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Let f be a real function defined on the real line R. For ¢ R, lot

fE+m)—f(6—h)
2h

Then lim sup P(&, k) and lim inf & (&, h) are called the upper and
h—0 h—0

D(&,h) =

] hER,h ?’10-

the lower symmetric derivative of f at & and are denoted by ]T"(E) and
f( )(£), respectively [3]. If fO)(&) and f"’(E) are equal and finite, then the

function f is said to be symmemcally differentiable at & and the common
value is called the symmetric derivative [2] or the Schwarz derivative [4]
(p. 36) of f at & and is denoted by f)(&). It is clear that if the ordinary
derivative f'(&) at £ exists, then f(7(£) also exists and they are equal;
but the converse is not true.

We introduce the following definitions:

A function f is symmetrically increasing (decreasing) at a point ¢ iff
there exists a real number %, > 0 such that

fE+) > fe—1)  [fe+t)<f(E—1)] for all ¢, 0< t< h,.

The function f is symmetrically non-decreasing (non-increasing) at & itf
there exists h; > 0 such that

FE+FD=f(E—1)  [f(E+)<Sf(E—1)] for all t,0< t< hy.

A function f is said to be symmetrically increasing (resp. non-decreasing,
decreasing, non-tncreasing) on an interval I iff f is symmetrically increasing
(resp. non-decreasing, decreasing, non-increasing) at each point of I.

A function f is said to be nowhere symmetrically monotone in an interval
I iff there is no subinterval of I in which f is symmetrically monotone.

A function f is symmetrically oscillating at a point £ iff f is neither
symmetrically non-increasing nor symmetrically non-decreasing at & That
is, a point £ is a point of symmetric oscillation for the function f iff given
any h > 0, there are ¢,, ¢, satisfying 0 <?, < h, 0 <?,< h, such that

FE+4) > f(E—1t) and  f(é41,) < f(E—t).
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Remarks. 1. The following definitions are known [1].
A function f is said to be increasing (decreasing) at a point £ on the
right iff there exists a real number k; > 0 such that

f@)>f(&) U@ <f(H] for é<a<i+th,.

The function f is said to be non-decreasing (non-increasing) at & on
the right iff there exists h; > 0 such that

f@)=f(&) @) <f(&)] for E<a<éth,.

If the point & is such that in every right neighbourhood of & there
are points # and y, where f(z) < f(&) and f(y) > f(&), then f is said to
be oscillating on the right of &.

The above concepts on the left of & are similarly defined. Clearly,
if a function f is symmetrically increasing at a point £, then it need not
be increasing on the right at & or on the left at £ The function

fw) =2, @#0; f0)=1

is such that f is symmetrically increasing at the point # = 0 but f is not
increasing on the right at 0. But if a function f is increasing at a point
both on the right and op the left, then f is symmetrically increasing at &.
Thus if f is an increasing function on an interval I, then f is also symmetri-
cally increasing on I; but the converse is not true.

2. The two ideas viz. “a function f is symmetrically oscillating at
a point &” and “a function f is oscillating symmetrically on both sides
of a point £” should be carefully distinguished. The function

f(x) =wsin%, w#0; f(0)=0

is such that it is oscillating on both sides of the point x = 0 satisfying
f(@) = f(— =) for all x. So, although f is oscillating symmetrically on both
sides of 0, yet f is not symmetrically oscillating at 0 according to our
definition.

THEOREM 1. If f is conlinuous and nowhere monotone (1) in an inter-
vall I, then the set of points in I, where f is symmetrically non-decreasing,
8 of the first category.

(1) A function f is called nowhere monotone iff there is no interval in which f is
monotone. Since a non-decreasing function is also symmetrically non-decreasing,
every function which is nowhere symmetrically monotone is a nowhere monotone
function. So we shall prove our results for the class of nowhere monotone functions
which, however, will include the class of all nowhere symmetrically monotone
functions.
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Proof. Let f be a continuous nowhere monotone function in I and
let E be the set of all points of I, where f is symmetrically non-decreasing.
Then for each ze¢FE, there is A, > 0 such that

fx+1t) = f(x—t) whenever 0 < t<< kg,

For each positive integer n, let E, denote the set of all points = of
I such that
fle+1t) > f(x—t) whenever 0 <t<1/n.
Then .

E-=\JE,.
n=1
We shall show that E, is nowhere dense in I for each n. Let n be
fixed and let I' = [a, b] be any subinterval of I. We may suppose that
b—a < 1/n. Since f is nowhere monotone, there are two points ¢, del’,
¢ < d, such that f(c) > f(d). Let inf f(#) = m. Since f is continuous,

zefc,d)
the set '
8 ={z: f(®) =m;e<o<d}

is a bounded non-void closed set. Let k¥ = inf 8. Then ke8. Also f(¢) > m
and hence c¢8. Therefore ¢< k< d. Clearly {z:c<x<k}n8 =0.
Since f is continuous,

(1) f@)>m for all z,e<a<k.
c+k

Let ¢ = Then ¢'¢8. Choose any real number ¢’ such that
¢’ < ¢ < k. Then we shall show that [¢',¢"’'] N E, = 0. Let we[c’, ¢''].
Then

ae< << <k<ad<b

and hence
(2) 0<k—z<b—u<l/n.
Also
e—(k—x) =22—k>2c'"—k =c¢
and
z—(k—2a) =2c—k<2k—k = k.
Thus

ce<e—(k—a)< k.
Hence from (1)

flz—(k— )} > m = f(k) = fle+ (k—x)).

From (2) and from the construction of the set E,, we conclude that
z ¢ B, . Since xis any arbitrary point of [¢’, ¢''], it follows that [¢’, ¢’ ] N E, =0.
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Thus ¥, is nowhere dense in I and consequently the set E is of the first
category.
The following theorem can be similarly proved:

THEOREM 2. If f is continuous and nowhere monotone in an interval I,
then the set of points in I, where f is symmetrically non-increasing, is of
the fist category.

Combining Theorems 1 and 2 we get

THEOREM 3. If f is continuous and mowhere monotone in I, then the
set of points, where f is symmetrically oscillating in I, is a residual set,

Let f be a continuous nowhere monotone function defined in an
interval I and let G be the residual set in I, where f is symmetrically
oscillating. Clearly,

fO2) <0< f @) for each ze@.
Thus we get

TuHEOREM 4. If f is continuous and nowhere monotone, then except
a set of the first category, the following relation is true:

@ <0< @).

CorROLLARY 1. If f i3 conlinuous, mowhere monotone and everywhere
symmetrically differentiable, then the symmetric derivative fU)(x) vanishes
at a residual set of points.

Note 1. If f is continuous and nowhere monotone, then the sets

{o: f@)< 0} and {z: fO(x) >0}
are everywhere dense. For if there is an interval I such that
In{z: fOx)<0}=0,then f?(x)>0 for all v¢I and hence from
Theorem 3 of [3] f would be non-decreasing in I. If f is continuous,

nowhere monotone and everywhere symmetrically differentiable, then in
view of the above corollary the sets

{x: fO(x)< 0} and {x: f(z)> 0}
are everywhere dense and of the first category.

Note 2. If in the above corollary we assume the existence of f('(x)
on a residual set only, then also the conclusion remains valid.

COROLLARY 2. Let f be continuous and symmetrically differentiable.
If the sets

{: fN2)>1} and {z: fO@)< i}
are everywhere dense, then the set
f@: fO(@) = 4}

18 a resudual set, where A is any real mumber.
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Proof. Under the hypothesis, the function f(xr)— Az is continuous
nowhere monotone and everywhere symmetrically differentiable and the
result follows from Corollary 1.

COROLLARY 3. If a continuous symmetrically differentiable function
f defined in an interval I is such that the set

B ={z: fO(x) £0, zel}
t8 of the second category in I, then there exists a subinterval of ¢n I in which

f is monotone.

Consequently, if the set ¥ is of the second category in every subin-
terval of I, then there exists an everywhere dense set of intervals in I
in each of which f is monotone.

COROLLARY 4. If f is a continuous function such that there exist two
real mumbers r, and r,,r, < 1,, for which f(x)—r,z and f(x)—r,x are
nowhere monotone, then the set of points x, where fU)(x) exists, is of the
first category.

Proof. From the above theorem the sets

G =f{o: fO@)<r, <fO@@)} and @G, = {&: fO@) <r, <fO@)
are residual. Hence G, N G, is also residual. Now for z¢G, N G,
f(')(a;) SNH<r <f_(’)(~’”)

So, for veG, N @, f(x) does not exist and this completes the proof.
From Theorem 4 it is clear that if f is continuous and if f(x) —rx
is nowhere monotone for some real number r, then the set

{o: (@) <r <fO(2)}

is a residual set. If, however, the behaviour of the function f(x)— rx
regarding its monotonicity is not known but there is a sequence of real
numbers {r,} such that r, - r as n - oo and f(#) — r, « is nowhere monotone
for each n, then also the above result holds. In fact, we prove the following
theorem:

THEOREM 5. Let f be continuous and let {r,} be a sequence of real
numbers such that r, -r a8 n— oco. Let f(x)—r,x be nowhere monotone
for each n. Then the set

{@: fO@) <r < fO (@)
18 a residual set.

Proof. Since f(x)—r,x is continuous and nowhere monotone for
each #, it follows from Theorem 4 that the set

@, = {z: fO(2) <7, <fO (@)}
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i3 a residual set. Hence the set G = (M) G, is also residual. But

n=1

G c {z: f_"’(m) <r <fO(2)}.

Since every subset of a set of the first category is again a set of the
first category, the set

{@: fO@2) <r<fO@)}.
is a residual set.
COROLLARY 1. Let f be continuous and let {r,} and {s,} be two sequences

of real numbers such that r,—>r, 8, —>8 as m— oco, where r<<s. Let
f(@)—r,x and f(x)—s,x be nowhere monotone for each n. Then the set
{o: @) <r<s<fO(2)}
18 a residual set.
THEOREM 6. Let f be continuous and let {r,} and {s,} be two sequences

of real numbers such that r, -~ — oo and 8, - o0 as. n — oo, If f(x)—r,x
and f(x)— s, x are nowhere monotone for each n, then the set
{@: fO(@) = —o0; fO(x) = +o0}
18 a residual sel.
Proof. From Theorem 4 we get that the sets

6, =fo: fO@<r<fO()} and H,={s: fO0)<s<fO@)
are both residual. Hence the set F, = G, n H, is also residual. Set

@ = (N F,. Then G is a residual set. Also
n=1
@c{o: @) = —oc0; [O(a) = +oo}.

This completes the proof.
COROLLARY 1. If f is continuous and if each of the sets
{#: fOx) = —oo} and {&: fO(z) = 400}
i3 everywhere dense in an interval I, then the sel
i8 residual in I.
Proof. Since the sets {z: fO(x) = —oo} and {&: f(x) = + o0}

everywhere dense, the functions f(x)—ro are nowhere monotone for all
real number r. Hence by the above theorem the set

{w: fO(@) = —o0; fO() = +o0}

is residual in I.
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COROLLARY 2. If f is continuous, then the set
{: fO(@) = —o0; fO(2) = +o00}

18 either nowhere dense or it 18 of the second category which is residual in
every interval in which it is everywhere dense.
COROLLARY 3. If f is continuous function such that the set

fo: —oo < fO(@) < fO(2) < +00)

18 of the second category, then there is a positive real number N such that
at least one of the following is true:

(i) for each member f(x)—rx of the family {f(x)—rz: r > N} there
exists at least one subinterval in which f(x)—rx i3 monotone;

(ii) for each member f(x)—rx of the family {f(z)+rx: r > N} there
exists at least one subinterval in whick f(x)4rx is monotone.

COROLLARY 4. Let f be continuous and let fU)(z) exists and be finite
on a set which is of the second category. Then there exists a posilive number
N such that for each member f(x)—rx of the family {f(x)—rz: |r| > N}
there exists a subinterval in which f(x)—rx is monotone.
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