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On the continuous dependence of local analytic solutions
of a functional equation on given functions

by J. MaTkowsKI (Katowice)

We consider the problem of the continuous dependence on the given
functions, for local analytic solutions of the equation

(1) D(2) = Ho(z’ q,’)[fo(z)])’

where H, and f, are given functions and ® is unknown.
This problem was investigated in [2] for the equation

D[fo(2)]+ go(2) P(2) = ho(2).
Together with equation (1) we consider the sequence of equations
2) D(z) = H, (2, 2[f,(2)]) (n =1,2,...).
We shall assume that for n =0,1,2,...:
(I) f, ts analytic in the disc 2| <71y, [,(0) =0, and
1f2(0) <& < 1.

(II) H, is an analytic function of two complex variables (z, w) for
2| < 795 [w] < Ry and

Hn(O, 0) = o,
and
(I11) f, = fo, H, — H, uniformly for |2| < ry, |lw| < R,.
By (I) and (III) there exists a positive integer p such that
, 0H
(3) [f(0)) aw” 0,0)|<1 (n=0,1,2,..).
Further, we suppose that for n =0,1,2,...
, 0H,
(IV) [Fa@F—-"(0,0) #1 (b =1,2,...,p—1).

It follows from W. Smajdor’s theorem [4] (cf. also [1], p. 188, and [3])
that for every n =0,1,2,... there exists exactly one solution &, of
equation (2) analytic in a neighbourhood of z = 0.
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In this paper we give the proof of the following

THEOREM. If hypotheses (1)-(IV) are fulfilled, then solutions P, ewist
in a common neighbourhood of 2 = 0 and D, tends to P, uniformly in this
neighbourhood.

First we prove two lemmas.

LEMMA 1. Let ®,, be a solution of equation (2) and let hypotheses (I)-(1V)
be fulfilled. Then D (0) tends to PP (0) as n — oo for k =1,2, ...

Proof. We define the functions H, ,(z, w, w,, ..., w;) by the recurrent
relations

0H
H,,(2,w,w,) =

Ne )
(4)

0H
nk
Hn.k+1(zy Wy Wiy eeny wk+1) =

witot

e )(

wlc-l-l)
Wy,

(k=1,2,...).
H, , are analytic functions of variables z, w, w,, ..., w, in the domain
D, = {(z,w, Wyy ..., w;): 2| <75 |w]| < Ry;w;eC,4 =1,...,k}, where C
is a complex plane. Moreover, we have [4]
(B) H, (2, Wy occpwy) =Gy p(2,0, ..., W, 1)+ [fn( 2) 14wy,
where @, , is analytic in D, ,, and
(6) ¢g‘)(0) = Hn,k(O’ 0, !D;,(O), sy ¢gc)(0)).
Hence and from (5), (3), (IV) we get
,.,k(o 0, 2, (0'), .- a)ii‘-“(o»

@) oL(0) —
A Q) s
Since
af" ©,0
@,(0) = -
1—£2(0) -2 (0,0)

it follows from (III) and (IV) that ¢;(0) tends to

0H,
Bz

1— f'(O

Thus Lemma 1 is true for ; = 1.

(0, 0)
@,(0) =
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It follows by induction from (III) that H, , converges to H,, and
G, converges to G, uniformly on every compact K < D). The proof
of Lemma 1 results hence by induction in view of (7).

LeMMA 2. Suppose that

10 A s a compact melric space,

20 T, is a continuous transformation .of A into itself,

30 T, converges to T, uniformly in A,

4° there exists exactly one fixpoint x, of T, in A for n =0,1,2,...
Then =, converges to x,.

Proof. Suppose that Lemma is false. Then exists a subsequence
@y, such that lima, =y and y # x,. From 2° and 3° we have

N—>00

y =lima, =1lmT, [z, ] = To[y].

It is a contradiction with 4° and the lemma is proved.

Proof of the theorem. Let @, be the analytic solution of equation
(2). Evidently, we may write

»

o (0
Q 0.0 = P&+ 0,0 Pe) = Nz,

8=1
@, 18 analytic at z = 0 and ¢,(0) = 0.
According to Lemma 1, for the proof our theorem it is enough to
show that ¢, converges uniformly to ¢, in a neighbourhood of z = 0.
Let us define the funections

) b (2, ) = Tl P [fn(znt p[f,.,<z)]%)—p,,,(z) .

By (I) and (II) the partial derivative

oh,, oH, 3
a0 S0 = e n| Y

»
| B A ACIRR AT £
is an analytic function at (2, v) = (0, 0). Next we put

9(2) = H,[2, P,[f,(2)])— Pa(2).
We shall show that /

(11) ¢z = H, 2, Pa[fu(@], Palfo@)], ..., POUfu ()] — PP (2).
In fact, we have by (4)

0 \ . )
PP o (&) Palfa (@) fa (&) Pal fa(2) 1= Pr(2)

= H,\(2, PaLfo(@)], P,lfa(2)])— PL2).

9H. H
9 (@) = —" (2, Pp[fu(&)))+ ——"
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Thus (11) is true for s = 1. We assume that (11) holds for an & > 1.
Hence we get

ge (z)
mh

) [ SRR @t Tt P ] P

8

= n.a+1(z, P, [fu(2)]y ...y Pg:H) [fu(z)])_Pg+l) (2)

and (11) is proved.
From (8) we obtain PP (0) = &{"(0),s =1,2,...,p. Now, putting
2z =0 in (11), we have by (6)

g (0) = H, [0, ,(0), D,(0), ..., D(0)) -V (0) =0, s=1,...,p

80 h,(z,0) is an analytic function of z at the point 2 = 0. Hence and
from (10) we conclude that A, is analytic at (2, v) = (0, 0). Moreover,

(12) h,(0,0) =0
and ¢, defined by relation (8) satisfies the equation
(13) 9(2) = hyfz, 9[fa(2)]).

Let us take an arbitrary R, >0 and let [v] < R,. Since P,(0)
= f,(0) = 0, there is a o, > 0, 0, < 7y, such that

1Po[fo(2)]] < E;— and  [fo(2)/” < for 2| < o,

21.‘?,1
By Lemma 1 and (IIT) there is a positive integer N such that

R R
Pulf@]I <5 and  |f@)P <o for n>N and <o
1
From the continuity of P,[f,(2)] and f,(2) there exists a ¢, > 0@
such that these inequalities are valid for » = 1,..., N—1 and |?| < 0,.
Taking r, = min(s,, ¢,) we have

Palfn(@)]+ @10l < o=+ le

‘B, =R,

for (n =1,2,...), and |2 <
Thus we see that &, is a.nalytlc for 2| <7y, | < Ry,n =0,1,2,
and, moreover,

(14) h, — hy uniformly for |z| < r,, v| < R,.
It follows from (3) that there exists a u < 1 such that

(15) fa (0)”

(0 0)|<pg @=0,1,2,..).



Oontinuous dependence of local solutions 25

By (10) we have
oh,,
ov

Now, by (14) and (15) there exist numbers #, > 0 and R, > 0 such
that

(16) By (2, 01) — by (2, 05)| < ptloy— 04, [2] < 1qy 05| < Ry,

i=1,2(n=0,1,2,...)

0H,

(0,0) = (07—~

(0, 0).

Let us fix a K, 0 < K < R,. It follows from (12), (14) and from the
continuity of h, that there exists an 7, > 0 such that

(17) (2, 0| < A—p) K for 2| <rs (n =0,1,2,...).
Moreover, by (I) and (I1I) there exists an r, > 0 such that
(18) [f(@)<l2] for |27y (n =0,1,2,...).

Let us choose r = nﬂﬁ(rl, T4y 73, 7a). Define A as the set of analytic
functions ¢ in the disc [z| < r fulfilling the following condition

(19) lp(2)] < K for |2| <7 and ¢(0) = 0.
Next, define the transformation y = T, [¢] by formula

(20) V’(z) = n(zi(p[fn(z)])'
We shall prove that the space A with the metric

0(91, @2) = sup|e,(2)—@,(2)
lzl<<r

and the transformation 7, fulfils the conditions of Lemma 2.
1o By YVitali’s theorem A is a compact metric space.

20 By (16) T, is continuous. From (20), (18),(19), (16) and (17)
we have

lp(2)] < |hal2, @ [fa()])— Ra(2, 0) [+ |By(2, 0)]
Splelfa@l+(1—u)K < K.

Since &,(0,0) = 0, we have y(0) = 0. Thus ye A and this completes
the proof of 2o,

3° Let us take an ¢ > 0. It follows from (14) that there exists an »;
such that

(21)  [hy(2, 0)—ho(2, 0)| < e(L—p)  for 2| <7, [v] < Ryy 02>y,

There is an n, such that for » > n,, 2| <r and every ged

<
(22) lp[fn(@)]—@[fo(2)]l < .
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Indeed
lp[fa(2)]—9[fo(2)]] < ¢|fu(e)—Ffo(2)].

where ¢ = sup (sup [¢’ (£)]). The number ¢ must be finite, for in the opposite
ped

|<r

case A cannot be compact.
Now from (22), (16), and (21) we get, for n > max(n,, n,),

|Balz, 9 LFa(2)])— holz, 9 LFo()])]
< |hafzy @12 (2)]) = oz, @ [Fa(@)])|+ | Rol2s @ Lfn ()]} — holz, @ [fo(2)])]
S e(l—p)t+ulelfn@]—elfo(]ll < e(Q—p)+pe = -.
Taking supremum on the left-hand side we get

e(T.lol, Tolpl) <& for n»>max(n,,n;) and geAd.

This proves 3°.
Let ¢y, paed, py = T, [91], v = Tp[p.]. From (16) and (18) we get

ey ¥2) = Iszlllslf)-lhn(z’ ‘Pl[fn(z)])—'hn(z, 2 [fn(z)m

< psup 1 [fa(2)]— @2 [fn ()] < po (91, @)
Zl<r
Since < 1,T, is a contraction and 4° follows from Banach’s
principle.
Now Lemma 2 completes the proof.
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