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Weak forms of Mann’s density theorem
extended to sets of lattice points

by

Brrry EvARDA GARRISON (San Diego, Calif.)

§ 1. Introduction. Tet ¢, be the set of all nomzero n-dimensional
lattice peoints with nonnegative integer ecoordinates. We will use the
ugnal componentwise addition and subtraction of elemnents of ¢, and the
usual partial ordering: For any = and y in @, »<<y if y—o is in @,,.
Tt 8 is any subseti of @, and ¥ is any finite subset of @, then S(F) will
denote the number of clements in § nF. For any # in @, let
L = {;y e, ¥ = w} It A and B are subsets of @,, 4B will denote
the set of all elements of the form @, b, a+b, where aed, beB, while
A—B iy the set of all elements of 4 which are not in B.

A fundamental subset of @, or, hriefly, a fundamental set, is defined
to be any finite nonempty subset B of @), snch that x<R implies Ly < R.
For any subset 4 of ¢, Miiller [3] has defined the density of 4 to be the
glb A(R)/Q, (R), taken over all fundamental sets R. For % =1 thiy is
clearly the Schnirebmann density of A.

With this family of fundamental sets and definition of density,
several results have been obtained for subsets of @, which are analogous
to well-known theorems of additive number theory for sets of positive
integers. (See [2], [3], [5], [67, [8), [9].) In this note we will discuss the
extension of the famons theorem of Mann [7] to ¢,. Using the nofation
giver above, an m-dimensional analogue to Mann’s theorem may be
statiod as follows.

(I) TLet 4 and B e subsets of @,, let ¢ = A+B, and let B be any
fundamental subset of Q,. Then either C(R) = @,(E) or there
oxivts w fundamental set W = B such that no maximal element
of W is in ¢ and O(R)/Q,(R)> [A(W)+B{W)]/Q, (W}

The statement (I) is false for # > 1, as is shown by the following
exanple for @,. (For # > 2 this examiple may be embedded in @,). Let
the fundamental set B =T(2,5) v L(3, 2). In the figure below lattice
PO]IILb of (A —B) n It are marked by X, those of A N B m B by e, those
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of (C N R)—(A4 U B) by o, and those of B—C by @. The set (B—4) " R

is empty.

¢
X

In this example the fundamental sets W < B whose maximal points
are not in ¢ ave just R, L(2, 5}, and L(5, 2), and it is easily caleulated
that C(R){Qn(R) < [A(W)+-B{W)}/Q,(W) for each of these. However,
we see thal several fundamental sets W in B satisfy the econdition
C(R)[Q:(B) = [A(W)+B{W)J/Q.(W). The smallest of these is the set
{(1,0),(2,0),(0,1),(1,1), (0,2)}, whose maximal points are all in
R—{4 uB). -

If we delete the condition in (I) that the maximal elements of W are
not in &, or if we replace it by the condition that the maximal elements
of W are not in 4 U B, we still obtain statements which are in general
talse, as will be shown in § 6. Both statements Thus obtained are, however,
_ true for important special eases.

§ 2. Statements of theorems. In this section ¢ denotes a fixed 0,
Let 4 and B be subsets of @, let ¢ = A B, and let R be a fundamental
set such that O(R) <Q(R Let § be a fundamental set such that (i)
S U Tg, (i) C(8)<@Q(8), (i) C(8)= 4 (8)+B(8), and (iv) if 8 is any

7<R-C
fundamental set satisfying. (1), (ii), (iii); then @ (8 8 < Q(8). (The existence
of such an '8 iz implied by the Remark following Lemma 3 in §3.)

Let QR—C) =% and Q8—0C) =s,1<s<<hk. If s < k, hence
N—0 £ B—(, let T = R—8 and let T G._{gl,. oy Opegy. Liet X,
= Lkg,, 8, letX = X;—{g;}, and 16t ¥, = {g,—u: .neX o forall 2 =1,

—8,

- TemoREM 1. There exists a fundamental set W < R such that the mazimal
elements of W are not in A U B and

CIR)Q(R) = [A(W)+B(W)1/Q(W)
if Q(R)/ k> Q(8) /s, or if s < k and there exists & nonempty subset {g,, ..., g}

of T—0 suck that g, is mmzmal element of I—0 for ol i =1, t,

QR)E = Q( tgUI L,

icm
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i1
and, if + =1, the set ¥, =Y, — U Y, is not empty for each i =2, ..., ¢

We note that when s =% the condition @ (R)/Ek = Q(8)/s is satistied.

THEOREM 2. There ewists a fundemental set W < B sueh thet the maximal
elements of W are not im 4 U B and

C(B)/Q (R} = [A(W)+B(W)}jQ(W) if

and there evists a Vimearly ordered subset {g,,..., g} of T—C such that

s <k

mUXi, t<j<

Q(R)/% Q(UX/

< h— &,
and

§ 3. Preliminary lemomas. The following Lemma 3 is stated and
proved in [4] for €, . The proof is unchanged for @ = @,.

Lumma 1. Let R be o finite nonemply subsel of @, and let E, 8,1 be
positive infegers such that s+1 = k. Further suppose that B is partitioned
by two nonempty sets § and 1. Then

[Q(B)—Fk]/Q(R) 2z [Q(I)—)/@(L) = Q(8)[s = Q(T) ft = Q(R) [k = Q(T)/[t.

Proof. [Q(E)—EK]/Q(R) = [}(8)+Q(T)—s—11[[QB)+Q(D)], ete.

LEvma 2. Let B, A, B, C be the sels iam oduced in §2, and let W be
any fundamental set such that W = B, (W) = A(W)-+B{W)+w, w > 0.
Then

O(R)[Q(R) = [A4(W)+B(W)]/G(W) = Q(E)/k >

Proof. Use Lemma 1 and C(R) = @(R)—Fk.

TEMMA 3. Let A and B be any subsels of Q, let g be any element of -
O —(Ad+B), let X be any subset of Lg—{g}, and lot ¥ = {g—a: weX}.
If QX)) = A(X)+B(X)—u then Q(¥) = A(Y)+B(Y)+u.

Remark, If X, ¥, g are defined as in Lemma 3, and if X =Y,
then it is clear that » < 0. This is the case when X — Lg— {g}, for example.
We know g44A UB, so Q(Ly)>A(Lg)+B(Lg)+1 forany ge@—(4+B).
It ¢ is 2 minimal point of Q—(4-+B) then G(Lg) = Q(Lg)—12= ALy
+ B (Lg).

TasmuA 4. The sets introduced in §2 satisfy the followmg condmo%s

(1) C(8) == Q(8)—s = A(8)+B(X).

(' If x is a minimal element of T then xed N B.

If @V X, if UV s a fundamental set, and +f Q(V)
wA(V)—i—B(V)—i«v, then @(V—0) = v+1.

(4) If g, 15 a minimal element of T—C then Q(X;) <
A(X)+B(X)—

QLW .

A(X)+B(Xy),
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(3) Ifg, 18 a minimal element of T—Cthen QY = A(X)+B(X,)41.

(6) For each i =1,...,k—s, ¥, is o fundamental sel.

Proof. Statements (1), (2), (3) follow directly from the definition
of & From (2) we have X; 5= 0. Statement (4) then follows from. the
definition of § since S U X, and § U X; are fundamental sets properly
containing §. Statement (5) follows from (4} and Lemma 3.

To prove (6) we note that X @ implies ¥; % @. For 4, Y, and
yeliy, we have g,— ¥y, < ¢;—y. Thus g;,—¥,¢8 and § is & fundanental
set imply g;—y ¢8. Bub ¢;—y < g;, hence g —yelig,—{g}. Therefore
g—yeX; and ye¥,.

§ 4. Proof of Theorem 1. Assume @ (R)/k = Q(8)/s. Sinee C(8) < Q(8)

there exists ge8—0, hence there exists g8 —(4 v .B). Let W = {J Ly,
taken over all ge8—(4 U B). Then W is a fundamental set such that
W el R and the maximal elements of W are not in 4 U B, Also
(8)—s = C(8) = A(8)+B(8) implies '

Q(W)—s = C(W) = A(W){-B(W).
Finally, Q(R)/k = Q(8)/s = @(W)/s and Lemma 2 imply
CIR)[QE) = [A(W)+B(W)lQ(W).
Assuming the second set of hypotheses, let W = C)I Y;. Then the

maximal elements of W are not in 4 v B from Lemma 4 (2}, W is w fun-
damental set from Lemma 4(6), and” @(¥,)= A(Y,)+B(¥,) 41 from
Lemms 4(d). .

Wenote that @(W) = @ (¥)ift = 1 and that Q(W) = @ (¥} +Q (V) -+
+ QY if £ > 1. Assuming the latter case, let Z;, = {g;—¥: ¥V},
i=2,..,6 Thén @ £%; < X}, and Q(Z,—C) = 0 since ¢, is 1minimal
in T—¢.

Suppose zeZ;, seliz N T. Then weX;, hence g,—ae¥,. Also, g;—a
i1 i—1
=gi—& and g;—=z¢ | J ¥ But | ¥; is a fandamental set, heuce g;—-u
. et P .
-1

e¥Y,— J Y; =Y, hence weZ;. Therefore § u Z; 18 & fundamental wet
j=1 .
icmd, from ’Lemma; 1(3), Q{Z,) < A(Z))+B(Z)—1. Thiy and Lemma 3
imply @(¥;) = A(Y)+B(¥)+1 for all @ =2, ..., 4 Thus
; .
HW) = QX+ Y'Yy
i=2

' L o
2 AT +B(X)+1+ 3 A(T+B(Y)+1

=A(W)+B(W)_+t.

icm

Weak forms of Mann's density theorem

341

4

We have Q( U X;) > Q(W). (See [6], Lemma 1, and note that the
is1

gt &' there remains unchanged if the 47s are chosen to be maximal,
instead of minimal, in S.) Therefore Q{R)/k = Q(Ltj Xt > QUWi,
and, from Lemma 2, C{R)/Q(RB) = [4 (W) +B(W)]/Q(Ti;;;.

§ 5. Proof of Theorem 2. Since {gr], ooy §ib 18 linearly ordered, we

MY GESTING < gy < ... << gy, Then | X, = X,. Except for notation
i=1

the proof of this theorem iz fhe same as that of the Theorem in [4],
beginning with Cuse 1.2. The set 7' there wonld now be replaced by X,
b by t, P bY.(ﬂ‘m Gap12 by g, (@, Go41) DY X, X, by X, ¥, by ¥y Ry
by ¥, (gal»;~fa'_m1'"|”1; Q'.q1+i1-1““3"’1) by ¥, ,—¥;, etc

It will be noted that when Case 1.2 holds. in the proof of the Theorem
in [4] then the desired fundamental set W is obfained because Case 2.1
must nltimately hold, possibly after many repetitions of the type described
in the later cases. The set S, of Case 2.1 contains an integer ¢, ,.,—
which is not in 4 U B (gince wed N B and g; ., ¢0), hence therve existy
a largest integer heS,— (4 U B). If W = Lk then the largest element
of W is not in 4 UB and OR)/P(B) = [A(W)+B(W)]/P{W). In the
n-(limensional case the set corresponding to S, will contain one of the sets
Y,, whose maximal elements have the form g,—a where 1 <<t and
2 is o minimal element of X, therefore a minimal element of T. Thus
there existy heS,— (4 U B) in the #-dimensional case- (Lemina 4(2)),
and the desived fundamental set W may be defined to be W = [ L,
taken over all heS,— (4 v B). '

§ 6. Examples in Q,. In this section we give two examples of a fun-
damental set B and sets 4, B, ¢ = 4-}-Bin¢ = ¢, such that C(R) < QL)
and there does not exist s fundamental set W s R for which C(R)/Q(R)
2 [A(W)+B(W)]/Q(W).

v .

Bxamprn 1. Lot B = | Lg;, where g, = (34, 54), g = (25, 53),

=1
gy == (26, 52), g, = (31, 27), g5 = (62,20}, g5 = (63, 25), g = (545:24)'
Nobe that the points g; are all on the line z+y = 78, and no obher points
of I are on or above this line. Let B n 4 be the seti of all lattice points
of B except those on the lines z-+y = 24, #+y = 55, and oty = 73,
Tet B n B consist of just those lattice points of B on the lines a?+y = 23
and o4y = 4. Then B—0C = {g1, §a) far Jar Gs» Tos Grb- All Jattice points
with nonnegative coordinates of the lines m4y = 23,2-+y =24 and
@+ = b4 are in R. ANl lattice points with positive coordinates on fihe
line 44y = 5B, except (27, 28), are in R. Thus we have Q(R) = 2259,
O(R) = 2252, A(R) = 2174, B(RE) = 79. ' '
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)JO(R) <1 imply that if W is a fundamental
set in R then C(R)/Q(R) = [A{W)4+B(W)}j@(W) if and only i Q(W)
= A(Wy+B(W)+w, w>0, and Q(R)/7= W Jw. Thus, for each
fixed positive integer w we need to consider only a smallest fundamental
set W in R, if one exists, for which @(W) = A(W)+B(W)+w. The
following table exhibits these minimal WW’s for fhis example, and it is clear
that Q(W)/w > Q(R)/7 in each cage.

Lemma 2 and C{R

w | W | QW)
1] {{w,9)e@: m-f-y < 24} 324
2 Lyg, v Lg,, Ligy W Lg, 1428
3| Ly, v Ly, U Lg,, Lig, U Lg, v Lg, 1481
4i Lg, ULg w Lg, Ly, 1533
5| Ligy U gy U Ligy W Lig; w Lig; U Lgk,

4,4, % in the set {1, 3,4, 7} 2234
R 2259

27| No W exists —

In Example 1 the lattice points (1, 0) and (¢, 1) are not in B, hence
fthe density of B is 0. The sets 4 and B have positive density in Example 2;
otherwise Hxample 2 is similar to Wxample 1.

ki
ExayPIE 2. Det B = U Lig;, where ¢, = (85, 186}, g, = (88, 183),

= (91, 180), g, = (177 94), ga (180, 91), g, = (183, 88), ¢, = (1806, 8d).
Let A consist of all elementb of Q—K a.nd all elements of L except
(2,0}, (0, 2), and those on the lines w4y = 85, 24y = 187, -ty = 270,
s+3y = 27L. Let B consist of all elements of §—R, all elements of B
which are on the lines w4y =1, ++y =84, z-+y =186, and . al
$i—(2,0),4—1(0,2),i =1,..., 7. ThenR O = {fli; Gor 33 Gu» P51 Go> Pu}
@(R) = 26,147, O(R) = 28, 140, A(R) = 25, 853, B(R) == 288.
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