1970

FASC. 2

SOME PROPERTIES OF MEASURABLE SETS

 \mathbf{BY}

S. TARKOWSKI (WROCŁAW)

By R^n we shall mean an *n*-dimensional Euclidean space, |X| will denote the *n*-dimensional Lebesgue measure of $X \subset R^n$, and a point $p \in X$ will be called a *density point* of X (in the sense of measure) if

$$\lim_{\varrho\to 0}\frac{|K(p,\varrho)\cap X|}{|K(p,\varrho)|}=1,$$

where $K(p, \varrho)$ is the ball with centre p and radius ϱ . As is easy to observe, the ball $K(p, \varrho)$ can be replaced here by the cube $C(p, \varrho)$ with centre p and edge ϱ .

The set of all density points of X will be denoted by X^0 .

p is said to be a boundary point of X (in the sense of measure) if it does not belong to $X^0 \cup (X')^0$, where $X' = R^n \setminus X$.

The set of all boundary points of X will be denoted by X'. Clearly,

$$X' = [X^0 \cup (X')^0]'$$
.

LEMMA 1. Let $\{M_k\}$ be a sequence of n-dimensional cubes with edges $d_k \to 0$ and let X be a subset of R^n . If $p \in X^0$ and $p \in M_k$ for $k = 1, 2, \ldots$, then

$$\lim_{k\to\infty}\frac{|M_k\cap X|}{|M_k|}=1.$$

Proof. Without loss of generality we may assume n=3. Suppose the lemma is not true. This means that for some sequence of cubes $\{M_k\}$ there is

$$\lim_{k\to\infty}\frac{|M_k\cap X|}{|M_k|}=1-\delta<1,$$

i.e.

$$\lim_{k\to\infty}\frac{|M_k\cap X'|}{|M_k|}=\delta>0.$$

Let \tilde{M}_k be the least cube with centre p emboding M_k . The edge of \tilde{M}_k does not then exceed $2d_k$ and so $|\tilde{M}_k| \leqslant 8 \, |M_k|$. Consequently,

$$rac{| ilde{M}_k\cap X|}{| ilde{M}_k|}=1-rac{| ilde{M}_k\cap X'|}{| ilde{M}_k|}\leqslant 1-rac{|M_k\cap X'|}{8\,|M_k|}$$
 ,

whence, finally,

$$\overline{\lim_k} \, rac{| ilde{m{M}}_k \cap m{X}|}{| ilde{m{M}}_k|} \leqslant 1 - rac{\delta}{8} < 1$$

contrary to hypothesis $p \in X^0$.

LEMMA 2. Let $X \subset \mathbb{R}^n$. If X is measurable, then X^0 and X are Borel.

Indeed, if X is measurable, then $p \in X^0$ if and only if for each integer k there exists an integer r such that

$$\frac{|K(p,1/r)\cap X|}{|K(p,1/r)|} > 1 - \frac{1}{k},$$

and this equivalence implies that X^0 is a G_{δ} . Since by the same argument also $(X')^0$ is a G_{δ} , we see that X must be F_{σ} .

Now let A be an arbitrary measurable subset of R^n and let P be an (n-1)-dimensional hyperplane of R^n , $n \ge 2$. Denote by V the family of all straight lines L perpendicular to P and meeting both A^0 and $(A')^0$, i.e.

$$V = \{L \colon L \perp P, L \cap A^0 \neq 0 \text{ and } L \cap (A')^0 \neq 0\},$$

and by V the union of all $L \in V$, i.e. $V = \bigcup_{I \in V} L$.

Main aim of the present paper is to prove that almost every (in a sense to be precised later on) straight line L of the family V meets A:.

Main lemma is

LEMMA 3. If $W \subset V$ and $W \cap P$, where $W = \bigcup_{L \in W} L$, is closed and has positive (n-1)-dimensional measure, then there exists a straight line $L \in W$ such that $L \cap A' \neq 0$.

Proof. Assume n=3 and consider in R^3 a system of coordinates in which the plane Oxy coincides with P and all straight lines of the family V are parallel to Oz.

It suffices to construct a sequence of cubes $\{M_k\}$ satisfying the following conditions:

(a) $M_1 \supset M_2 \supset \dots$ and $d(M_{k+1}) \leqslant \frac{1}{2}d(M_k)$, where d(M) denotes the edge of the cube M,

$$\frac{1}{4} \leqslant \frac{|M_k \cap A|}{|M_k|} \leqslant \frac{3}{4},$$

(c)
$$M_k \cap W \neq 0$$
.

Indeed, since W is closed by hypothesis, we infer in view of (a) and (c) that the set $\bigcap M_k \cap W$ consists of one point, say p_0 , and, by virtue of (b) and Lemma 1, p_0 is a boundary point of A.

Sequence $\{M_k\}$ will be defined inductively. For the purpose of construction we replace condition (c) by the following one, a little stronger than (c) itself:

- (c') For each k there exists a family $W_k \subset W$ such that $L \cap \text{Int } M_k \cap A^0 \neq 0$ and $L \cap \text{Int } M_k \cap (A')^0 \neq 0$ for each $L \in W_k$, the set $W_k \cap P$ (where $W_k = \bigcup_{L \in W_k} L$) is closed and has positive 2-dimensional measure.
- 1. Construction of M_1 and W_1 . Let $L_0 \in W$ be a straight line each point of which is a density point of W (such a straight line surely exists, since in view of hypothesis $|P \cap W| > 0$ the set $P \cap W$ contains a density point and each straight line meeting that point can be taken as L_0).

Let $M(d, z_0)$ denote the cube with the edge of length d, centre lying in L_0 and lower face lying in the plane $z = z_0$.

Consider two points, $p_1 = (x_0, y_0, z_1) \epsilon L_0 \cap A^0$ and $p_2 = (x_0, y_0, z_2) \epsilon L_0 \cap (A')^0$. In view of the defintion of L_0 there exist $p_1 \epsilon (A \cap W)^0$ and $p_2 \epsilon (A' \cap W)^0$.

Put $\epsilon_0 = 1/10$. By virtue of Lemma 1 there exist then $d_1 > 0$ and $d_2 > 0$ such that

(i) if $0 < d \leqslant d_1$, then

$$\frac{|M(d,z_1)\cap A\cap W|}{|M(d,z_1)|}>1-\varepsilon_0,$$

(ii) if $0 < d \leqslant d_2$, then

$$\frac{|M(d,z_2)\cap A\cap W|}{|M(d,z_2)|}<\varepsilon_0.$$

Assume $z_1 < z_2$ and put $d_0 = \min(d_1, d_2)$ and $M_z = M(d_0, z)$. It is easy to check that the function

$$\varphi(z) = \frac{|M_z \cap A \cap W|}{|M_z|}$$

is continuous.

In view of (i) and (ii) there is $\varphi(z_1) > 1 - \varepsilon_0$ and $\varphi(z_2) < \varepsilon_0$. Hence and from the inequality $\varepsilon_0 = 1/10 < 1/2$ we infer that there exist points z' and z'' such that z' < z'', $z'' - z' < d_0$, $\varphi(z') = 1/2$ and $\frac{1}{2} - \varepsilon_0 < \varphi(z'') < \frac{1}{2}$ (note that one can take the greatest value in the set $\varphi^{-1}(\frac{1}{2})$ as z').

Denote by W_z the subfamily of W consisting of all straight lines L such that $L \cap \operatorname{Int} M_z \cap A^0 \neq 0$ and $L \cap \operatorname{Int} M_z \cap (A')^0 \neq 0$. Let W_z be the union of straight lines of W_z . The set W_z is then a cylinder the base of which (on P) is a common part of projection of $\operatorname{Int} W_z \cap A^0$

and Int $W_z \cap (A')^0$. By virtue of Lemma 2 the two sets are Borel; therefore W_z is analytic, hence measurable (1).

Equality $W_z=0$ means that for each straight line L passing through Int M_z either (α) each point of $L\cap \operatorname{Int} M_2$ belongs to $A^0\cup A$ or (β) to $(A')^0\cup A$. Thus if $|\xi_1-\xi_2|< d_0$ and $W_{\xi_1}=W_{\xi_2}=0$, then the set of straight lines satisfying (α) is the same for ξ_1 and ξ_2 . Since the sets A and A' differ from $A^0\cup A$ and $(A')^0\cup A$, respectively, for sets of measure 0 only, we infer in view of the definition of φ that there is $\varphi(\xi_1)=\varphi(\xi_2)$. Now if $|W_z\cap P|=0$, then alternative " (α) or (β) " holds for almost every perpendicular line passing through Int M_z , and so, reasoning as before, we infer that if $|\xi_1-\xi_2|< d_0$ and $|W_{\xi_1}\cap P|=|W_{\xi_2}\cap P|=0$, then $\varphi(\xi_1)=\varphi(\xi_2)$.

Hence and from $\varphi(z') \neq \varphi(z'')$ it follows that $|W_{z_0} \cap P| > 0$ for $z_0 = z'$ or $z_0 = z''$, and so the set $W_{z_0} \cap P$ contains a closed subset F of positive measure.

Putting now

$$M_{\scriptscriptstyle 1} = M_{z_0} \quad ext{ and } \quad W_{\scriptscriptstyle 1} = \{L \colon L \| \mathit{Oz} \, \, ext{and} \, \, L \cap F
eq 0 \}$$

we easily see that M_1 and W_1 satisfy (c') and the first inequality of (b). Here is a proof of the second inequality of (b):

$$egin{align} rac{|M_z\cap A|}{|M_z|} &= rac{|M_z\cap A\cap W|}{|M_z|} + rac{|M_z\cap A\cap W'|}{|M_z|} \ &= arphi(z) + rac{|M_z\cap W'|}{|M_z|} < arphi(z') + arepsilon_0 \leqslant rac{1}{2} + arepsilon_0, \end{split}$$

where z = z' or z = z'' and the last but one inequality follows by (c).

2. Construction of M_{k+1} and W_{k+1} . This construction does not differ essentially from that of M_1 and W_1 except that condition (a) needs a little more attention.

Assume inductive hypothesis that a cube M_k and a family W_k satisfying (a), (b) and (c') have been constructed, and denote by L_0 , similarly as in section 1, a straight line from W_k each point of which is a density point of W_k . This straight line contains points p_1 and p_2 such that $p_1 \,\epsilon \, L_0 \cap A^0 \cap \operatorname{Int} M_k$ and $p_2 \,\epsilon \, L_0 \cap (A')^0 \cap \operatorname{Int} M_k$. Choose numbers d_1 and d_2 as in section 1, but modify the definition of d_0 by putting

$$d_0 = \min(d_1, d_2, \frac{1}{2}d(M_k), \varrho(p_1, \operatorname{Bd} M_k), \varrho(p_2, \operatorname{Bd} M_k)),$$

where Bd M_k is the boundary of the cube M_k and $\varrho(p, A) = \inf_{a \in A} \varrho(p, a)$. This definition guarantees that (a) holds.

⁽¹⁾ C. Kuratowski, Topologie I, Warszawa 1958, p. 391.

Now until the end the construction runs as in section 1. Hence the proof of the existence of a sequence of cubes $\{M_k\}$ satisfying (a), (b) and (c') (and so, a fortiori, (c)) has been completed.

THEOREM. If A is a measurable subset of \mathbb{R}^n , P an (n-1)-dimensional hyperplane of \mathbb{R}^n , L a straight line perpendicular to P, and

$$V = \{L: L \cap A^0 \neq 0, L \cap (A')^0 \neq 0 \text{ and } L \cap A' = 0\},$$

then
$$|V \cap P| = 0$$
, where $V = \bigcup_{L \in V} L$.

Proof. By virtue of Lemma 2 the sets A^0 , $(A')^0$ and A are Borel. Since the set $V \cap P$ is a common part of projections of these sets into a hyperplane P, it is analytic, hence measurable. In view of Lemma 3 it cannot contain any closed subset of positive measure.

Remarks. As simple examples show, there need not to be $V \cap P = 0$. Hyperplane P need not be perpendicular to straight lines from V; the proof analogous to that given above works for straight lines which are seew to P.

Reçu par la Rédaction le 10. 1. 1968