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ON THE ARITY OF IDEMPOTENT REDUCTS OF GROUPS
BY

J. PLONKA (WROCLAW)

0. For a given algebra A = (4; F) we shall denote by A(F) the
family of its all algebraic operations, and by A™(F) the family of its all
n-ary algebraic operations. In the sequel we shall not distinguish algebras
with the same set A (F). E. Marczewski defined the arity o (%) of an algebra
N = (A4; F) as follows:

o(¥) = min{n: (4; F) = (4; A" (F))}.

The number ¢ has been studied by K. Urbanik ().

An operation f(x,,...,2,) is called idempotent if f(x,x,...,2) = .
For a given algebra % = (4; F) let J(A) be the algebra (4 ;I(F)), where
I(F) denotes the family of all idempotent algebraic operations of the
-algebra A. We shall call J(A). the idempotent reduct of A. In this note
we shall investigate the arity of idempotent reducts of groups.

1. Let @ = (G;+, ') be a group. The following two observations
are obvious:
(]

(i) Every algebraic operation in G can be written in the form w;-’ll oo Wiy
where 6 = 4-1, and for every k either ¢, # 4xy; Or O #* Opy ;.

(ii) An operation of the form given in (i) is idempotent if and only
if the number of exponents d; equal to +1 equals p+1 with n = 2p+1.

Let us define f(z,y,2) =2 'yz, g(x, v, 2) = xy~ ‘2, h(w, ¥, 2) = xyz"".

LeMMA 1. For every group G we have I(Q) = (G; f, h).

Proof. We have to show that the operations f and 5 generate all
idempotent operations of G. We shall do it by induction with respect to
the number p occurring in (ii). For p = 0 and p = 1 this is trivial. Assume
now that every algebraic idempotent operation with p = m—1 is gen-
erated by f and h, and let s(=,,...,2,) be an idempotent algebraic opera-
tion with p = m, n = 2m-41. There must exist then an index k with

(*) K. Urbanik, On some numerical constanits assoctated with abstract algebras, 11,
Fundamenta Mathematicae 52 (1968), p. 191-210. ‘
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1< k< 2p—1 and such that wf,’: wf};jll wffjg is equal to f, g or h, because

otherwise every two variables with positive exponents would be sepa-
rated by at least two variables with negative exponents and so the number

of variables with negative exponents occurring in s(z,,...,,) would
. é S S .
exceed 2p, contrary to (ii). Let us denote @iy wiktlakt2 by u!. We obtain

a word s which is idempotent and in which the number of positive expo-
nents equals p—1. In view of our induction assumption this word is
a superposition of f and A; but %! is equal to f, g or h, and so by (i) the
word s can be written as the superposition of f and A.

As a corollary the following result follows:

THEOREM L. For every group G we have o(I(G)) < 3.

Now we prove

THEOREM II. For a free group G we have o(3I(G)) = 3.

Proof. Observe that in any free group of the class defined by X2 = 1
there are no non-trivial binary idempotent operations, and so for those
groups the equality o(3J(@)) = 3 holds. Clearly, this implies that the
last equality holds for any free group.

LEMMA 2. To each mnatural mwmber n there corresponds a natural
number ky, such that the following congruence holds:

(n+1)[(n+1)*0—1]

n

= 2n(mod 2n+41).

Proof. Take ky = ¢(2n+1)— 1. Then, by Euler’s theorem, we have
(n+1)¥*! = 1(mod 2n+1),

and so
ko __ ko __
(n+1)[(n+1)0—1 op = (n+1)[(n+41)0—1] 11
n n
_ D[t —1]4n _ @ty
- n - n
= 0(mod 2n-+1).
LEMMA 3. If G is an abelian group in which the identity ™' =1
is satisfied, then I (@) is a groupoid (@; f(z, y)), where f(w,y) = o™ 1y"*1,

Proof. Let fo(»,y) =f(v,y) and fii.(v,y) = f(w,fk_1(w, ?/)) It
easy to see that the variable x occurs in fi(x,y) with the exponent
(n+1)[(n+1)*—1]/n, and so, in view of Lemma 2, we shall have for
some k, the equality fi, (2, y) = «™y’. Moreover, we have f(x,f(y, 2))
= gy T2 — g ly2 = f(x, y, 2), where f is defined as in Lemma 1.
Since our group is abelian, we have h(z, ¥, 2) = f(2, #, ¥), and so it follows
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from Lemma 1 that every idempotent.algebraie operation in G can be
represented as a superposition of f(z, y).

From this lemma we get the following

THEOREM IIL. If G is an abelian group satisfying x*"*' =1, then
o(3(@) = 2.

Finally, we prove

THEOREM IV. Let G be an abelian group satisfying o™ = 1 but not
satisfying any identity of the form &*™*' =1. Then we have (I (@) = 3.
Similarly, if Z is the cyclic infinite group, then ¢(I(Z)) = 3.

Proof. It suffices to prove the first part, as the second will follow.
Observe that every idempotent algebraic operation in an abelian group
satisfying the condition a#*® = 1, where n is chosen as small as possible,
has the form wkym with k+m = 2n+1. It is clear that exactly one of
the numbers ¥ and m must be even. Superposing such operations, we
obtain operations in which at least one exponent is even. But the idempo-
tent algebraic operation f(z,y,2) = 2" 'yz has all its exponents odd,
and so it cannot be generated by binary idempotents. This proves the
theorem.
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