

- 91. О некоторых функциональных уравнениях, являющихся следствием уравнений типа Римана, ИАН СССР, сер. матем. 24 (1960), 469–474.
- 92. О теореме Минковского для линейных форм и теоремах переноса, в книге Касселс В. С., Введение в теорию диофантовых приближений, Москва 1961, 202-209.
- 93. Элементарные методы в аналитической теории чисел, Москва 1962, 1–272 (совместно с Ю. В. Линником).
- 94. Об одной ошибочной работе Н. И. Гаврилова, УМН 17 (1962), вып. 1 (103), 265-267 (совместно с Ю. В. Линником, Н. Г. Чудаковым и В. Я. Якубовичем).
- 95. Оценка остаточного члена в предельной теореме для рекуррентных событий, Теория вероятн. и ее примен. 9 (1964), 327–331.
- 96. О нулях аналитической функции с заданной арифметикой коэффициентов и представлении чисел, Acta Arith. 11 (1965), 97-114.
- 97. О приближении многочленами со специально выбранными коэффициентами, УМН 21 (1966), вып. 3 (129), 225–229.
- 98. 150 лет со дня рождения К. Вейеритрасса, Вести. АН СССР, 1966, № 2, 184-185.
- 99. Вычеты и их приложения, Москва 1966, 1-112.
- Об оценке мнимых частей корней многочленов с ограниченными производными их логарифмов на действительной оси, Матем. сб. 71 (113) (1966), 289–296.
- 101. The distribution of fractional quantities, Journ. Math. Anal. Appl. 15 (1966), 65-82.
- 102. Об одной теореме единственности, Матем. зам. 1 (1967), 321-324.
- 103. О функциях, принимающих целые значения, Матем. зам. 1 (1967), 509-513.
- 104. Теория чисел в Московском университете за советский период, Вестн. МГУ (1), № 5 (1967), 7–11.
- 105. Sur quelques questions concernant les fonctions entières à valeurs entières, Compt. Rend. Acad. Sci. (Paris), 264 (1967), 932-934.
- 106. О некоторых комбинаторных свойствах (0,1)-матриу, Матем. сб. 75 (117) (1968), 3.
- 107. Sur les nombres qui ont des propriétés additives et multiplicatives donnée, Acta Arith. 13 (1968), 259-265.
- 108. К седьмой проблеме Гильберта, в сборнике Проблемы Гильберта, Москва 1969, 121–127.

Weak forms of Mann's density theorem extended to sets of lattice points

by

BETTY KVARDA GARRISON (San Diego, Calif.)

§ 1. Introduction. Let Q_n be the set of all nonzero n-dimensional lattice points with nonnegative integer coordinates. We will use the usual componentwise addition and subtraction of elements of Q_n , and the usual partial ordering: For any x and y in Q_n , x < y if y - x is in Q_n . If S is any subset of Q_n and F is any finite subset of Q_n then S(F) will denote the number of elements in $S \cap F$. For any x in Q_n let $Lx = \{y \in Q_n: y \leq x\}$. If A and B are subsets of Q_n , A + B will denote the set of all elements of the form a, b, a + b, where $a \in A$, $b \in B$, while A - B is the set of all elements of A which are not in B.

A fundamental subset of Q_n or, briefly, a fundamental set, is defined to be any finite nonempty subset R of Q_n such that $x \in R$ implies $Lx \subseteq R$. For any subset A of Q_n Müller [8] has defined the density of A to be the glb $A(R)/Q_n(R)$, taken over all fundamental sets R. For n=1 this is clearly the Schnirelmann density of A.

With this family of fundamental sets and definition of density, several results have been obtained for subsets of Q_n which are analogous to well-known theorems of additive number theory for sets of positive integers. (See [2], [3], [5], [6], [8], [9].) In this note we will discuss the extension of the famous theorem of Mann [7] to Q_n . Using the notation given above, an n-dimensional analogue to Mann's theorem may be stated as follows.

(I) Let A and B be subsets of Q_n , let C = A + B, and let R be any fundamental subset of Q_n . Then either $C(R) = Q_n(R)$ or there exists a fundamental set $W \subseteq R$ such that no maximal element of W is in C and $C(R)/Q_n(R) \ge [A(W) + B(W)]/Q_n(W)$.

The statement (I) is false for n > 1, as is shown by the following example for Q_2 . (For n > 2 this example may be embedded in Q_n). Let the fundamental set $R = L(2,5) \cup L(5,2)$. In the figure below lattice points of $(A-B) \cap R$ are marked by \times , those of $A \cap B \cap R$ by \bullet , those

of $(C \cap R)$ — $(A \cup B)$ by \circ , and those of R—C by \otimes . The set $(B - A) \cap R$ is empty.

In this example the fundamental sets $W \subseteq R$ whose maximal points are not in C are just R, L(2,5), and L(5,2), and it is easily calculated that $C(R)/Q_n(R) < [A(W)+B(W)]/Q_2(W)$ for each of these. However, we see that several fundamental sets W in R satisfy the condition $C(R)/Q_2(R) \ge [A(W)+B(W)]/Q_2(W)$. The smallest of these is the set $\{(1,0),(2,0),(0,1),(1,1),(0,2)\}$, whose maximal points are all in $R-(A\cup B)$.

If we delete the condition in (I) that the maximal elements of W are not in C, or if we replace it by the condition that the maximal elements of W are not in $A \cup B$, we still obtain statements which are in general false, as will be shown in § 6. Both statements thus obtained are, however, true for important special cases.

§ 2. Statements of theorems. In this section Q denotes a fixed Q_n . Let A and B be subsets of Q, let C = A + B, and let B be a fundamental set such that C(R) < Q(R). Let B be a fundamental set such that (i) $B \subseteq \bigcup_{g \in R - C} Lg$, (ii) C(S) < Q(S), (iii) C(S) > A(S) + B(S), and (iv) if B is any fundamental set satisfying (i), (ii), (iii), then $Q(S') \leq Q(S)$. (The existence of such an B is implied by the Remark following Lemma 3 in § 3.)

Let Q(R-C)=k and $Q(S-C)=s, 1 \leqslant s \leqslant k$. If s < k, hence $S-C \neq R-C$, let T=R-S and let $T-C=\{g_1,\ldots,g_{k-s}\}$. Let $X_i=Lg_i-S$, let $X_i'=X_i-\{g_i\}$, and let $Y_i=\{g_i-x\colon x\in X_i'\}$ for all $i=1,\ldots,k-s$.

THEOREM 1. There exists a fundamental set $W \subseteq R$ such that the maximal elements of W are not in $A \cup B$ and

$$C(R)/Q(R) \geqslant [A(W) + B(W)]/Q(W)$$

if $Q(R)/k \geqslant Q(S)/s$, or if s < k and there exists a nonempty subset $\{g_1, \ldots, g_l\}$ of T-C such that g_i is a minimal element of T-C for all $i=1,\ldots,t$,

$$Q(R)/k \geqslant Q(\bigcup_{i=1}^t X_i)/t,$$

and, if t > 1, the set $Y'_i = Y_i - \bigcup_{i=1}^{i-1} Y_i$ is not empty for each i = 2, ..., t.

We note that when s = k the condition $Q(R)/k \geqslant Q(S)/s$ is satisfied.

THEOREM 2. There exists a fundamental set $W \subseteq R$ such that the maximal elements of W are not in $A \cup B$ and

$$C(R)/Q(R) \geqslant [A(W) + B(W)]/Q(W)$$
 if $s < k$

and there exists a linearly ordered subset $\{g_1, \ldots, g_t\}$ of T-C such that

$$g_j \notin \bigcup_{i=1}^t X_t, \quad t < j \leqslant k-s,$$
 $Q(R)/k \geqslant Q(\bigcup_{i=1}^t X_i)/t.$

and

§ 3. Preliminary lemmas. The following Lemma 3 is stated and proved in [4] for Q_1 . The proof is unchanged for $Q = Q_n$.

LEMMA 1. Let R be a finite nonempty subset of Q, and let k, s, t be positive integers such that s+t=k. Further suppose that R is partitioned by two nonempty sets S and T. Then

$$[Q(R)-k]/Q(R)\geqslant [Q(T)-t]/Q(T) \Leftrightarrow Q(S)/s\geqslant Q(T)/t \Leftrightarrow Q(R)/k\geqslant Q(T)/t.$$

Proof. [Q(R)-k]/Q(R)=[Q(S)+Q(T)-s-t]/[Q(S)+Q(T)], etc. Lemma 2. Let R,A,B,C be the sets introduced in § 2, and let W be any fundamental set such that $W\subseteq R,Q(W)=A(W)+B(W)+w,w>0$. Then

$$C(R)/Q(R) \geqslant [A(W) + B(W)]/Q(W) \Leftrightarrow Q(R)/k \geqslant Q(W)/w$$
.

Proof. Use Lemma 1 and C(R) = Q(R) - k.

LEMMA 3. Let A and B be any subsets of Q, let g be any element of Q-(A+B), let X be any subset of $Lg-\{g\}$, and let $Y=\{g-x\colon x\in X\}$. If Q(X)=A(X)+B(X)-u then $Q(Y)\geqslant A(Y)+B(Y)+u$.

Remark. If X, Y, g are defined as in Lemma 3, and if X = Y, then it is clear that $u \leq 0$. This is the case when $X = Lg - \{g\}$, for example. We know $g \notin A \cup B$, so $Q(Lg) \geqslant A(Lg) + B(Lg) + 1$ for any $g \in Q - (A+B)$. If g is a minimal point of Q - (A+B) then $C(Lg) = Q(Lg) - 1 \geqslant A(Lg) + B(Lg)$.

LEMMA 4. The sets introduced in § 2 satisfy the following conditions:

- (1) C(S) = Q(S) s = A(S) + B(S).
- (2) If x is a minimal element of T then $x \in A \cap B$.
- (3) If $\emptyset \neq V \subseteq T$, if $S \cup V$ is a fundamental set, and if Q(V) = A(V) + B(V) + v, then $Q(V C) \geqslant v + 1$.
- (4) If g_i is a minimal element of T-C then $Q(X_i) \leq A(X_i) + B(X_i)$, and $Q(X_i') \leq A(X_i') + B(X_i') 1$.

- (5) If g_i is a minimal element of T-C then $Q(Y_i)\geqslant A(Y_i)+B(Y_i)+1$.
- (6) For each $i = 1, ..., k-s, Y_i$ is a fundamental set.

Proof. Statements (1), (2), (3) follow directly from the definition of S. From (2) we have $X_i' \neq \emptyset$. Statement (4) then follows from the definition of S since $S \cup X_i$ and $S \cup X_i'$ are fundamental sets properly containing S. Statement (5) follows from (4) and Lemma 3.

To prove (6) we note that $X_i' \neq \emptyset$ implies $Y_i \neq \emptyset$. For $y_0 \in Y_i$ and $y \in Ly_0$ we have $g_i - y_0 \leqslant g_i - y$. Thus $g_i - y_0 \notin S$ and S is a fundamental set imply $g_i - y \notin S$. But $g_i - y \in Lg_i - \{g_i\}$. Therefore $g_i - y \in X_i'$ and $y \in Y_i$.

§ 4. Proof of Theorem 1. Assume $Q(R)/k \geqslant Q(S)/s$. Since C(S) < Q(S) there exists $g \in S - C$, hence there exists $g \in S - (A \cup B)$. Let $W = \bigcup Lg$, taken over all $g \in S - (A \cup B)$. Then W is a fundamental set such that $W \subseteq S \subseteq R$ and the maximal elements of W are not in $A \cup B$. Also Q(S)-s = C(S) = A(S)+B(S) implies

$$Q(W)-s = C(W) \geqslant A(W)+B(W).$$

Finally, $Q(R)/k \geqslant Q(S)/s \geqslant Q(W)/s$ and Lemma 2 imply

$$C(R)/Q(R) \geqslant [A(W) + B(W)]/Q(W).$$

Assuming the second set of hypotheses, let $W = \bigcup_{i=1}^{t} Y_i$. Then the maximal elements of W are not in $A \cup B$ from Lemma 4(2), W is a fundamental set from Lemma 4(6), and $Q(Y_1) \ge A(Y_1) + B(Y_1) + 1$ from Lemma 4(5).

We note that $Q(W) = Q(Y_1)$ if t = 1 and that $Q(W) = Q(Y_1) + Q(Y_2') + \dots + Q(Y_t')$ if t > 1. Assuming the latter case, let $Z_i = \{g_i - y : y \in Y_i'\}, i = 2, \dots, t$. Then $\emptyset \neq Z_i \subseteq X_i'$, and $Q(Z_i - C) = 0$ since g_i is minimal in T - C.

Suppose $z \in Z_i$, $x \in Lz \cap T$. Then $x \in X_i'$, hence $g_i - x \in Y_i$. Also, $g_i - x \ge g_i - z$, and $g_i - z \notin \bigcup_{j=1}^{i-1} Y_j$. But $\bigcup_{j=1}^{i-1} Y_j$ is a fundamental set, hence $g_i - x \in Y_i - \bigcup_{j=1}^{i-1} Y_j = Y_i'$, hence $x \in Z_i$. Therefore $S \cup Z_i$ is a fundamental set and, from Lemma 4(3), $Q(Z_i) \le A(Z_i) + B(Z_i) - 1$. This and Lemma 3 imply $Q(Y_i') \ge A(Y_i') + B(Y_i') + 1$ for all $i = 2, \ldots, t$. Thus

$$Q(W) = Q(Y_1) + \sum_{i=2}^{t} Q(Y_i')$$

$$\ge A(Y_1) + B(Y_1) + 1 + \sum_{i=2}^{t} A(Y_i') + B(Y_i') + 1$$

$$= A(W) + B(W) + t.$$

We have $Q(\bigcup_{i=1}^t X_i) > Q(W)$. (See [6], Lemma 1, and note that the set S' there remains unchanged if the δ_j 's are chosen to be maximal, instead of minimal, in S.) Therefore $Q(R)/k \geqslant Q(\bigcup_{i=1}^t X_i)/t > Q(W)/t$, and, from Lemma 2, $Q(R)/Q(R) \geqslant [A(W)+B(W)]/Q(W)$.

§ 5. Proof of Theorem 2. Since $\{g_1,\ldots,g_t\}$ is linearly ordered, we may assume $g_1 < g_2 < \ldots < g_t$. Then $\bigcup_{i=1}^t X_i = X_t$. Except for notation the proof of this theorem is the same as that of the Theorem in [4], beginning with Case 1.2. The set T_1 there would now be replaced by X_t , t_1 by t_1 , t_2 by t_3 , t_4 by t_4 , t_5 , t_7 , t_8 ,

It will be noted that when Case 1.2 holds in the proof of the Theorem in [4] then the desired fundamental set W is obtained because Case 2.1 must ultimately hold, possibly after many repetitions of the type described in the later cases. The set S_2 of Case 2.1 contains an integer $g_{s_1+s_2}-x_1$ which is not in $A \cup B$ (since $x_1 \in A \cap B$ and $g_{s_1+s_2} \notin C$), hence there exists a largest integer $h \in S_2 - (A \cup B)$. If W = Lh then the largest element of W is not in $A \cup B$ and $C(R)/P(R) \ge [A(W)+B(W)]/P(W)$. In the n-dimensional case the set corresponding to S_2 will contain one of the sets Y_u , whose maximal elements have the form $g_u - x$ where $1 \le u \le t$ and x is a minimal element of X_u , therefore a minimal element of T. Thus there exists $h \in S_2 - (A \cup B)$ in the n-dimensional case (Lemma 4(2)), and the desired fundamental set W may be defined to be $W = \bigcup Lh$, taken over all $h \in S_2 - (A \cup B)$.

§ 6. Examples in Q_2 . In this section we give two examples of a fundamental set R and sets A, B, C = A + B in $Q = Q_2$ such that C(R) < Q(R) and there does not exist a fundamental set $W \subseteq R$ for which $C(R)/Q(R) \ge [A(W) + B(W)]/Q(W)$.

EXAMPLE 1. Let $R = \bigcup_{i=1}^{n} Lg_i$, where $g_1 = (24, 54)$, $g_2 = (25, 53)$, $g_3 = (26, 52)$, $g_4 = (51, 27)$, $g_5 = (52, 26)$, $g_6 = (53, 25)$, $g_7 = (54, 24)$. Note that the points g_i are all on the line x+y=78, and no other points of R are on or above this line. Let $R \cap A$ be the set of all lattice points of R except those on the lines x+y=24, x+y=55, and x+y=78. Let $R \cap B$ consist of just those lattice points of R on the lines x+y=23 and x+y=54. Then $R-C=\{g_1,g_2,g_3,g_4,g_5,g_6,g_7\}$. All lattice points with nonnegative coordinates of the lines x+y=23, x+y=24, and x+y=54 are in R. All lattice points with positive coordinates on the line x+y=55, except (27,28), are in R. Thus we have Q(R)=2259, C(R)=2252, A(R)=2174, B(R)=79.

343

Lemma 2 and C(R)/Q(R) < 1 imply that if W is a fundamental set in R then $C(R)/Q(R) \ge [A(W)+B(W)]/Q(W)$ if and only if Q(W) = A(W)+B(W)+w, w>0, and $Q(R)/7 \ge Q(W)/w$. Thus, for each fixed positive integer w we need to consider only a smallest fundamental set W in R, if one exists, for which Q(W) = A(W)+B(W)+w. The following table exhibits these minimal W's for this example, and it is clear that Q(W)/w > Q(R)/7 in each case.

w	\overline{W}	Q(W)
1	$\{(x, y) \in Q \colon x + y \leqslant 24\}$	324
2	$\mathbb{L}g_1 \cup \mathbb{L}g_2, \mathbb{L}g_6 \cup \mathbb{L}g_7$	1428
3	$\mathbb{L}g_1 \cup \mathbb{L}g_2 \cup \mathbb{L}g_3, \mathbb{L}g_5 \cup \mathbb{L}g_6 \cup \mathbb{L}g_7$	1481
4	$\mathrm{L}g_4 \cup \mathrm{L}g_5 \cup \mathrm{L}g_6 \cup \mathrm{L}g_7$	1533
5	$\mathrm{L} g_2 \cup \mathrm{L} g_5 \cup \mathrm{L} g_6 \cup \mathrm{L} g_i \cup \mathrm{L} g_j \cup \mathrm{L} g_k,$	
	i, j, k in the set $\{1, 3, 4, 7\}$	2234
6	R	2259
$\geqslant 7$	No W exists	_

In Example 1 the lattice points (1, 0) and (0, 1) are not in B, hence the density of B is 0. The sets A and B have positive density in Example 2; otherwise Example 2 is similar to Example 1.

EXAMPLE 2. Let $R = \bigcup_{i=1}^{7} Lg_i$, where $g_1 = (85, 186)$, $g_2 = (88, 183)$, $g_3 = (91, 180)$, $g_4 = (177, 94)$, $g_5 = (180, 91)$, $g_6 = (183, 88)$, $g_7 = (186, 85)$. Let A consist of all elements of Q - R and all elements of R except (2, 0), (0, 2), and those on the lines x + y = 85, x + y = 187, x + y = 270, x + y = 271. Let B consist of all elements of Q - R, all elements of R which are on the lines x + y = 1, x + y = 84, x + y = 186, and all $g_i - (2, 0)$, $g_i - (0, 2)$, $i = 1, \ldots, 7$. Then $R - C = \{g_1, g_2, g_3, g_4, g_5, g_6, g_7\}$, Q(R) = 26, 147, C(R) = 26, 140, A(R) = 25, 853, B(R) = 288.

References

- L. P. Cheo, On the density of sets of Gaussian integers, Amer. Math. Monthly 58 (1951), pp. 618-620.
- [2] A. R. Freedman, An inequality for the sum of sets of vectors in n-dimensional space, Pacific Journ. Math. 19 (1966), pp. 265-267.
- [3] A density inequality for the sum of two sets of lattice points, J. Reine Angew. Math. 223 (1966), pp. 138-141.
- [4] B. K. Garrison, A nontransformation proof of Mann's density theorem, J. reine angew. Math. (to appear).

[5] B. Kvarda, On densities of sets of lattice points, Pacific Journ. Math. 13 (1963), pp. 611-615.

[6] — An inequality for the number of elements in a sum of two sets of lattice points, Pacific Journ. Math. 15 (1965), pp. 545-550.

[7] H. B. Mann, A proof of the fundamental theorem on the density of sums of sets of positive integers, Ann. of Math. 43 (1942), pp. 523-527.

[8] B. Müller, Einige Abschätzungen der Dichte von Summenmengen in lokalkompakten abelschen Gruppen, J. reine angew. Math. 206 (1961), pp. 39-44.

[9] - Halbgruppen und Dichteabschätzungen in lokalkompakten abelschen Gruppen,
 J. reine augew. Math. 210 (1962), pp. 89-104.

[10] L. Schnirelmann, Über additive Eigenschaften von Zahlen, Math. Ann. 107 (1933), pp. 649-690.

Received on 30. 8. 1969