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Linear problems for systems of difference equations

by ZDzISLAW DENKOWSKI (Krakow)

1. In the theory of differential equations it is well known ([3], [4],
[7]-[10]) that the existence of solutions of general linear problems for
differential equations with single-valued right-hand sides is closely related
to the uniqueness of solutions of homogeneous problems for differential
equations with multi-valued right-hand sides (contingent equations).

It turns out that analoguous theorems may be proved for difference
equations. The aim of this paper is to present discrete analogues of the
Lagsota theorems given in [4] (Theorem 2.1 and Corollary 2.1) and con-
cerning the existence and uniqueness of solutions of general linear problems
for non-linear vectorial differential equations.

It is to notice that recently Szafraniec [11] obtained similar results
for difference equations, but with difference operators of special form.
Owing to the general form of difference operator we deal with in this
paper, the theorems we prove in the sequel generalize his results.

Similarly, much like as the above mentioned theorems of Lasota
have been successfully applied to many particular boundary value problems
for differential equations ([1], [6], [12]), the theorems we give in
this note can be used to various particular boundary value problems
for difference equations (cf. [2], see also Section 5).

In Section 2 we fix notations and introduce some notions. Next,
in Section 3 we quote a generalization of the first theorem of Fredholm
due to Lasota [4] and we state a lemma which will be needed in the sequel.
The main results are contained in Section 4. At last in Section 5 we show
how, by a simple application of these results, one can easily get theorems
of Lasota obtained in [6] on the other way.

2. Let B be a Banach space and ¢(B) — the set of all non-empty
convex subsets of B.

For aeB, A c B, as usual, |al, 6(a, A), and |A| will denote the
norm of a vector a, its distance to set A and sup{|al|: aeA}, respectively.

A map H: B —¢(B) will be called homogencous if, for every aeB
and any real A, H(Aa) = AH(a), compact if, for any bounded subset D

of B, the closure of the set | J H(a) is compact in B, upper semi-continuous
aeD '
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if its graph {(a,b): aeB,beH(a)} is closed in BxB and completely
continuous if it is compact and upper semi-continuous.
It is easy to see that a homogeneous map H is compact if and only

if the closure of the set | H(a) is compact. A map h: B — B will be
llaii=1

called completely continuous if the map Bsa — {h(a)}ec(B) is completely
continuous, {k(a)} denoting the set consisting only of h(a).

In the sequel R™ will denote the m-dimensional Euclidean space
with the Euclidean norm |p|, and cf(R™) — the set of all non-empty,
closed and convex subsets of R™.

The set {0,...,n} will be denoted by N. For keN we define the
difference operators A®: Rrt! . Rrtl vk, Rrtl _ R+l a5 follows:

Ay — (AW, ..., APg )
vhy — (V®y,, ..., V¥9,)
and, for ieN,

A(o)’vi - V(o)'vi == ’v,;,

(v = (D) ..., 0;) eB")

Av, = AV p, = |’7«:+1_’”ﬂ ’b =0,...,n—1,
H T ="n,

0
V'D,,: = V(l)'v,; = | ! .
Vi—V_,, t=1,...,mn,

and, for an integer & fulfilling the inequality 2 <k < n

ABy — A(4% V), §=0,...,n—Fk,

P 0, ’l:=’l’lz—k+1’__.,.n’
vy, — | P =0, k-1,

i V(V(k_l)/vi), 1 =k,...,m.

Composing several times in arbitrary succession the difference opera-
tors defined above we get so-called mixed difference operators. For instance,
if » is an odd integer and %,, ..., k, are integers such that

kytkgt...d+k_y<v—(Fy+Fs+ ... +k),
then, for 7¢N, we have
A% vE-1) | yike) gD v;
0,
i=0,...,kt+k+...+k_,—1, n—(ki+ks+...+k,)+1,...,n,
A(4%=Y v vk gk g
t=kotkyt+...+k 1oy n—(kyt+ks+...+E,).
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Finally, for any fixed multi-index s = (s;,...,8,) (s$;¢{—1,1})
we define the difference operator 4,: (R™)**!' — (R™)**! by the formula

Ag(tgy ooy Up) = (Agthgy oovy Agthy)  ((Uoy .-+ 5 ) (BT,
where for u; = (4}, ..., u')eR™, ie N, we set
Ag(uiy ooy w) = (A %5, ...y 4 u")  (With 4_, =V and 4, = 4).

Thus Au¥ and Vu¥ (ieN,ke{l,..., m}) which appear in the right-
hand sides of the last formula are simply ¢-th coordinates of the vectors
Auk, ..., uF) and V(uk, ..., u¥) of R

In the sequel, a map f: N x R™— R™ will be called continuous if it
is continuous as a map of the topological space N xR™ (in N-discrete
topologie) into the topological space R™.

A map F: NXR™ —c¢f(R™) will be called wupper semi-continuous
if, for every fixed i¢¢XN, the mapping F (¢, -): B™ — ¢f(R™) is upper semi-
continuous.

As usual, mappings f*: N xR"™ >R, F¥: NXR™ >¢f(R) (k=1,..., m)
such that f = (f1,...,f™) and F*(3, q) = p,(F (4, @) (i< N, geR™, p; de-
notes k-th projection in R™) will be called the components of f and F,
respectively.

For the maps f and F defined above we admit the following definitions:
A vector

U = (Ugy ooy Up)e(B™)"T (u; = (Ui ..., u7*)eR™ for ieN)
satisfying the condition
Agw; = f(é,u;) (ieN)

(called the difference equation) will be called solution of this equation.
Similarly, the condition

Ayu;eF(i,w) (ieN),

where % = (#gy ..., %) e(B™)" (u; = (Ui, ..., u7)eR™ for ieN) will be
called difference equation with a multi-valued right-hand side or shortly
difference contingent equation, and a vector « satisfying this condition —
solution of this equation.

3. The following theorem is due to Lasota [4].

THEOREM 3.1. Let B be a Banach space, H: B — ¢(B) a homogeneous
and completely continuous map and let h: B — B be a completely continuous
map satisfying the condition

(3.1) lim L (h(a), H(a)) = 0.
hajsoo 1]l
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Under these assumptions, if a = 0 is the unique vector of B satisfying
the condition
(3.2) acH(a),

then there exisls at least one solution of the equation
(3.3) a = h(a).

Now, we state a simple lemma which will be needed in the proof of
theorems contained in the next section.

LeMMA. For any integer k, a homogeneous and upper semi-continuous
map H: R* — c¢(R*) is completely continuous.

Proof. It suffices to show that the set | ) H(a) is bounded. Suppose,

lal=1
on the contrary, that there is a sequence {p,} = |J H(a) satisfying the
lal=1
condition

[p,] =00 (¥ = o0).
Then there exists a sequence {u,} such that
poeH(u), lu| =1.

Setting ¢, = p,/lp,| (» =1,2,...), by the homogeneounity of H
we get
U,

[P,

Passing to suitable subsequences, if necessary, we may assume that

q,eH( ) r=1,2,...).

4 >¢q (v —o0).

Hence we obtain |g,] = 1 what is impossible because the condition

%, >0 (v > o0)
p.|
and the upper semi-continuity of H imply that ¢,¢H (0) and, consequently,
by the homogeneouity of H, we should have |g,] = 0. This confradiction
completes the proof.

4, For maps F: NXR™ —> ¢f(R™), f: NXR"—>R"™ and L:

{R™™! > R™ we make following assumptions:
(i) The components of F satisfy the condition F*(0,p) = {0} if

8, = —1 and F*¥(n,p) = {0}ifs, =1 (k =1,...,m), where peR™ and s,
denotes the k-th component of multi-index s which appears in the
definition of A4,.

F is upper semi-continuous and homogeneous with respect to p
{F (¢, Ap) = AF (¢, p) for AcR).
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(ii) The components of f satisfy the condition f¥(0, p) = 0ifs, = —1
and f¥(n,p) =0 if s, =1 (k =1,...,m), where p,s, are defined as
above.

f is continuous and satisfies the condition

1 v |
(4.1) 11’27;“1’ 8(f(i, ), Fli, p)) = 0.

Ipl<t

(iii) Liscontinuousand homogeneous, i.e. LAu = A Lu (A< R, ue(R™)"*1),
(iv) f satisfies condition (ii) with (4.1) replaced by
(4.2) f,p)—fG,9)eF(t,p—q) (ieN,p,qeR"™),
(v) L is linear (additive and homogeneous) and continuous.
Now we shall consider two linear problems.

The first of them consists in the search for a solution u = (g, ..., u,)
e(R™)"*! of the difference equation

(4.3) Agu; = f(iyu;)  (ieN),

satisfying the condition
(4.4) Lu =r (reR™).

The second one consists in the search for a solution of the difference
contingent equation

(4.5) Aqu;eF(i,u;) (ieN),
satisfying the homogeneous condition
(4.6) Lu =0.
The interdependence between these two problems is given by theo-

rems we state below.

THEOREM 4.1. If the maps F,f, L satisfy conditions (i), (ii), (iii) and
problem (4.5), (4.6) has the unique solution w = 0, then for any reR™
problem (4.3), (4.4) has at least one solution.

THEOREM 4.2. If the maps F,f, L satisfy conditions (i), (iv), (v) and
problem (4.5), (4.6) has the unique solution w = 0, then for any reR™
problem (4.3), (4.4) has exactly ome solution.

Proof of Theorem 4.1. We set B = (R™)"*', There is a simple iso-
morphic map of B onto RF, where k¥ = m(n+ 1), so B is a Banach space.

7
We put D' A4 =0 if, u<v (4¢R).

i=
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We define a mapping k: B — B setting h(u) = %, where the vector
% = (#Wyy ..., %,) of B is defined by the formula

i—1
DG, )+ U+ (Luf—r* if 5, =1,

—k 7=0

u; = i
DG, w)+ vk (Lu)fe—r* if g = — 1
j=1

((eN, k=1,...,m)
k

(wk, uk, f*(j, u;), (Lw)*, v* denote the %-th components of vectors ;, u;,
f(j,w;), Lu, r of B™, respectively).

From the definition of » and from the condition put on components
70, p), f¥(n, p) in (ii) it easily follows that the fixed point of 7 is a solution
of problem (4.3), (4.4). Thus to complete the proof it suffices to apply
Theorem 3.1. To this end we define a map H: B — ¢(B) as follows:

Let H(u) be the set of all vectors # of B for which there is a vector
w = (Wyy ..., w,)eB such that w,eF(j, u;) (jeN) and

-1
[Zw;-‘+u',,‘+(1}u)" if 8, =1
wf =7 (ieN,k=1,...,m)
lZw}‘{-u’H—(Lu)" if ¢, = —1
j=1

(notations — as in the definition of &).

From the assumption that the sets F(j,u;) (jeN) are non-empty
and convex it follows that H(u) is a non-empty and convex set.

Thus, for to apply Theorem 3.1 it remains to verify that

10 H is homogeneous and completely continuous,

20 p is completely continuous,

3° h a,nd' H satisfy .condition (3.1),

40 y = 0 is the unique vector of B satisfying the condition ue¢H (u).

For 1° it suffices to show that H is completly continuous, since the
homogeneouity of H is a simple consequence of the definition of H and
of condition (i).

First of all we show that H is upper semi-continuous. To this end

v

suppose that sequences {u}, {'z’;} < B satisfy the condition

N

S ’ 0 r v
(4.7) %, %—>u (v—>o00), wueH(u)(»=1,2,..),
0
u

0
where % and u are fixed vectors of B.
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Then there exists a sequence {'JJ} < B such that

S Wik (L) i g=1,

48 uk={"" w; < F(j, )
Nk pub+ (Luf it 5= —1,
o (1eN,jeN,k=1,...,m).

Hence, and from the condition put on components F*(0, p), F*(n, p)
in (i) we have

Il

v

(4.9) A, —w,, weF(i,u) ((e<N,v=2,1,..).

Conditions (4.7) and (4.9), in view of the continuity of the difference
operator A,, imply

i i v 0 = .Y
(4.10) Au, —> A,  w,—>u, (v —>o00), AsueF (i, u,)

(ieN,v =1,2,...).
0
Hence, setting 'looi = A, u;, we get by (i)
0
w,eF (i, Us).
Thus formula (4.8) has at the limit (as » — oo) the following form
-1
Nk a4+ (L) if 8 =1,
7=0 0 . 0
= i w;eF (), u;)
0% L Jk Ok
wa,. +uy+ (Lu) if 8 = —1,
j=1

(ieN,k=1,...,m)

Sle
oo

L 0 .
what means that w eH(u) and, in consequence, shows that H is upper

semi-continuous. Now, a simple application of Lemma proves that H
is completely continuous.

For 20 it suffices to observe that condition (ii) implies the continuity
of » and the continuity is equivalent to the complete continuity for
mappings in finite dimensional spaces.

Condition (4.1), assumed in (ii), simply implies 3°.

For to prove 4°, suppose that ueH(u). Then from the definition
of H and from (i) we get ’

Au; =w; (ieN), Lu =0,
for w = (w,, ..., w,)eB such that

weF@E,u) (ieN).
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Hence the vector w is a solution of problem (4.5), (4.6) and by
assumption of our theorem we have 4 = 0, what proves 4° and completes
the proof of Theorem 1.

Proof of Theorem 4.2. It is easy to verify that conditions (i), (iv)
and (v) imply conditions (i), (ii) and (iii). Indeed, setting ¢ = 0 in (4.2)
we get

f@, p)—f(,0)eF(i,p) (ieN),

what immediately yields (4.1).

Thus the existence of a solution of problem (4.3) and (4.4) is simply
a consequence of Theorem (4.1).

For to prove its uniqueness, suppose that vectors «,v of (R™)"*!
are solutions of problem (4.3) and (4.4). Then, for the vector w = u—w,
* we have
Asw,eF(i,w;) (ieN),Lw =0,

what, by the assumption of our theorem, gives w = 0 and completes the
proof of the theorem.

5. In order to illustrate the above theorems we give a simple
application.

Lasota [5] shows that if the function g: N X R* > R satisfies the
following inequality:

(5.1) 19(%y 1y P2)| < A |P1[+ B|ps|+ 0O,
where the non-negative constans 4, B, C fulfil the inequality
1 1 1
(5.2) A— +B-—[”+ <1
. g T 2 2
48in*—
2n

([z] denotes the whole part of z), then there exists at least on solution
of problem

(5.3) VAav, = g(i,v;,, dv;) (1 =1,...,n—1),
(5‘4) vy = @, v, = ﬂ’

and provided condition (5.1) is replaced by a Lipsehitz condition of the
form

(5.5) 1g(2y P1y P2)—9g(2, P1, Do)l < A[py— D1l + Blp2— P2l

the solution is unique.
Observe that setting v, = %}, dv, = %}, 8 = (1, —1) (now we have
Au; = (Aul, pul) (ieN)) and defining mappings f: N xR? > R?,
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L: (R*)**!' - R? by the formulae
f(i, wt, w?) = (w?, g(i, wh, w?)), =1,...,n—1(w = (w!, w?eR?),
(0, w', w?) = (w? 0), f(n,w?, w?) =(0,0),
Lu = (uwi,u.), where u = (%g, ..., %,)e(R?)"*"!
we can write problem (5.3) and (5.4) in the following form:
Agu; =f(i,w;) (ieN) Lu =(a,p).

Now, in order to obtain any theorem concerning the existence or
unigueness of solutions of \this problem it suffices to apply Theorem 4.1
or Theorem 4.2, fixing in advance a condition which assures that v« =0
is the unique solution of the problem

Au,eF(i,u) (ieN) Lu =0,
where the map F: N X R? — ¢f(R?) is defined by the formulae
F(i, w) = {(p%, p¥) e B%: p* = w?, [p?¥ < A w4 B|w?}
(6 =1,...,n—1),
F(0,w) = {(w? 0)}, F(u,w)={0,0)}.

In the case of the Lasota result mentioned at the begining of this
section, such a condition is given by inequality (5.2) (see [5]).
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