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SOME PROPERTIES OF MEASURABLE SETS
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By R"™ we shall mean an n-dimensional Euclidean space, |X| will
denote the mn-dimensional Lebesgue measure of X < R", and a point
peX will be called a density point of X (in the sense of measure) if
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where K (p, o) is the ball with centre p and radius g. As is easy to observe,
the ball K(p, o) can be replaced here by the cube C(p, ¢) with centre p
and edge o.

The set of all density points of X will be denoted by X°.

P is said to be a boundary point of X (in the sense of measure) if it
does not belong to X°uU (X')’, where X' = R"\X.

The set of all boundary points of X will be denoted by X'. Clearly,

X =[x v X).

LEMMA 1. Let {M,} be a sequence of n-dimensional cubes with edges
di, — 0 and let X be a subset of R". If peX® and pe M, for k =1,2, ...,
then -~ .
.| M 0 X|

lim =1.
k—oo lel

Proof. Without loss of generality we may assume n = 3. Suppose
the lemma is not true. This means that for some sequence of cubes {M,}
there is

.| M, N X]|
hm———— = 1—6 < 1
k—oo |ML| ’
i.e.
M. NnX
limL—l =6>0.

koo | My
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" Let M « be the least cube with centre p emboding M,. The edge
of M, does not then exceed 2d, and so |M,|<8|M,|. Consequently,

M, N X| | M, N X'| | M, n X'|
—_— = 1— —_— < 1— T e Y
| M| | M| 8 | My
whence, finally,

contrary to hypothesis peX°.
LEMMA 2. Let X < R" If X is measurable, then X° and X' are Borel.

Indeed, if X is measurable, then peX° if and only if for each integer
k there exists an integer r such that
K(p,1/)nXl . 1
K (p, 1][r)] k’
and this equivalence implies that X° is a G,. Since by the same argument
also (X')° is a G4, we see that X  must be F,.

Now let A be an arbitrary measurable subset of R" and let P be an
(n—1)-dimensional hyperplane of R",n > 2. Denote by V the family
of all straight lines L perpendicular to P and meeting both A° and
(4')°, i.e.

V={L:L]P,LNnA"+0 and Ln(4")° # 0},
and by V the union of all LeV, ie. V = ) L.

LeV
Main aim of the present paper is to prove that almost every (in a sense

to be precised later on) straight line L of the family ¥V meets A’.
Main lemma is

LeEMMA 3. If W< V and W N P, where W = | J L, is closed and has
Lew

positive (n—1)-dimensional measure, then there exists a straight line Le W
such that L N A" # 0.

Proof. Assume » = 3 and consider in R*® a system of coordinates
in which the plane Ozy coincides with P and all straight lines of the family
V are parallel to Oz.

It suffices to construct a sequence of cubes {M,} satisfying the
following conditions:

(a) M,> M,>... and d(M,,,) < 3d(M,), where d(M) denotes the

edge of the cube M,
M, n 3
(b) 1 Hndl 3
4 | M| 4

(c) M, AW #0.
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Indeed, since W is closed by hypothesis, we infer in view of (a) and (c)
that the set (M, N W consists of one point, say p,, and, by virtue of
(b) and Lemma 1, p, is & boundary point of A.

Sequence {M,} will be defined inductively. For the purpose of
construction we replace condition (c) by the following one, a little stronger
than (c) itself:

(¢’) For each %k there exists a family W, ¢ W such that L n Int M, n A°
#0 and L NnInt M, n(A')° # 0 for each Le W,, the set W, n P

(where W, = (J L) is closed and has positive 2-dimensional measure.
Lew,

1. Construction of M, and W,. Let L,e W be a straight line each
point of which is a density point of W (such a straight line surely exists,
since in view of hypothesis |[P.n W| > 0 the set P N W contains a density
point and each straight line meeting that point can be taken as L,).

Let M (d, z,) denote the cube with the edge of length d, centre lying
in L, and lower face lying in the plane z = z,.

Consider two points, p, = (L9, Yo, 21) €Ly N A® and p, = (@4, Yo, 22)
eL, N (A")°. In view of the defintion of L, there exist p,e(4 N W)° and
poe(A' N W), _

Put ¢, = 1/10. By virtue of Lemma 1 there exist then d, > 0 and
d, > 0 such that

(i) if 0 < d< d,, then
| M(d,2z,) N AN W]
| M (d, 2,)|
(i) if 0 <d< d,, then
\M(d,2,) N AW
| M (d, 25)]
Assume 2, < 2, and put dy = min (d,,d,) and M, = M(d,,2). It
is easy to check that the function
. IM,NnANW|
a | M|

> 1_80’

< 80.

@ (?)

is continuous.

In view of (i) and (ii) there is ¢(2,) > 1—¢, and ¢(2,) < ¢,. Hence
and from the inequality &, = 1/10 < 1/2 we infer that there exist points
2" and 2" such that 2’ <2',2"—2' <dy, (') =1/2 and $—¢, < p(2")
< } (note that one can take the greatest value in the set ¢~ '(3}) as 2').

Denote by W, the subfamily of W consisting of all straight lines
L such that LNnInt M,n A° 20 and LnInt M, N (A")° #%0. Let
W, be the union of straight lines of W,. The set W, is then a cylinder
the base of which (on P) is a common part of projection of Int W, n A°
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and Int W, n (4')’. By virtue of Lemma 2 the two sets are Borel; there-
fore W, is analytic, hence measurable ().

Equality W, = 0 means that for each straight line L passing
through Int M, either («) each point of L N Int M, belongs to A° U A’
or (8) to (4')° U A'. Thus if |§—&|<d, and W, =W, =0, then
the set of straight lines satisfying (a) is the same for &, and &,. Since
the sets A and A’ differ from A4° U A" and (4')° U 4, respectively, for
sets of measure 0 only, we infer in view of the definition of ¢ that there
is ¢(&) =¢(&). Now if |W, nP| =0, then alternative “(«) or (8)”
holds for almost every perpendicular line passing through Int M,, and
so, reasoning as before, we infer that if [§,— &< d, and |W, NP
= |W, 0P| = 0, then ¢(£) = p(&).

Hence and from ¢(2') # ¢(2") it follows that |W, nP|> 0 for
2o =2 Or 2, =2', and so the set W,,o N P contains a closed subset F
of positive measure.

Putting now

M, =M, and W,={L: L||0z and LNF + 0}

we easily see that M, and W, satisfy (¢') and the first inequality of (b).
Here is a proof of the second inequality of (b):

M A Al M,nAAW| | |M,nd AW
| M| | M| | M|
| M, W' .
=‘P(z)+]Tl.< @(2')+ &9 < 3 €0

where z = 2’ or z = 2’ and the last but one inequality follows by (e¢).

2. Construction of M, , and W, . This construction does not differ
essentially from that of M, and W, except that condition (a) needs
a little more attention.

Assume inductive hypothesis that a cube M, and a family W,
satisfying (a), (b) and (¢’) have been constructed, and denote by L,,
similarly as in section 1, a straight line from W, each point of which is
a density point of W,. This straight line contains points p, and p, such
that p,eLy, N A° N Int M, and p,eL, N (4A')* N Int M,. Choose numbers
d, and d, as in section 1, but modify the definition of d, by putting

do = min(dy, dy, 3d(M;), o(p1, Bd My), o(ps, Bd M), .
where Bd M, is the boundary of the cube M, and o(p, A) = info(p, a).
This definition guarantees that (a) holds. acd

() C. Kuratowski, Topologie I, Warszawa 1958, p. 391.
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Now until the end the construction runs as in section 1. Hence the
proof of the existence of a sequence of cubes {M,} satisfying (a), (b) and
(¢') (and so, a fortiori, (¢)) has been completed.

THEOREM. If A is a measurable subset of R, P an (n—1)-dimen-
stonal hyperplane of R", L a straight line perpendicular to P, and

V={L:LNnA" #0,LNn(A") #£0 and LN A" = 0},
then |V N P| =0, where V = L.
Lev

Proof. By virtue of Lemma 2 the sets A° (4')° and A  are Borel.
Since the set V N P is a common part of projections of these sets into
a hyperplane P, it is analytic, hence measurable. In view of Lemma 3
it cannot contain any closed subset of positive measure.

Remarks. As simple examples show, there need not tobe V N P = 0.

Hyperplane P need not be perpendicular to straight lines from V;
the proof analogous to that given above works for straight lines which
are scew to P.
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