas 0.6, 0.7 and Theorem 0.4). Setting . = £ in (1) we
obtain hence for n = ¢(§) the condition

(10) n = h(&,n).
This justifies the next assumption.

(ii) The funetion k(z, y) is defined and continuous in an open region
2 containing the point (&, n), where % is a solution of (10). Moreover,
h fulfils the Lipschitz condition (5) in U n £, where U is given by (7).
For every fixed x, let £, denote the z-section of £ ():

(11) Qz ={y: (a:,y)e.Q},

and let A, be the set of the values (the range) of the function h(z, ¥)
for ye£2,. Our next assumption reads as follows.

*

(!) Let us note that in the present section £ and £, correspond to what has
been denoted in [5], p. 68, by 2" and .Q;, respectively. Since we do not consider
equations (1) and (2) simultaneously here, the relation between £, and .Q: occurring
in [5] is irrelevant in the present case and we may simply use the same letter to denote
the domain of definition of » and of g. All theorems in [5] concerning only equation
(1.2) (i.e., equation (1) according to the notation of the present paper) are valid

whenever in Hypothesis 3.1 in [5] the set £, is replaced by .Q;.
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(iii) For every x<I the set £, is an interval and A4,, < Q,.

We shall be interested in solutions ¢(x) of equation (1) in I with the
following properties:

(a) ¢ is defined and continuous in I.
(b) 9(&) = 7.
(¢) For every zel we have ¢[f(x)]ef2,.

The class of functions with properties (a), (b), (¢) (not necessarily
satisfying equation (1)) will be denoted by @.

THEOREM 1. Suppose that hypotheses (i), (ii) and (iii) are fulfilled and
that sequence (8) is bounded in a meighbourhood of &:
(12) G(ey< M, n=0,1,2,...; el N(E—0,E+ ).

Then equation (1) may have at most one solution peDin I.

Proof. Suppose that equation (1) has solutions ¢,¢® and ¢,e® in I.
We choose ¢ > 0 so small that ¢ < min(¢, ) and for [z—&| < ¢ xel,

we have |p,[f(2)]—7nj<d and |p,[f(x)]—n| <d. Since |z—§| <,
xel, implies |f"(x)— &| < ¢ < ¢ for every n, we have

lo[f*@)]—nl<d and |p[f"(@)]—nl<d
for [x— &< e,xel and n =1, 2, ...
In virtue of (5) and (8) we derive hence by induction that
191(2) — 92(2)] < G (@) lp2 [ (@)~ 92 [f" ()]
for |z—§| < e,2el and n =0,1,2,...
Since limg, [f*(x)] = limg,[f"(x)] = 2, we get by (12),
n—r00 n—-00

P1(®) = po(x) for |z—§| < e, wel.

Hence it follows that ¢,(2) = @,(2) in I ([6], p. 70, Theorem 3.2),
which was to be proved.

Let us take an arbitrary function ¢,¢® and let us define the sequence
¢,(w) by the relation

(13) Pnir(®) = h(m’ ‘Pn[f(w)])y n=0,1,2,...

It follows from (i)-(iii) that ¢,e® for every n. Moreover, we have
the following result (cf. [5], p. 72, Theorem 3.3):

LEMMA. If the sequence ¢, (z) converges in a meighbourhood I of & to
a function ¢ fulfilling conditions (a), (b), (¢) with I replaced by I,, then
1t converges in the whole of I and its limit provides a solution of equation (1)
in the class ®.
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Now, we have the following

THEOREM 2. Suppose that hypotheses (i), (ii) and (iii) are fulfilled and
condition (12) holds. If ¢ «® 8 a solution of equation (1) in I, then

(14) ¢(x) = limg, (x)

in I, where the sequence p, is defined by (13) and ¢, is an arbitrary function
belonging to .

Proof. We choose ¢ > 0 so small that ¢ < min(¢, é) and for |z— &|
< e,xel, we have

(15) lp@)—ql < d/(M+1) and |p(r)—@(r)| < d/(M+1).

We shall prove that for |v— &| < ¢ eI, and for » =0,1,2,...,
we have

(186) lpn(2)—nl < d
and
a7) lp (@) — @, (2)| < G, (@)@ [f"(@)]— o [f"(®)]].

For n = 0 (17) is obvious and (16) results from (15) in view of the
fact that M > Gy(z) =1 (cf. (12) and (8)). Suppose that they hold for
a certain » > 0. We have by (1), (13), (16) for n, (15), (5), (17) for =,
and (9), for |z— &l < e, wel,

|9 (#) — @ni1(@)] = |B(2, 9 [f(@)]) —{z, @u[f(2)])|

< 7@ Ip[f(@)]— . [f(@)]]
< 7@, [f@)) e[ (@)1= [ ()]
= G (@)g [ (@)1= [/ (@)1,

i.e. (17) for n+ 1. Hence we get further by (15) and (12), for |[z— & < ¢,

zel,

< lp@)—nl+ lPns1 (#) — @ (@)

< lp@) = nl+Gppy (@)@ [ (@) ]— o [f" T (2)]]

d Md
TR TN
i.e. (16) for n+ 1. Thus (16) and (17) are generally valid.

The convergence ¢, (x) — ¢(x) results for [v—&| < ¢ xel, from (17),
and then for all #¢I in virtue of the Lemma and Theorem 1.

Remark. In [2] results analogous to those contained in the above
theorems have been obtained, essentially under assumptions (i), (iii)
and the condition that Z(x, y) is continuous in 2 and has a continuous
derivative 0h/0y such that |0h/dy| <1 in a neighbourhood of (£, ).

l‘_”n+1(w)— ’7'

A
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This implies, of course, (ii) and (12). On the other hand, our present
assumptions are weaker, as may be seen from the following example:

ExAMPLE. Let I = (—oo, +o0), 2 = (—o0, +00) X(—00, +o0), and
consider the equation

(18) ¢(#) = (1+x)arctang(3x)+=.
Here f(x) = %z, h(z, y) = (1+o)arctany +2, 2, = (—o0, +o0),

7 T
A, = (—? le+1]+z, +? |<’3+1l+$)-

Assumptions (1), (ii) and (iii) are fulfilled, and we have £ =% =0
and y(x) = (1+x). The sequence

n—1 z
6@ = [+ 5)
i=0
converges almost uniformly in (—oo, +o0) and thus is bounded in every
bounded neighbourhood of zero. Consequently Theorems 1 and 2 apply
to equation (18).
On the other hand, 0h/dy = (14+x)/(1+y? and thus or/dy > 1
inside the parabola z = y2.
Now we shall find some conditions for the existence of solutions
@e® of equation (1). We put

H(z) = |h(z, n)—17].

TEEOREM 3. Suppose that hypotheses (i), (ii) and (iii) are fulfilled.
If y(x) is bounded in a meighbourhood of & and, for a certain 6 > 0, the
series

(19) D Gu(@ H[f(@)]

converges uniformly in I N (§—0, £4-0), then equation (1) has a solution
ped in I.

Proof. Let us take a ¢,e¢® such that ¢,(x) = # in a neighbourhood
of £, and define the sequence ¢, by (13). The sum of series (19) is continuous
at & and vanishes for # = £. Consequently we can find an ¢ > 0 so small

-that ¢ < min(e, é) and for |z— &| < ¢, eI, we have g,(z) = 4 and

DG (@ H[f*()] < d.

We shall prove that for |z— & < ¢, eI, we have
(20) o1 (@)—@ ()| <G (w)H[f"(2)], =»=0,1,2,...
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For n = 0 (20) is obvious. Suppose that.(20) holds for n < N, N > 0.
Then we have for n < N and for |z— & < ¢, xel,

|@pi1(@)—n| = @541 (%) — @o ()]

< D i@ —g:(@)] < D) Gi(2) H{f(@)]

=0 =0
< D G@H[f(@)] < d.

Hence by (13), (5), (20) for N, and (9) we obtain

lpn+2(@) =@ (@) = |b(@; oy 11 (f(@)])—b{z, ox [f(2)])
<y @) lon1 [f(@)]—on[f(@)]
Sy @@y [f@)H[ Y (2)] = Gy (@) H (@),

ie. (20) for N+1.

Relation (20) and the uniform convergence of series (19) imply that
the sequence ¢, () uniformly converges in I, =I Nn(&—e, £+6) to
‘a function ¢(z). This function ¢(x) is continuous in I, (since all ¢, (x)
are continuous in I), ¢(£) = % (since ¢,(&) = 5 for all n), and |p(z)| < 4
in I,. This last condition implies that ¢[f(x)]e 2, for zel, provided d
and ¢ have been chosen sufficiently small. Our theorem follows in virtue
of the Lemma.

As an immediate consequence of Theorems 1,2 and 3 we obtain
the following

THEOREM 4. Suppose that hypotheses (i), (ii) and (iii) are fulfilled,
condition (12) holds and, for a certain 6’ > 0, the series D H[f"(x)] con-
n=0

verges uniformly in I N (E— &'y E4 6'). Then equation (1) has in I a unique
solution pe®. This solution is given by formula (14), where the sequence
@, () is defined by (13), and @o(x) is an arbitrary function belonging to the
class D.

Let us note also the following

THEOREM b. Suppvse that hypotheses (i), (ii) and (iii) are fulfilled
and that there exist positive constants A, B, =, u, 6 and 9,0 < & < 1, such
that the inequalities

ly@)—1 < Alz—§&  |[h(@,n)—n < Blz—§", |f@)—& < ¢lz—§]

hold for |x— &| < 8, xel. Then equation (1) has in I a wunique solution
ped. This solution 1is given by formula (14), where the sequence ¢,(x) is
defined by (13), and @,(x) 18 an arbitrary function belonging to the class D.
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Proof. It is enough to verify that the conditions of Theorem 4 are
fulfilled. We have for |x—¢&| < 6, wel,

n—1
Go(2) < Gu(2) = [ [ 71 @)],

where y(z) = 14 A |e— &|*. The proof given in 1], p. 166, or in [5],
p- 52, serves to show that the sequence G, (x) converges almost uniformly

in I to a continuous limit; consequently (12) holds. On the other hand,
we have for zel N (E— 8, £+ 6)

H{f"(#)] < B|f"(z)— £I*;
but |f"(z)— & < 9" |r— §| (induction), whence
H[f"(#)] < B#"|z— &*,

[ 1]
which proves that the series > H[f"(x)] converges uniformly in

n=0
I n(&— 48, £+ 6). This completes the proof.
In particular, it follows fromw Theorem 5 that equation (18) has
a unique continuous solution in (—oo, +oo).

3. Now we turn to equation (2). In this case it will be necessary to
make somewhat stronger assumptions. Regarding f(z) we shall assume
that it fulfils (i) and, moreover,

(iv) The function f(x) is strictly increasing in I.
The function ¢g(z, y) will be subjected to the following conditions:

(v) The function g(x, y) is defined and continuous in an open region
2 containing the point (£, 5), where 7 is a solution of n = ¢g(&, 5). For
every fixed xz eI the function g(x, y) as a function of y is invertible. Moreo-
ver, g fulfils the Lipschitz condition (6) in U n £, where U is given by (7)
and y(x) has a positive lower bound in I.

2, being defined by (11), we denote by I', the set of the values (the
range) of the function g(z,y) for yef,.

(vi) For every xel the set 2, is an interval and I'; = Q.

We now replace the class @ by the class ¥ of functions ¢ (z) fulfilling
conditions (a), (b) and

(¢’) For every zel we have ¢(z)ef,.

THEOREM 6. Suppose that hypotheses (i), (iv), (v) and (vi) are fulfilled
and that there exists an interval J — I such that im@,(z) = 0 uniformly

n—>oo

in J. Then equation (2) has in I either no solution ¥, or a solution pe¥
depending on an arbitrary function.
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Proof. Let us suppose that equation (2) has a solution ¢,¢¥ in I.
We shall show that the general solution ¢ ¢ ¥ of equation (2) in I depends
on an arbitrary function. For the sake of simplicity we shall assume that &
is the left end-point of the interval I. In other cases the proof runs simi-
larly.

It follows from (9) that, for every %, the sequence G,(x) converges
to zero uniformly in f*(J). Therefore we may choose an z,eI and an
interval d(a,bd) = {f(w,), #,> 80 that x,—£&<<e, |po(®)—7n| < $d for
zel&, x>, and lim@, (r) = 0 uniformly in {a,b). Hence it follows. by

n—>00

a simple argument that there exists a positive constant M such that
(21) G, ()< M for ve{a,b) and n =0,1,2,...

Let y(z) be an arbitrary function defined and continuous in {f(x,), z,),
and fulfilling the following conditions:

(22) p[f(xy)] = 9(970, V’(-’Do))y

(23) lp (@) —po(@)| < d/2M  for zela,b),
(24) (@) = @o(x) for ze(f(m), Bod\(a,b),
(25) p(x)e2, for xe{f(xy), o).

It follows from (22) and (25) that there exists a unique function
¢(z) defined in I\ {£}, satisfying equation (2) in IN\{¢} and such that
o(x)eQ, for meI\{£} and
(26) p(@) = p(@) in (f(@), zo>.

This funection is continuous in IN\{£}. ([5], p. 70, Theorem 3.1).
Putting ¢(§) = n, we extend ¢ to a solution of equation (2) in I and in
order to prove that g¢¥ it is enough to show that ¢ is continuous at £,
i.e. that

(27) limg () = 7.
We shall show that
28) o[ (@)=l f"(@)]] < G, (@) |y (2)— @o(2)|
for ze{f(my), 2>, » =0,1,2,...
For n = 0 (28) results from (26). Supposing (28) true for an n > 0,
we have by (21), (23) and (24)
lplf*(@)]—1l < e[ (@) ]=@o [f* (@) 11 1 lpo [ f* (€)1 — 0]

< G (@) [y (@) — o (@) + 9o Lf" (€)1 — ]

d d
<M+ =d.
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Consequently
lp [ (@) 1— o [f" (@)1 = |g(F™(@), o [f"(@)])— g(f™(@), o [ (2)])|
<y @1l (@)]— o[ (@)]]
< P [ (@)16, ()| v (@) — @o ()]

= G, 1 (2) [y (@) — o (@),
which proves (28).
Given an ¢ > 0, we can find an N such that

2M
(29) G, (v) < e {for ze(a,b) and n > N.

For every ze(&, f¥(x,)) we can find an #*e(f(»,), #,) and an n> N
such that & = f*(x*). Hence in view of (28)

lo (@) —@o(@)] = lp[f"(@*)]—@o[f"(#")]] < G, (#*)| p(2*) — go(x*)].

If x*e<{a, b), we get hence by (29) and (23)

(30) lp(2) — go(2)] < e.

I z*{f(z,), z,)\{a, b), then (30) is also valid, since, according
to (24), [|p(@*)—@o(2*)] =0. (30) implies that H’(?’(@-%(M) =0,
whence (27) results in view of the fact that lime,(z) = 7.

¢
As we see, the solution ¢ge¥ of equation (2) may be prescribed to

a great extent arbitrarily on an interval (a,b), i.e., it depends on an
arbitrary function (cf. also [1], and [5], p. 45). This completes the proof.
Let us note that both cases (lack of a solution and a solution de-
pending on an arbitrary function) can actually occur even for the linear
equation (4); cf. [1], Examples 3 and 4. '
Now, let us write

F(z) = |g(z, n)—nl,
and

n—2 n-—1

H,@) = D{ [ [+17 @1 Frfi@) = S 6 o) nms,...

el  Femidl =0 Gi+l(w)

The sequence H,(z) fulfils the following recurrences:

(31) Heypy(2) = y[f"(@)]H, (@) +y [ (@) F [ ()]
and
(32) Hn[f(w)] = Hn+1 ‘ _Ma'n+1(w)-

Q v (@)
2 — Annales Polonici Mathematici XXIV
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Relation (32) implies that H,[f(2)] < H,,,(x), whence

(33) sup H,(#x)< sup H,.(x), n>=>2,k>0.
<re+Yzg), (zg)> HaghTp

In the next theorem we assume again that & is the left end-point
of the interval I. If ¢ is the right end-point, then the interval (f(z,), 2,)>
should be replaced by {z,, f(,)), and if £ is an inner point of I, then the
interval (f(x,), %> should be replaced by <o, f(a')> U {f(2"), 2"
with o' < § < 2", o', 2" l.

THEOREM 7. Suppose that hypotheses (i), (iv), (v) and (vi) are fulﬁlled
and let & be the left end-point of the interval I. Further suppose that there
ewists an xgel, Ty # & such that lm@, (r) = imH,(z) = 0 uniformly

n—>o

in {f(@y), o). Then equation (2) has in I a solution ¢ <'¥ depending on an
arbitrary function.

Proof. In view of (9) and (33) we may replace the interval {f(z,), #,)

by {f¥+'(x,), f*(x,)) with % arbitrarily large. Consequently, we may
assume that x, is so close to & that

(34) H, () <3}d for ze(f(xp), 2>, m» =2,3,...,
(cf. (33)) and
(35) F(x) < id for me(&, xy).

Further, it is easy to see that there exists a positive constant M
such that

(36) G.(z) < M for ze(f(®y), 29>, n =0,1,2,...

“Let y(x) be an arbitrary function defined and continuous in
{f(®,), ®,», fulfilling conditions (22) and (25) and such that

(37) ly(@)—nl < d/3M  for ze{f(x,), Zo)-

Then there exists a unique function ¢(x) defined and continuous
in IN\{¢}, satisfying equation (2) in I\{¢}, fulfilling condition (26) and
such that ¢(z) e 2, for zeIN\{§} ([6], p. 70, Theorem 3.1). Putting ¢ (&) = #
we extend ¢ to a solution of equation (2) in I and it is enough to show

that condition (27) is fulfilled. For this purpose we shall prove the
estimation

(38) lp (@)1 — 1 < Hy(#)+ FLf* " (2)]+ G, (a) Iy () — 7]
valid for ze{f(®y), ¢oy and n =2, 3, ... In fact, we have
lpf(@)]—n = |glz, ¢(x)—n|
< |glz, ¢(«)—g(z, )|+ lg (@, n)— i,
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whence in view of (6), (26), (37),(36) and (35) we get for xe{f(xz,), o>
(note that, by (8), y(x) = G((#))

lplf(@)]—nl < y@) ly(@)—n+ F(o) < §d < d,
and similarly

lp[FF@)]—nl < y[f@)]lelf(@]—nl+Ff(®)]
< y[f(@2)]y @) lp (@) — |+ v [f (@)1 F (x)+ F[f(2)]
= Gy(2) |y (@) —n|+ H,(2)+ Ff(2)],
which proves (38) for » = 2. Assuming (38) true for an » > 2, we have
by (34), (35), (36) and (37), lp[f"(#)]—17| < d, whence it follows by (6)
and by (38) for =
lp L™ (@)1 — 71 < |9(/™ (@), @ [ (@)])— g(f* (@), m)| + |9 (), n) — 7]
<y @]le(f*(@)]—nl+ FLf"(=)]
<y (@)1 Ha(2)+y [ @1F " (2)]+
+ 7" (@)1, (®) ly(2) — 9|+ F [f* ()],
and by (8) and (31) we obtain finally

@ L™ (@) — | < Hpyy (@) F Gy (@) Iy (@) — 9 + F [ (2)],

i.e. (38) for n+-1.
Given an ¢ > 0, we can find an N such that

(39) G,.(x) < %—[ e for ze(f(xy), 2y> and n > N,
(40) H, (v)<<%e for ze (f(z,), )y and n > N,
(41) Fz)<i}e for we(&, V(@)

Condition (41) implies that
(42) FIf" Y x)] < 3e for ze(f(a,), z,y and n > N.

For every ze¢(, f¥(z,)) we can find an o*e{f(z,), ®,» and an n > N
such that x = f*(z*). Hence it follows by (38), (39), (40), (42) and (37)
that

lo(@)—nl| = l@[f"(@*)]—1]
S Hp(a*)+ FL" 7 (@)])+ Gy (a*) p(@*) — 5] < e.
This proves relation (27) and completes the proof.
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