ANNALES POLONICI MATHEMATICI XXIV (1970)

Continuous solutions of some functional equations in the indeterminate case

by D. CZAJA-POŚPIECH (Gliwice) and M. KUCZMA (Katowice)

1. In the present paper we shall deal with continuous solutions of the functional equations

$$\varphi(x) = h(x, \varphi[f(x)])$$

and

(2)
$$\varphi[f(x)] = g(x, \varphi(x)),$$

where φ is the unknown function. The theory of continuous solutions of equations (1) and (2) has been developed in [2], [3], [4] (cf. also [5], Chapter III) under the condition that

$$\left| rac{\partial h}{\partial y} (\xi, \eta)
ight|
eq 1, \quad \mathrm{resp.} \quad \left| rac{\partial g}{\partial y} (\xi, \eta)
ight|
eq 1,$$

where the point (ξ, η) is characterized by the property that $f(\xi) = \xi$ and $h(\xi, \eta) = \eta$, resp. $g(\xi, \eta) = \eta$. The indeterminate case

(3)
$$\left| \frac{\partial h}{\partial y}(\xi, \eta) \right| = 1, \quad \text{resp.} \quad \left| \frac{\partial g}{\partial y}(\xi, \eta) \right| = 1$$

has been dealt with [1] only in the case of the linear equation

(4)
$$\varphi[f(x)] = g(x)\varphi(x) + F(x).$$

In the present paper we are going to extend some of those results to the general case (1) and (2). Instead of (3), we shall assume that the functions g, h fulfil the Lipschitz condition with respect to y:

$$|h(x, y_1) - h(x, y_2)| \leq \gamma(x) |y_1 - y_2|,$$

resp.

(6)
$$|g(x, y_1) - g(x, y_2)| \leq \gamma(x) |y_1 - y_2|,$$

in a neighbourhood

(7)
$$U: |x-\xi| < c, \quad |y-\eta| < d, \quad c > 0, d > 0,$$

of the point (ξ, η) . The indeterminate case is that where $\lim_{x \to \xi} \gamma(x) = 1$; nevertheless, most of our results are valid also in other cases. The behaviour of continuous solutions of the equations considered will depend essentially on the behaviour of the sequence

(8)
$$G_n(x) = \prod_{i=0}^{n-1} \gamma[f^i(x)], \quad n = 1, 2, ..., \quad G_0(x) \equiv 1.$$

(Here $f^i(x)$ denotes the *i*-th iterate of the function f(x): $f^0(x) \equiv x$, $f^{n+1}(x) = f(f^n(x))$, n = 0, 1, 2, ...) The sequence $G_n(x)$ fulfils the recurrence formula

(9)
$$G_{n+1}(x) = \gamma(x)G_n[f(x)], \quad n = 0, 1, 2, ...$$

- 2. First we consider equation (1). The given functions f(x) and h(x, y) will be subjected to certain conditions.
- (i) The function f(x) is defined and continuous in an interval I and, for a certain $\xi \in I$, it fulfils the inequalities

$$(f(x)-x)(\xi-x) > 0$$
 for $x \in I$, $x \neq \xi$,
 $(f(x)-\xi)(\xi-x) < 0$ for $x \in I$, $x \neq \xi$.

Let us note that the above conditions imply that $f(x) \in I$ for every $x \in I$, $f(\xi) = \xi$, the sequence $f^n(x)$ is strictly decreasing for $x > \xi$, $x \in I$, and strictly increasing for $x < \xi$, $x \in I$, and $\lim_{n \to \infty} f^n(x) = \xi$ for every $x \in I$

([5], p. 21, Lemmas 0.6, 0.7 and Theorem 0.4). Setting $x = \xi$ in (1) we obtain hence for $\eta = \varphi(\xi)$ the condition

(10)
$$\eta = h(\xi, \eta).$$

This justifies the next assumption.

(ii) The function h(x, y) is defined and continuous in an open region Ω containing the point (ξ, η) , where η is a solution of (10). Moreover, h fulfils the Lipschitz condition (5) in $U \cap \Omega$, where U is given by (7). For every fixed x, let Ω_x denote the x-section of Ω (1):

(11)
$$\Omega_x = \{y \colon (x,y) \in \Omega\},\,$$

and let Λ_x be the set of the values (the range) of the function h(x, y) for $y \in \Omega_x$. Our next assumption reads as follows.

⁽¹⁾ Let us note that in the present section Ω and Ω_x correspond to what has been denoted in [5], p. 68, by Ω^* and Ω_x^* , respectively. Since we do not consider equations (1) and (2) simultaneously here, the relation between Ω_x and Ω_x^* occurring in [5] is irrelevant in the present case and we may simply use the same letter to denote the domain of definition of h and of g. All theorems in [5] concerning only equation (1.2) (i.e., equation (1) according to the notation of the present paper) are valid whenever in Hypothesis 3.1 in [5] the set Ω_x is replaced by Ω_x^* .

(iii) For every $x \in I$ the set Ω_x is an interval and $\Lambda_{f(x)} \subset \Omega_x$.

We shall be interested in solutions $\varphi(x)$ of equation (1) in I with the following properties:

- (a) φ is defined and continuous in I.
- (b) $\varphi(\xi) = \eta$.
- (c) For every $x \in I$ we have $\varphi[f(x)] \in \Omega_x$.

The class of functions with properties (a), (b), (c) (not necessarily satisfying equation (1)) will be denoted by Φ .

THEOREM 1. Suppose that hypotheses (i), (ii) and (iii) are fulfilled and that sequence (8) is bounded in a neighbourhood of ξ :

(12)
$$G_n(x) \leqslant M$$
, $n = 0, 1, 2, \ldots; x \in I \cap (\xi - \delta, \xi + \delta)$.

Then equation (1) may have at most one solution $\varphi \in \Phi$ in I.

Proof. Suppose that equation (1) has solutions $\varphi_1 \in \Phi$ and $\varphi_2 \in \Phi$ in I. We choose $\varepsilon > 0$ so small that $\varepsilon < \min(c, \delta)$ and for $|x - \xi| < \varepsilon$, $x \in I$, we have $|\varphi_1[f(x)] - \eta| < d$ and $|\varphi_2[f(x)] - \eta| < d$. Since $|x - \xi| < \varepsilon$, $x \in I$, implies $|f^n(x) - \xi| < \varepsilon < c$ for every n, we have

$$|arphi_1[f^n(x)]-\eta| < d \quad ext{ and } \quad |arphi_2[f^n(x)]-\eta| < d$$

$$ext{for } |x-\xi| < arepsilon, \, x \, \epsilon I \, ext{ and } \, n \, = 1, \, 2, \, \ldots$$

In virtue of (5) and (8) we derive hence by induction that

$$\begin{split} |\varphi_1(x)-\varphi_2(x)|\leqslant G_n(x)\,|\varphi_1[f^n(x)]-\varphi_2[f^n(x)]|\\ &\text{for }|x-\xi|<\varepsilon,\,x\,\epsilon\,I\ \text{and}\ n\,=\,0\,,\,1\,,\,2\,,\,\ldots \end{split}$$

Since $\lim_{n\to\infty} \varphi_1[f^n(x)] = \lim_{n\to\infty} \varphi_2[f^n(x)] = \eta$, we get by (12),

$$\varphi_1(x) = \varphi_2(x)$$
 for $|x - \xi| < \varepsilon$, $x \in I$.

Hence it follows that $\varphi_1(x) \equiv \varphi_2(x)$ in I ([5], p. 70, Theorem 3.2), which was to be proved.

Let us take an arbitrary function $\varphi_0 \in \Phi$ and let us define the sequence $\varphi_n(x)$ by the relation

(13)
$$\varphi_{n+1}(x) = h(x, \varphi_n[f(x)]), \quad n = 0, 1, 2, ...$$

It follows from (i)-(iii) that $\varphi_n \in \Phi$ for every n. Moreover, we have the following result (cf. [5], p. 72, Theorem 3.3):

LEMMA. If the sequence $\varphi_n(x)$ converges in a neighbourhood I_0 of ξ to a function φ fulfilling conditions (a), (b), (c) with I replaced by I_0 , then it converges in the whole of I and its limit provides a solution of equation (1) in the class Φ .

Now, we have the following

THEOREM 2. Suppose that hypotheses (i), (ii) and (iii) are fulfilled and condition (12) holds. If $\varphi \in \Phi$ is a solution of equation (1) in I, then

(14)
$$\varphi(x) = \lim_{n \to \infty} \varphi_n(x)$$

in I, where the sequence φ_n is defined by (13) and φ_0 is an arbitrary function belonging to Φ .

Proof. We choose $\varepsilon > 0$ so small that $\varepsilon < \min(c, \delta)$ and for $|x - \xi| < \varepsilon, x \in I$, we have

(15)
$$|\varphi(x) - \eta| < d/(M+1)$$
 and $|\varphi(x) - \varphi_0(x)| < d/(M+1)$.

We shall prove that for $|x-\xi|<arepsilon, x\,\epsilon I,$ and for $n=0,1,2,\ldots,$ we have

$$|\varphi_n(x) - \eta| < d$$

and

$$|\varphi(x)-\varphi_n(x)| \leqslant G_n(x)|\varphi[f^n(x)]-\varphi_0[f^n(x)]|.$$

For n=0 (17) is obvious and (16) results from (15) in view of the fact that $M \geqslant G_0(x) \equiv 1$ (cf. (12) and (8)). Suppose that they hold for a certain $n \geqslant 0$. We have by (1), (13), (16) for n, (15), (5), (17) for n, and (9), for $|x-\xi| < \varepsilon$, $x \in I$,

$$egin{aligned} |arphi(x)-arphi_{n+1}(x)| &= ig|hig(x,arphi\,[f(x)]ig)-hig(x,arphi_n[f(x)]ig)\ &\leqslant \gamma(x)\,|arphi\,[f(x)]-arphi_n[f(x)]|\ &\leqslant \gamma(x)G_n[f(x)]|arphi\,[f^{n+1}(x)]-arphi_0[f^{n+1}(x)]|\ &= G_{n+1}(x)|arphi\,[f^{n+1}(x)]-arphi_0[f^{n+1}(x)]|\,, \end{aligned}$$

i.e. (17) for n+1. Hence we get further by (15) and (12), for $|x-\xi| < \varepsilon$, $x \in I$,

$$\begin{split} |\varphi_{n+1}(x) - \eta| & \leq |\varphi(x) - \eta| + |\varphi_{n+1}(x) - \varphi(x)| \\ & \leq |\varphi(x) - \eta| + G_{n+1}(x) |\varphi[f^{n+1}(x)] - \varphi_0[f^{n+1}(x)]| \\ & \leq \frac{d}{M+1} + \frac{Md}{M+1} = d, \end{split}$$

i.e. (16) for n+1. Thus (16) and (17) are generally valid.

The convergence $\varphi_n(x) \to \varphi(x)$ results for $|x-\xi| < \varepsilon$, $x \in I$, from (17), and then for all $x \in I$ in virtue of the Lemma and Theorem 1.

Remark. In [2] results analogous to those contained in the above theorems have been obtained, essentially under assumptions (i), (iii) and the condition that h(x, y) is continuous in Ω and has a continuous derivative $\partial h/\partial y$ such that $|\partial h/\partial y| \leq 1$ in a neighbourhood of (ξ, η) .

This implies, of course, (ii) and (12). On the other hand, our present assumptions are weaker, as may be seen from the following example:

EXAMPLE. Let $I=(-\infty, +\infty)$, $\Omega=(-\infty, +\infty)\times(-\infty, +\infty)$, and consider the equation

(18)
$$\varphi(x) = (1+x)\arctan\varphi(\frac{1}{2}x) + x.$$

Here $f(x) = \frac{1}{2}x$, $h(x, y) = (1+x)\arctan y + x$, $\Omega_x = (-\infty, +\infty)$,

$$A_x = \left(-\frac{\pi}{2}|x+1|+x, +\frac{\pi}{2}|x+1|+x\right).$$

Assumptions (i), (ii) and (iii) are fulfilled, and we have $\xi = \eta = 0$ and $\gamma(x) = (1+x)$. The sequence

$$G_n(x) = \prod_{i=0}^{n-1} \left(1 + \frac{x}{2^i}\right)$$

converges almost uniformly in $(-\infty, +\infty)$ and thus is bounded in every bounded neighbourhood of zero. Consequently Theorems 1 and 2 apply to equation (18).

On the other hand, $\partial h/\partial y = (1+x)/(1+y^2)$ and thus $\partial h/\partial y > 1$ inside the parabola $x = y^2$.

Now we shall find some conditions for the existence of solutions $\varphi \in \Phi$ of equation (1). We put

$$H(x) = |h(x, \eta) - \eta|.$$

THEOREM 3. Suppose that hypotheses (i), (ii) and (iii) are fulfilled. If $\gamma(x)$ is bounded in a neighbourhood of ξ and, for a certain $\delta > 0$, the series

(19)
$$\sum_{n=0}^{\infty} G_n(x) H[f^n(x)]$$

converges uniformly in $I \cap (\xi - \delta, \xi + \delta)$, then equation (1) has a solution $\varphi \in \Phi$ in I.

Proof. Let us take a $\varphi_0 \in \Phi$ such that $\varphi_0(x) \equiv \eta$ in a neighbourhood of ξ , and define the sequence φ_n by (13). The sum of series (19) is continuous at ξ and vanishes for $x = \xi$. Consequently we can find an $\varepsilon > 0$ so small that $\varepsilon < \min(\varepsilon, \delta)$ and for $|x - \xi| < \varepsilon$, $x \in I$, we have $\varphi_0(x) = \eta$ and

$$\sum_{n=0}^{\infty} G_n(x) H[f^n(x)] < d.$$

We shall prove that for $|x-\xi|<\varepsilon$, $x\in I$, we have

(20)
$$|\varphi_{n+1}(x)-\varphi_n(x)| \leq G_n(x)H[f^n(x)], \quad n=0,1,2,\ldots$$

For n=0 (20) is obvious. Suppose that (20) holds for $n \leq N, N \geq 0$. Then we have for $n \leq N$ and for $|x-\xi| < \varepsilon, x \in I$,

$$\begin{split} |\varphi_{n+1}(x) - \eta| &= |\varphi_{n+1}(x) - \varphi_0(x)| \\ &\leqslant \sum_{i=0}^n |\varphi_{i+1}(x) - \varphi_i(x)| \leqslant \sum_{i=0}^n G_i(x) H[f^i(x)] \\ &\leqslant \sum_{i=0}^\infty G_i(x) H[f^i(x)] < d. \end{split}$$

Hence by (13), (5), (20) for N, and (9) we obtain

$$egin{align} |arphi_{N+2}(x)-arphi_{N+1}(x)| &= ig|hig(x,arphi_{N+1}[f(x)]ig)-hig(x,arphi_{N}[f(x)]ig)ig| \ &\leqslant \gamma(x)|arphi_{N+1}[f(x)]-arphi_{N}[f(x)]| \ &\leqslant \gamma(x)G_{N}[f(x)]H[f^{N+1}(x)] = G_{N+1}(x)H[f^{N+1}(x)], \end{split}$$

i.e. (20) for N+1.

Relation (20) and the uniform convergence of series (19) imply that the sequence $\varphi_n(x)$ uniformly converges in $I_0 = I \cap (\xi - \varepsilon, \xi + \varepsilon)$ to a function $\varphi(x)$. This function $\varphi(x)$ is continuous in I_0 (since all $\varphi_n(x)$ are continuous in I), $\varphi(\xi) = \eta$ (since $\varphi_n(\xi) = \eta$ for all n), and $|\mathring{\varphi}(x)| < d$ in I_0 . This last condition implies that $\varphi[f(x)] \in \Omega_x$ for $x \in I_0$ provided d and ε have been chosen sufficiently small. Our theorem follows in virtue of the Lemma.

As an immediate consequence of Theorems 1, 2 and 3 we obtain the following

THEOREM 4. Suppose that hypotheses (i), (ii) and (iii) are fulfilled, condition (12) holds and, for a certain $\delta' > 0$, the series $\sum_{n=0}^{\infty} H[f^n(x)]$ converges uniformly in $I \cap (\xi - \delta', \xi + \delta')$. Then equation (1) has in I a unique solution $\varphi \in \Phi$. This solution is given by formula (14), where the sequence $\varphi_n(x)$ is defined by (13), and $\varphi_0(x)$ is an arbitrary function belonging to the class Φ .

Let us note also the following

THEOREM 5. Suppose that hypotheses (i), (ii) and (iii) are fulfilled and that there exist positive constants $A, B, \varkappa, \mu, \delta$ and $\vartheta, 0 < \vartheta < 1$, such that the inequalities

$$|\gamma(x)-1| \leqslant A|x-\xi|^{\kappa}, \quad |h(x,\eta)-\eta| \leqslant B|x-\xi|^{\mu}, \quad |f(x)-\xi| \leqslant \vartheta|x-\xi|$$

hold for $|x-\xi| < \delta$, $x \in I$. Then equation (1) has in I a unique solution $\varphi \in \Phi$. This solution is given by formula (14), where the sequence $\varphi_n(x)$ is defined by (13), and $\varphi_0(x)$ is an arbitrary function belonging to the class Φ .

Proof. It is enough to verify that the conditions of Theorem 4 are fulfilled. We have for $|x-\xi|<\delta,\ x\,\epsilon\,I,$

$$G_n(x) \leqslant \tilde{G}_n(x) = \prod_{i=0}^{n-1} \tilde{\gamma}[f^i(x)],$$

where $\tilde{\gamma}(x) = 1 + A |x - \xi|^x$. The proof given in [1], p. 166, or in [5], p. 52, serves to show that the sequence $\tilde{G}_n(x)$ converges almost uniformly in I to a continuous limit; consequently (12) holds. On the other hand, we have for $x \in I \cap (\xi - \delta, \xi + \delta)$

$$H[f^n(x)] \leq B|f^n(x) - \xi|^{\mu};$$

but $|f^n(x)-\xi| \leq \vartheta^n|x-\xi|$ (induction), whence

$$H[f^n(x)] \leqslant B\vartheta^{\mu n} |x-\xi|^{\mu},$$

which proves that the series $\sum_{n=0}^{\infty} H[f^n(x)]$ converges uniformly in $I \cap (\xi - \delta, \xi + \delta)$. This completes the proof.

In particular, it follows from Theorem 5 that equation (18) has a unique continuous solution in $(-\infty, +\infty)$.

- 3. Now we turn to equation (2). In this case it will be necessary to make somewhat stronger assumptions. Regarding f(x) we shall assume that it fulfils (i) and, moreover,
 - (iv) The function f(x) is strictly increasing in I.

The function g(x, y) will be subjected to the following conditions:

- (v) The function g(x, y) is defined and continuous in an open region Ω containing the point (ξ, η) , where η is a solution of $\eta = g(\xi, \eta)$. For every fixed $x \in I$ the function g(x, y) as a function of y is invertible. Moreover, g fulfils the Lipschitz condition (6) in $U \cap \Omega$, where U is given by (7) and $\gamma(x)$ has a positive lower bound in I.
- Ω_x being defined by (11), we denote by Γ_x the set of the values (the range) of the function g(x, y) for $y \in \Omega_x$.
 - (vi) For every $x \in I$ the set Ω_x is an interval and $\Gamma_x = \Omega_{f(x)}$.

We now replace the class Φ by the class Ψ of functions $\varphi(x)$ fulfilling conditions (a), (b) and

(c') For every $x \in I$ we have $\varphi(x) \in \Omega_x$.

THEOREM 6. Suppose that hypotheses (i), (iv), (v) and (vi) are fulfilled and that there exists an interval $J \subset I$ such that $\lim_{n\to\infty} G_n(x) = 0$ uniformly in J. Then equation (2) has in I either no solution $\varphi \in \Psi$, or a solution $\varphi \in \Psi$ depending on an arbitrary function.

Proof. Let us suppose that equation (2) has a solution $\varphi_0 \in \Psi$ in I. We shall show that the general solution $\varphi \in \Psi$ of equation (2) in I depends on an arbitrary function. For the sake of simplicity we shall assume that ξ is the left end-point of the interval I. In other cases the proof runs similarly.

It follows from (9) that, for every k, the sequence $G_n(x)$ converges to zero uniformly in $f^k(J)$. Therefore we may choose an $x_0 \in I$ and an interval $\langle a, b \rangle \subset \langle f(x_0), x_0 \rangle$ so that $x_0 - \xi < c$, $|\varphi_0(x) - \eta| < \frac{1}{2}d$ for $x \in \langle \xi, x_0 \rangle$, and $\lim_{n \to \infty} G_n(x) = 0$ uniformly in $\langle a, b \rangle$. Hence it follows by a simple argument that there exists a positive constant M such that

(21)
$$G_n(x) \leq \mathbf{M}$$
 for $x \in \langle a, b \rangle$ and $n = 0, 1, 2, ...$

Let $\psi(x)$ be an arbitrary function defined and continuous in $\langle f(x_0), x_0 \rangle$, and fulfilling the following conditions:

(22)
$$\psi[f(x_0)] = g(x_0, \psi(x_0)),$$

(23)
$$|\psi(x) - \varphi_0(x)| < d/2M \quad \text{for } x \in \langle a, b \rangle,$$

(24)
$$\psi(x) = \varphi_0(x) \quad \text{for } x \in \langle f(x_0), x_0 \rangle \setminus \langle a, b \rangle,$$

(25)
$$\psi(x) \in \Omega_x \quad \text{for } x \in \langle f(x_0), x_0 \rangle.$$

It follows from (22) and (25) that there exists a unique function $\varphi(x)$ defined in $I \setminus \{\xi\}$, satisfying equation (2) in $I \setminus \{\xi\}$ and such that $\varphi(x) \in \Omega_x$ for $x \in I \setminus \{\xi\}$ and

(26)
$$\varphi(x) = \psi(x) \quad \text{in } \langle f(x_0), x_0 \rangle.$$

This function is continuous in $I \setminus \{\xi\}$. ([5], p. 70, Theorem 3.1). Putting $\varphi(\xi) = \eta$, we extend φ to a solution of equation (2) in I and in order to prove that $\varphi \in \Psi$ it is enough to show that φ is continuous at ξ , i.e. that

$$\lim_{x\to\xi}\varphi(x)=\eta.$$

We shall show that

(28)
$$|\varphi[f^n(x)] - \varphi_0[f^n(x)]| \le G_n(x) |\psi(x) - \varphi_0(x)|$$

for $x \in \langle f(x_0), x_0 \rangle, n = 0, 1, 2, ...$

For n = 0 (28) results from (26). Supposing (28) true for an $n \ge 0$, we have by (21), (23) and (24)

$$egin{aligned} |arphi[f^n(x)] - \eta| &\leqslant |arphi[f^n(x)] - arphi_0[f^n(x)]| + |arphi_0[f^n(x)] - \eta| \ &\leqslant G_n(x) |arphi(x) - arphi_0(x)| + |arphi_0[f^n(x)] - \eta| \ &\leqslant M rac{d}{2M} + rac{d}{2} = d. \end{aligned}$$

Consequently

$$\begin{split} |\varphi[f^{n+1}(x)] - \varphi_0[f^{n+1}(x)]| &= \left| g(f^n(x), \varphi[f^n(x)]) - g(f^n(x), \varphi_0[f^n(x)]) \right| \\ &\leq \gamma [f^n(x)] |\varphi[f^n(x)] - \varphi_0[f^n(x)]| \\ &\leq \gamma [f^n(x)] G_n(x) |\psi(x) - \varphi_0(x)| \\ &= G_{n+1}(x) |\psi(x) - \varphi_0(x)|, \end{split}$$

which proves (28).

Given an $\varepsilon > 0$, we can find an N such that

(29)
$$G_n(x) < \frac{2M}{d} \varepsilon \quad \text{for } x \in \langle a, b \rangle \text{ and } n \geqslant N.$$

For every $x \in (\xi, f^N(x_0))$ we can find an $x^* \in \langle f(x_0), x_0 \rangle$ and an $n \ge N$ such that $x = f^n(x^*)$. Hence in view of (28)

$$|\varphi(x) - \varphi_0(x)| = |\varphi[f^n(x^*)] - \varphi_0[f^n(x^*)]| \leqslant G_n(x^*)|\psi(x^*) - \varphi_0(x^*)|.$$

If $x^* \in \langle a, b \rangle$, we get hence by (29) and (23)

$$|\varphi(x)-\varphi_0(x)|<\varepsilon.$$

If $x^* \langle f(x_0), x_0 \rangle \setminus \langle a, b \rangle$, then (30) is also valid, since, according to (24), $|\psi(x^*) - \varphi_0(x^*)| = 0$. (30) implies that $\lim_{x \to \xi} \langle \varphi(x) - \varphi_0(x) \rangle = 0$, whence (27) results in view of the fact that $\lim_{x \to \xi} \varphi_0(x) = \eta$.

As we see, the solution $\varphi \in \Psi$ of equation (2) may be prescribed to a great extent arbitrarily on an interval $\langle a, b \rangle$, i.e., it depends on an arbitrary function (cf. also [1], and [5], p. 45). This completes the proof.

Let us note that both cases (lack of a solution and a solution depending on an arbitrary function) can actually occur even for the linear equation (4); cf. [1], Examples 3 and 4.

Now, let us write

$$F(x) = |g(x, \eta) - \eta|,$$

and

$$H_n(x) = \sum_{i=0}^{n-2} \left\{ \prod_{j=i+1}^{n-1} \gamma[f^j(x)] \right\} F[f^i(x)] = \sum_{i=0}^{n-2} \frac{F[f^i(x)]}{G_{i+1}(x)} G_n(x), \quad n = 2, 3, \dots$$

The sequence $H_n(x)$ fulfils the following recurrences:

(31)
$$H_{n+1}(x) = \gamma [f^n(x)] H_n(x) + \gamma [f^n(x)] F[f^{n-1}(x)]$$

and

(32)
$$H_{n}[f(x)] = H_{n+1}(x) - \frac{F(x)}{\gamma(x)} G_{n+1}(x).$$

2 - Annales Polonici Mathematici XXIV

Relation (32) implies that $H_n[f(x)] \leq H_{n+1}(x)$, whence

$$(33) \qquad \sup_{\langle f^{k+1}(x_0), f^k(x_0) \rangle} H_n(x) \leqslant \sup_{\langle f(x_0), x_0 \rangle} H_{n+k}(x), \quad n \geqslant 2, k \geqslant 0.$$

In the next theorem we assume again that ξ is the left end-point of the interval I. If ξ is the right end-point, then the interval $\langle f(x_0), x_0 \rangle$ should be replaced by $\langle x_0, f(x_0) \rangle$, and if ξ is an inner point of I, then the interval $\langle f(x_0), x_0 \rangle$ should be replaced by $\langle x', f(x') \rangle \cup \langle f(x''), x'' \rangle$ with $x' < \xi < x'', x', x'' \in I$.

THEOREM 7. Suppose that hypotheses (i), (iv), (v) and (vi) are fulfilled and let ξ be the left end-point of the interval I. Further suppose that there exists an $x_0 \in I$, $x_0 \neq \xi$, such that $\lim_{n\to\infty} G_n(x) = \lim_{n\to\infty} H_n(x) = 0$ uniformly in $\langle f(x_0), x_0 \rangle$. Then equation (2) has in I a solution $\varphi \in \Psi$ depending on an arbitrary function.

Proof. In view of (9) and (33) we may replace the interval $\langle f(x_0), x_0 \rangle$ by $\langle f^{k+1}(x_0), f^k(x_0) \rangle$ with k arbitrarily large. Consequently, we may assume that x_0 is so close to ξ that

(34)
$$H_n(x) < \frac{1}{3}d \quad \text{for } x \in \langle f(x_0), x_0 \rangle, n = 2, 3, \ldots,$$

(cf. (33)) and

(35)
$$F(x) < \frac{1}{3}d \quad \text{for } x \in (\xi, x_0).$$

Further, it is easy to see that there exists a positive constant M such that

(36)
$$G_n(x) < M$$
 for $x \in \langle f(x_0), x_0 \rangle$, $n = 0, 1, 2, \dots$

Let $\psi(x)$ be an arbitrary function defined and continuous in $\langle f(x_0), x_0 \rangle$, fulfilling conditions (22) and (25) and such that

$$(37) |\psi(x) - \eta| < d/3M \text{for } x \in \langle f(x_0), x_0 \rangle.$$

Then there exists a unique function $\varphi(x)$ defined and continuous in $I \setminus \{\xi\}$, satisfying equation (2) in $I \setminus \{\xi\}$, fulfilling condition (26) and such that $\varphi(x) \in \Omega_x$ for $x \in I \setminus \{\xi\}$ ([5], p. 70, Theorem 3.1). Putting $\varphi(\xi) = \eta$ we extend φ to a solution of equation (2) in I and it is enough to show that condition (27) is fulfilled. For this purpose we shall prove the estimation

(38)
$$|\varphi[f^n(x)] - \eta| \leq H_n(x) + F[f^{n-1}(x)] + G_n(x) |\psi(x) - \eta|$$

valid for $x \in \langle f(x_0), x_0 \rangle$ and n = 2, 3, ... In fact, we have

$$|\varphi[f(x)] - \eta| = |g(x, \varphi(x)) - \eta|$$

$$\leq |g(x, \varphi(x)) - g(x, \eta)| + |g(x, \eta) - \eta|,$$

whence in view of (6), (26), (37), (36) and (35) we get for $x \in \langle f(x_0), x_0 \rangle$ (note that, by (8), $\gamma(x) = G_1(x)$)

$$|\varphi[f(x)] - \eta| \leqslant \gamma(x)|\psi(x) - \eta| + F(x) < \frac{2}{3}d < d,$$

and similarly

$$egin{aligned} |arphi[f^2(x)] - \eta| &\leqslant \gamma[f(x)] |arphi[f(x)] - \eta| + F[f(x)] \ &\leqslant \gamma[f(x)] \gamma(x) |arphi(x) - \eta| + \gamma[f(x)] F(x) + F[f(x)] \ &= G_2(x) |arphi(x) - \eta| + H_2(x) + F[f(x)], \end{aligned}$$

which proves (38) for n=2. Assuming (38) true for an $n \ge 2$, we have by (34), (35), (36) and (37), $|\varphi[f^n(x)] - \eta| < d$, whence it follows by (6) and by (38) for n

$$egin{aligned} |arphi[f^{n+1}(x)] - \eta| &\leqslant ig| gig(f^n(x)\,,\,arphi[f^n(x)]ig) - gig(f^n(x)\,,\,\etaig) ig| + ig| gig(f^n(x)\,,\,\etaig) - \etaig| + Fig(f^n(x)ig] \ &\leqslant \gammaig[f^n(x)ig] H_n(x) + \gammaig[f^n(x)ig] Fig[f^{n-1}(x)ig] + \ &+ \gammaig[f^n(x)ig] G_n(x) ig| \psi(x) - \etaig| + Fig[f^n(x)ig], \end{aligned}$$

and by (8) and (31) we obtain finally

$$|\varphi[f^{n+1}(x)] - \eta| \leq H_{n+1}(x) + G_{n+1}(x) |\psi(x) - \eta| + F[f^n(x)],$$

i.e. (38) for n+1.

Given an $\varepsilon > 0$, we can find an N such that

(39)
$$G_n(x) < \frac{M}{d} \epsilon \quad \text{for } x \in \langle f(x_0), x_0 \rangle \text{ and } n \geqslant N,$$

(40)
$$H_n(x) < \frac{1}{3} \varepsilon$$
 for $x \in \langle f(x_0), x_0 \rangle$ and $n \geqslant N$,

(41)
$$F(x) < \frac{1}{3} \varepsilon \quad \text{for } x \in (\xi, f^{N-1}(x_0)).$$

Condition (41) implies that

(42)
$$F[f^{n-1}(x)] < \frac{1}{3}\varepsilon \quad \text{for } x \in \langle f(x_0), x_0 \rangle \text{ and } n \geqslant N.$$

For every $x \in (\xi, f^N(x_0))$ we can find an $x^* \in \langle f(x_0), x_0 \rangle$ and an $n \ge N$ such that $x = f^n(x^*)$. Hence it follows by (38), (39), (40), (42) and (37) that

$$\begin{split} |\varphi(x) - \eta| &= |\varphi[f^n(x^*)] - \eta| \\ &\leq H_n(x^*) + F[f^{n-1}(x^*)] + G_n(x^*) |\psi(x^*) - \eta| < \varepsilon. \end{split}$$

This proves relation (27) and completes the proof.

Acknowledgement. The authors are indebted to the referee for many helpful comments, which allowed them to remove a few obscurities occurring in the original version of this paper.

References

- [1] B. Choczewski and M. Kuczma, On the "indeterminate case" in the theory of a linear functional equation, Fund. Math. 58 (1966), p. 163-175.
- [2] J. Kordylewski and M. Kuczma, On the functional equation $F(x, \varphi(x), \varphi[f(x)]) = 0$, Ann. Polon. Math. 7 (1959), p. 21-32.
- [3] M. Kuczma, On continuous solutions of a functional equation, ibidem 8 (1960), p. 209-214.
- [4] On the form of solutions of some functional equations, ibidem 9 (1960), p. 55-63.
- [5] Functional equations in a single variable, Monografie Mat. 46, Warszawa 1968.

Reçu par la Rédaction le 25. 4. 1969

1