Symmetric derivative of nowhere monotone functions, I

by N. K. Kundu (Arambagh) and S. N. Mukhopadhyay (Burdwan)

Let f be a real function defined on the real line R. For $\xi \in R$, let

$$\Phi(\xi,h) = \frac{f(\xi+h)-f(\xi-h)}{2h}, \quad h \in \mathbb{R}, h \neq 0.$$

Then $\lim_{h\to 0} \sup \Phi(\xi,h)$ and $\lim_{h\to 0} \inf \Phi(\xi,h)$ are called the *upper* and the lower symmetric derivative of f at ξ and are denoted by $\overline{f^{(\prime)}}(\xi)$ and $\underline{f^{(\prime)}}(\xi)$, respectively [3]. If $\overline{f^{(\prime)}}(\xi)$ and $\underline{f^{(\prime)}}(\xi)$ are equal and finite, then the function f is said to be symmetrically differentiable at ξ and the common value is called the symmetric derivative [2] or the Schwarz derivative [4] (p. 36) of f at ξ and is denoted by $f^{(\prime)}(\xi)$. It is clear that if the ordinary derivative $f'(\xi)$ at ξ exists, then $f^{(\prime)}(\xi)$ also exists and they are equal; but the converse is not true.

We introduce the following definitions:

A function f is symmetrically increasing (decreasing) at a point ξ iff there exists a real number $h_{\xi} > 0$ such that

$$f(\xi + t) > f(\xi - t)$$
 $[f(\xi + t) < f(\xi - t)]$ for all t , $0 < t < h_{\xi}$.

The function f is symmetrically non-decreasing (non-increasing) at ξ iff there exists $h_{\xi} > 0$ such that

$$f(\xi+t) \geqslant f(\xi-t)$$
 $[f(\xi+t) \leqslant f(\xi-t)]$ for all $t, 0 < t < h_{\xi}$.

A function f is said to be symmetrically increasing (resp. non-decreasing, decreasing, non-increasing) on an interval I iff f is symmetrically increasing (resp. non-decreasing, decreasing, non-increasing) at each point of I.

A function f is said to be nowhere symmetrically monotone in an interval I iff there is no subinterval of I in which f is symmetrically monotone.

A function f is symmetrically oscillating at a point ξ iff f is neither symmetrically non-increasing nor symmetrically non-decreasing at ξ . That is, a point ξ is a point of symmetric oscillation for the function f iff given any h > 0, there are t_1 , t_2 satisfying $0 < t_1 < h$, $0 < t_2 < h$, such that

$$f(\xi + t_1) > f(\xi - t_1)$$
 and $f(\xi + t_2) < f(\xi - t_2)$.

Remarks. 1. The following definitions are known [1].

A function f is said to be increasing (decreasing) at a point ξ on the right iff there exists a real number $h_{\xi} > 0$ such that

$$f(x) > f(\xi)$$
 $[f(x) < f(\xi)]$ for $\xi < x < \xi + h_{\xi}$.

The function f is said to be non-decreasing (non-increasing) at ξ on the right iff there exists $h_{\xi} > 0$ such that

$$f(x) \geqslant f(\xi)$$
 $[f(x) \leqslant f(\xi)]$ for $\xi < x < \xi + h_{\xi}$.

If the point ξ is such that in every right neighbourhood of ξ there are points x and y, where $f(x) < f(\xi)$ and $f(y) > f(\xi)$, then f is said to be oscillating on the right of ξ .

The above concepts on the left of ξ are similarly defined. Clearly, if a function f is symmetrically increasing at a point ξ , then it need not be increasing on the right at ξ or on the left at ξ . The function

$$f(x) = x, \quad x \neq 0; \quad f(0) = 1$$

is such that f is symmetrically increasing at the point x=0 but f is not increasing on the right at 0. But if a function f is increasing at a point both on the right and on the left, then f is symmetrically increasing at ξ . Thus if f is an increasing function on an interval I, then f is also symmetrically increasing on I; but the converse is not true.

2. The two ideas viz. "a function f is symmetrically oscillating at a point ξ " and "a function f is oscillating symmetrically on both sides of a point ξ " should be carefully distinguished. The function

$$f(x) = x \sin \frac{1}{x}, \quad x \neq 0; \quad f(0) = 0$$

is such that it is oscillating on both sides of the point x = 0 satisfying f(x) = f(-x) for all x. So, although f is oscillating symmetrically on both sides of 0, yet f is not symmetrically oscillating at 0 according to our definition.

THEOREM 1. If f is continuous and nowhere monotone (1) in an intervall I, then the set of points in I, where f is symmetrically non-decreasing, is of the first category.

⁽¹⁾ A function f is called nowhere monotone iff there is no interval in which f is monotone. Since a non-decreasing function is also symmetrically non-decreasing, every function which is nowhere symmetrically monotone is a nowhere monotone function. So we shall prove our results for the class of nowhere monotone functions which, however, will include the class of all nowhere symmetrically monotone functions.

Proof. Let f be a continuous nowhere monotone function in I and let E be the set of all points of I, where f is symmetrically non-decreasing. Then for each $x \in E$, there is $h_x > 0$ such that

$$f(x+t) \geqslant f(x-t)$$
 whenever $0 < t < h_x$.

For each positive integer n, let E_n denote the set of all points x of I such that

$$f(x+t) \geqslant f(x-t)$$
 whenever $0 < t < 1/n$.

Then

$$E = \bigcup_{n=1}^{\infty} E_n.$$

We shall show that E_n is nowhere dense in I for each n. Let n be fixed and let I' = [a, b] be any subinterval of I. We may suppose that b-a < 1/n. Since f is nowhere monotone, there are two points c, $d \in I'$, c < d, such that f(c) > f(d). Let $\inf_{x \in [c,d]} f(x) = m$. Since f is continuous, the set

$$S = \{x: f(x) = m; c \leqslant x \leqslant d\}$$

is a bounded non-void closed set. Let $k = \inf S$. Then $k \in S$. Also f(c) > m and hence $c \notin S$. Therefore $c < k \le d$. Clearly $\{x : c \le x < k\} \cap S = 0$. Since f is continuous,

(1)
$$f(x) > m \quad \text{for all } x, c \leqslant x < k.$$

Let $c' = \frac{c+k}{2}$. Then $c' \notin S$. Choose any real number c'' such that c' < c'' < k. Then we shall show that $[c', c''] \cap E_n = 0$. Let $x \in [c', c'']$. Then

$$a \leq c < c' \leq x \leq c'' < k \leq d \leq b$$

and hence

$$(2) 0 < k - x < b - a < 1/n.$$

Also

$$x-(k-x) = 2x-k \geqslant 2c'-k = c$$

and

$$x-(k-x) = 2x-k < 2k-k = k$$
.

Thus

$$c \leqslant x - (k - x) < k$$
.

Hence from (1)

$$f(x-(k-x)) > m = f(k) = f(x+(k-x)).$$

From (2) and from the construction of the set E_n , we conclude that $x \notin E_n$. Since x is any arbitrary point of [e', e''], it follows that $[e', e''] \cap E_n = 0$.

Thus E_n is nowhere dense in I and consequently the set E is of the first category.

The following theorem can be similarly proved:

THEOREM 2. If f is continuous and nowhere monotone in an interval I, then the set of points in I, where f is symmetrically non-increasing, is of the fist category.

Combining Theorems 1 and 2 we get

THEOREM 3. If f is continuous and nowhere nonotone in I, then the set of points, where f is symmetrically oscillating in I, is a residual set.

Let f be a continuous nowhere monotone function defined in an interval I and let G be the residual set in I, where f is symmetrically oscillating. Clearly,

$$f^{(\prime)}(x)\leqslant 0\leqslant \overline{f^{(\prime)}}(x) \quad ext{ for each } x\,\epsilon G.$$

Thus we get

THEOREM 4. If f is continuous and nowhere monotone, then except a set of the first category, the following relation is true:

$$\underline{f^{(\prime)}}(x)\leqslant 0\leqslant \overline{f^{(\prime)}}(x)$$
.

COROLLARY 1. If f is continuous, nowhere monotone and everywhere symmetrically differentiable, then the symmetric derivative $f^{(')}(x)$ vanishes at a residual set of points.

Note 1. If f is continuous and nowhere monotone, then the sets

$$\{x \colon f^{(')}(x) < 0\}$$
 and $\{x \colon \overline{f^{(')}}(x) > 0\}$

are everywhere dense. For if there is an interval I such that $I \cap \{x: f^{(')}(x) < 0\} = 0$, then $f^{(')}(x) \ge 0$ for all $x \in I$ and hence from Theorem 3 of [3] f would be non-decreasing in I. If f is continuous, nowhere monotone and everywhere symmetrically differentiable, then in view of the above corollary the sets

$$\{x \colon f^{(')}(x) < 0\}$$
 and $\{x \colon f^{(')}(x) > 0\}$

are everywhere dense and of the first category.

Note 2. If in the above corollary we assume the existence of $f^{(\prime)}(x)$ on a residual set only, then also the conclusion remains valid.

COROLLARY 2. Let f be continuous and symmetrically differentiable. If the sets

$$\{x: f^{(')}(x) > \lambda\}$$
 and $\{x: f^{(')}(x) < \lambda\}$

are everywhere dense, then the set

$$\{x\colon f^{(\prime)}(x)=\lambda\}$$

is a resudual set, where λ is any real number.

Proof. Under the hypothesis, the function $f(x) - \lambda x$ is continuous nowhere monotone and everywhere symmetrically differentiable and the result follows from Corollary 1.

COROLLARY 3. If a continuous symmetrically differentiable function f defined in an interval I is such that the set

$$E = \{x \colon f^{(\prime)}(x) \neq 0, x \in I\}$$

is of the second category in I, then there exists a subinterval of in I in which f is monotone.

Consequently, if the set E is of the second category in every subinterval of I, then there exists an everywhere dense set of intervals in I in each of which f is monotone.

COROLLARY 4. If f is a continuous function such that there exist two real numbers r_1 and r_2 , $r_1 < r_2$, for which $f(x) - r_1 x$ and $f(x) - r_2 x$ are nowhere monotone, then the set of points x, where $f^{(')}(x)$ exists, is of the first category.

Proof. From the above theorem the sets

$$G_1 = \{x \colon \underline{f^{(\prime)}}(x) \leqslant r_1 \leqslant \overline{f^{(\prime)}}(x)\} \quad \text{ and } \quad G_2 = \{x \colon \underline{f^{(\prime)}}(x) \leqslant r_2 \leqslant \overline{f^{(\prime)}}(x)\}$$

are residual. Hence $G_1 \cap G_2$ is also residual. Now for $x \in G_1 \cap G_2$

$$f^{(\prime)}(x) \leqslant r_1 < r_2 \leqslant \overline{f^{(\prime)}}(x)$$
.

So, for $x \in G_1 \cap G_2$, $f^{(\prime)}(x)$ does not exist and this completes the proof. From Theorem 4 it is clear that if f is continuous and if f(x) - rx is nowhere monotone for some real number r, then the set

$$\{x\colon \underline{f^{(\prime)}}(x)\leqslant r\leqslant \overline{f^{(\prime)}}(x)\}$$

is a residual set. If, however, the behaviour of the function f(x)-rx regarding its monotonicity is not known but there is a sequence of real numbers $\{r_n\}$ such that $r_n \to r$ as $n \to \infty$ and $f(x)-r_nx$ is nowhere monotone for each n, then also the above result holds. In fact, we prove the following theorem:

THEOREM 5. Let f be continuous and let $\{r_n\}$ be a sequence of real numbers such that $r_n \to r$ as $n \to \infty$. Let $f(x) - r_n x$ be nowhere monotone for each n. Then the set

$$\{x\colon \underline{f^{(\prime)}}(x)\leqslant r\leqslant \overline{f^{(\prime)}}(x)\}$$

is a residual set.

Proof. Since $f(x)-r_nx$ is continuous and nowhere monotone for each n, it follows from Theorem 4 that the set

$$G_n = \{x \colon f^{(\prime)}(x) \leqslant r_n \leqslant \overline{f^{(\prime)}}(x)\}$$

is a residual set. Hence the set $G = \bigcap_{n=1}^{\infty} G_n$ is also residual. But

$$G \subset \{x: \ \underline{f^{(\prime)}}(x) \leqslant r \leqslant \overline{f^{(\prime)}}(x)\}.$$

Since every subset of a set of the first category is again a set of the first category, the set

$$\{x:\ f^{(\prime)}(x)\leqslant r\leqslant \overline{f^{(\prime)}}(x)\}.$$

is a residual set.

COROLLARY 1. Let f be continuous and let $\{r_n\}$ and $\{s_n\}$ be two sequences of real numbers such that $r_n \to r$, $s_n \to s$ as $n \to \infty$, where r < s. Let $f(x) - r_n x$ and $f(x) - s_n x$ be nowhere monotone for each n. Then the set

$$\{x: \ \underline{f^{(\prime)}}(x) \leqslant r < s \leqslant \overline{f^{(\prime)}}(x)\}$$

is a residual set.

THEOREM 6. Let f be continuous and let $\{r_n\}$ and $\{s_n\}$ be two sequences of real numbers such that $r_n \to -\infty$ and $s_n \to +\infty$ as $n \to \infty$. If $f(x) - r_n x$ and $f(x) - s_n x$ are nowhere monotone for each n, then the set

$$\{x: \ \underline{f^{(\prime)}}(x) = -\infty; \ \overline{f^{(\prime)}}(x) = +\infty\}$$

is a residual set.

Proof. From Theorem 4 we get that the sets

$$G_n = \{x \colon f^{(\prime)}(x) \leqslant r_n \leqslant \overline{f^{(\prime)}}(x)\} \quad \text{ and } \quad H_n = \{x \colon f^{(\prime)}(x) \leqslant s_n \leqslant \overline{f^{(\prime)}}(x)\}$$

are both residual. Hence the set $F_n=G_n\cap H_n$ is also residual. Set

$$G = \bigcap_{n=1}^{\infty} F_n$$
. Then G is a residual set. Also

$$G \subset \{x: \ \underline{f^{(\prime)}}(x) = -\infty; \ \overline{f^{(\prime)}}(x) = +\infty\}.$$

This completes the proof.

COROLLARY 1. If f is continuous and if each of the sets

$$\{x: \ f^{(')}(x) = -\infty\}$$
 and $\{x: \ f^{(')}(x) = +\infty\}$

is everywhere dense in an interval I, then the set

$$\{x: f^{(\prime)}(x) = -\infty; \ \overline{f^{(\prime)}}(x) = +\infty\}$$

is residual in I.

Proof. Since the sets $\{x: f^{(\prime)}(x) = -\infty\}$ and $\{x: \overline{f^{(\prime)}}(x) = +\infty\}$ everywhere dense, the functions $\overline{f(x)} - rx$ are nowhere monotone for all real number r. Hence by the above theorem the set

$$\{x: \ \underline{f''}(x) = -\infty; \ \overline{f''}(x) = +\infty\}$$

is residual in I.

COROLLARY 2. If f is continuous, then the set

$$\{x:\ f^{(')}(x)=-\infty;\ \overline{f^{(')}}(x)=+\infty\}$$

is either nowhere dense or it is of the second category which is residual in every interval in which it is everywhere dense.

COROLLARY 3. If f is continuous function such that the set

$$\{x: \ -\infty < f^{(\prime)}(x) \leqslant \overline{f^{(\prime)}}(x) < +\infty\}$$

is of the second category, then there is a positive real number N such that at least one of the following is true:

- (i) for each member f(x)-rx of the family $\{f(x)-rx: r \ge N\}$ there exists at least one subinterval in which f(x)-rx is monotone;
- (ii) for each member f(x)-rx of the family $\{f(x)+rx: r \ge N\}$ there exists at least one subinterval in which f(x)+rx is monotone.

COROLLARY 4. Let f be continuous and let $f^{(')}(x)$ exists and be finite on a set which is of the second category. Then there exists a positive number N such that for each member f(x)-rx of the family $\{f(x)-rx: |r| \ge N\}$ there exists a subinterval in which f(x)-rx is monotone.

References

- [1] K. M. Garg, On nowhere monotone functions I, Ann. Univ. Sci. Budapestinenis de Rolando Eötvös Nominatae (Sec. Math.) 5 (1962), p. 173.
- [2] A. Khintchine, Recherches sur la structure des fonctions mesurables, Fund. Math. 9 (1927), p. 212.
- [3] S. N. Mukhopadhyay, On Schwarz differentiability IV, Acta Math. Acad. Sci. Hung. 17 (1966), p. 129.
- [4] I. P. Natanson, Theory of functions of a real variable, Vol. II, New York 1960.

NETAJI COLLEGE, Arambagh THE UNIVERSITY OF BURDWAN West Bengal, India

Reçu par la Rédaction le 23, 12, 1968