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The number of k-free divisors of an integer
by

D. SURVANARAYANA and V. S1vA RAMA PRARAD (Waltair, India)

1. Introduction. Let % be a fixed integer = 2. A divisor € > 0 of the
positive integer # iz called k-free if d is not divisible by kth power of any
integer > 1. Let g (n) dendte the number of k-free divisors of n. It has
been. recently shown by the first author (ef. [107, Theovem 3.1) that for
T 23, '

B ()
S(h)

(1) Yol = oar (),

N CU")

where A,(z) = 0(%*%) or O(2") according as k =3 or k= 4; a being
the number which appears in the Divichlet divisor problem, viz.,

(10gw+27:-1—

(1.2) . 2 r(n) = 2loga+29—1)+ 02,

NEL

where 7(n) ig the nwmber of divisors of «.
Tt is known that L < a<< § (¢f. [3], p. 272). The best known result
is obtained by Yin Wen-lin [13], who proved that the error term in (1.2)

13
is O(wﬁ“), where ¢ > 0. There is a conjecture that a = }+ s In the
formula (1.1), £{s) denotes the Riemann zeta function, £'(s) its derivative
and » is Buler's consbant.

The case & =2 was originally considered in 1874 by Mertens (5],
who proved that 4,(z) = O(x'*logz) and an alternative proof has bheen
given by Cohen [1]. Gioia and Vaidya [2] have jmproved this result to
Ay(w) = O(2'?), Recently, Saffari Bahman 6] has alse shown thab
Ag(w) = Oz and dy(w) = 0("*). These results have already been
obtained by Otto Holder [4] in 1932, who also proved that Ay ()
= O (@) for k > 4. However, as early as in 1924, Zyoiti Snefuna [9]
has obtained a better order estimate for A,(z). He proved that 4,(x)
= O (" exp {— AVlogmlogloéE}), where A4 is a positive constant. Further,
he stated that it the Riemann hypothesis is true, then Ay(x) = 0(z"),

where 6 < {8, Recently, Satfari Bahman [7] obfained some resulfs in
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case k> 4 and he [8] stated estimates for 4, (z) on the assmmption of the
Riemann hypothesis in cases & = 2 and 3. :
The object of the present paper is to further improve the order
estimates of A,.(x) for &= 2. In fact, we prove that
Ay() = O 8(w) and  dy{w) = O(x'"4(a),
where 4(z) = exp{— Alog**z(loglogz)~'"°}, A being a positive constant.
We also show on the assumption of the Riemann hypothesis that

2—u 1—a

Ag(@) = O(p* " w(a)) and dy(z) = Olo -6 wiz)),

where « iz given by {1.2) and w(z) = exp{dlogz(loglogz)™'}, A being
a positive constant. Further, we remark that the result 4(z) = 0(2%
for &= 4, mentioned in {1.1) above, can not be improved further even
on the basis of the Riemann hypothesis.

2. Preliminaries. In this section we prove some lemmas which are
needed in our digeussion.  Throughout the following x denotes a real
variable > 3. We need the following best known estimate concerning
the Mobins function u(n) obtained by Arnold Walfisz [12]:

Leuma 2.1 (ef. [12]; Satz 3, p. 191).

) w(n) = 0fwd(m))

NEL
where .
(2.2) . d{2) = exp{— A']_Dgwsm(loglagm)—US} ,

A being o positive constant,
Lrvma 2.2, For any s > 1,

(2.3) PR = +0(iff)-

T

Proof. From

pln) 1
_ & ont s
we have : o
#in) i a(n)
nar e { (3) nZ>a: n®
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Putting f(n) = 1/x*, it can be easily shown that
1
o+ 1)= 1) = 0.

Therefore by partial summution and (2.1),

N u(mfn) = — M@ 1+ 1)~ > W () [flnh1) )]

lod

_ o0 o(n)
-ofi) ol 3 %)
Since 4(z} is monotonic decreasing and 2“ = O(—l— )
?L>ZC m
3 1
N umiin = 0(—@)+0(6m2 = - o[2),
N nIT i

which proves the lemma.
Lumma 2.3. For § > 1,

(2.4) 1 ulm)logn () +0(5(w)10gw)

L@t e o1

&
N

Proof. From

S plny 1
©ome=l n-‘f é-
we have ,
plogn _ D) N1 p{n)logn
2 s T nt
nET T

1
Putting g(n) = M‘{'%ﬁ’ it can Dbe easily shown that
o
logn )

gyt

g(ﬂ+1) gn) = 0(

Therefore by partial snmmation and (2.1),

N utmgn) = I @1+ D H () g(nt1)—g(0)]

e 6(m)iogm o d(n)logn
- o[ H55E) o[ 32

(@)oge g _ o ologe)

_O( )+0(6( )g ﬂs ) mo mg_l ’

which proves the lermma.
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Tigna 2.4 (ef. [11], Theorem 14-26 {A), p. 316). If the Riemann
hypothesis is frue, {hen

(2.5) M) = Zy n) = 0[:;”“’@0@:))
whers
(2.6) w(z) = exp{dlogz(logloga)™'}

A being a positive constant. ,
Levma 2.5, If the Eiemann hypothesis is true, then for any s> 1,

(2.7) 2 MO:) + O(wh~*w(w)).

= 7 C(s)

Proof. Following the same argunment adopted in Lemma 2.2, we
get this lemma. We have only to replace é(x) in Lemma 2.2 by & *w ().

Lemwa 2.6, If the Riemann hypothesis is true, then for any s> 1,

v u(n)logn ()

28 T

+ Ofw*~*w(z)loga).
n<::: .
Proof. This follows by adopting the same argument in Lemma 2.3
and replacing §(z) by o iw(z).
3. Main results. In this section we prove the following:
THEOREM 3.1. For x> 3,

RO
4
Ty ) 4

where A,() = O(w”"’cﬁ(m}) or O(x%, according as k = 2,3 or k= 4; d(a)
being given by (2.2) and o is given by (1.2).

Proof. It has been proved (ef. [10], Theorem. 2.2) that

() = D) w(d)T(s).

dkdmm

LT

(3.1) 21@, ('n,. =0 <10g.r—1— y—1—

Hence -

G2 rgm =Y 3 @@ = 3 w(@ns),

M-Zz ) nEL dkﬁ n - d"dsm
the ‘summation on the right bemg ta,keal over all ordeved pairs (d, d)
sueh that 4%6 < 2.

Let z = w”" ‘PFurther, let 0 < ¢ = ¢(2) <1, where the function ¢ (w)
will be suitably chosen later N
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From ({3.2), we have
Zr(,c)(n) = Z wi{ny(r).
new nfres

H w¥r < &, then both %>z and » > o~ can not simultaneously
hold good, and so we have

(3.3)  Yrp= D s+ D peyt)— 3 wm)s()

=L nlrga nfr<ga n<ps
n<ez reco—k r<o—k

= 8,4 8;—8;, say.
Now, by (1.2},

(3.4) 8§ = 2#(%)1("‘ Zu(w T{r)

ke nsser r<wi'rb
noy
@ 2 % a®
= 2 F'('”’){"—"IOg"_E -l——;; @y—1)+ 0(—1?)}
NS08
[ 10 n
= (wlogz+2y—1) 2 ,u(n — ke 2 ulmlogn ) B B, (w),
02 0%

where

B = O(m“Z ﬂlk)

n<es

It & = 2 or 3, then since ;<< a<C §, we have ka <1, 50 that
By(2) = 0l (08 ™) = 0(¢" ™2

and if % > 4, then ka > 1, so that H,(z) = 0 (2"). Hence

(3.5) . Bo(z) = 0(¢ 2 or O

according as k = 2,3 or k=4
Now, by (3.4), (2.3) and (2.4),

1 6 (2}
(50) 8 = ologa+2y—1 {c(m +O(W)}_
L' {k) (5(95)10{%(92)) z
_ — ke {Cz{k) +0 (Qz)k—l }“JF” )
= ;) (1°gw+-2ym1— kf(g)) +0(g"*alogzd(02) + Hr(w)-
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We have, '
[(m)l,‘fc}
= ' yr(r) = 7 n) = ry Ml —
8o = ' p(mr( 2};—(:) D a Zkr() i
ez rp— ne (ZJ1 reg
rep—t Ay
;l?lfk
= O(L'l'l',k Z T(’,“)‘}'_llk b (;m‘)),
r‘{g*k
AT
by {2.1). Since §(x) is monotonic deereasing and T > g3, we lave

ml;’k
5(717) < 8(g2). Also,

2 T(?‘)?‘m“k — Z Z(lmllic a—-lfk i Z (Zm”k (5-1/!»'

rg—k rag—K Gomp d=op—"
—E\1-1/k
_ gk §UE _ 0( -V (_5)_%) )
dgk 65_@2:—’% d;" . d
1-k 1 1B f =k
=0(e™* D' =) = 0(e"Hlog(e™).
deg =
Hence
i 1
(3.7 8, = O(g“kzlog(g) 6(gz))-

Alzo, we have

B8 K= D pwet) = 3 <) M(e)

ﬂi_gzk rep
r=e

= Ofgzd(e2) o™*log (0™ ™) = 0 (91"“ zlog (%) 5(98))-
Hence, by (3.3), (3.6),_ (8.7) and (3.8),

@ B () o
(3.9) érw(n) = (10gm+2y_]'mm)+o(91 Fzloged (gz))+
04 Fstog BE (@3] B30,
e
Now, we choose _
(3.10) : o = Q(-T) — {(5‘(&2”?.‘;5)}1"‘?0’

and write

. ’ ' 35 .
(3.11)  f(@) = 10g3]-5(w”.ﬂ‘){lo,g‘h)g‘(93”2")}“”_5 = (—2~1~k—) TP (7 —log 24k) 5,

where U =logw and V = logloga.
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(3.12) For T = 2log2k, that is, U= 4k% o> exp{4%?), we have

_ Ve AV —Tlog2k) 5 < (V )3y
and therefore
(3'13) %k—sis U3,’5 ]7—]/5 t_(f{-l‘) {: k--s,’s Ua,’s ]‘,7-—1;'5_

(3.14) We assume withous loss of generality that the constant 4 in (2.2)
is less than 1.

By (3.10), (2.2) and (3.11), we have

4. -.‘ ——A
(3.15) ¢ = exp{— 7 f(ﬂ)}-
By (3.12), we have

] U
LB USIS Vs < 7:_);7:

Hence, by (3.13), (3.14), (3.15) and the above,

0 > exp(_“ﬂk—sjs U:i!s 1‘771/5) = BXIJ(- k—a,ﬁs Usi‘s V-—IJS)

- [ logz\
= eXp| — *‘)—L— = 8xXp|{ — % s
80 that ¢ = x~'%, _ .
Hence _
, 1 -
(3.16) log (—) <log(Vz) = O(logz) and gz 3 4%,
L @ ‘ :

Since é(#) is monotonie decreasing,
8(02) < &(a'¥) = g,

so that by (3.13) and (3.15), we have
< 1-k ¢ [ 'A —8f5 e —1/5
(3.17) 2 "8 (0z) t:’_@féexpl—?k By,
Hence, by (3.16) and (3.17), the first and second O-terms of (3.9) are
17k [ 4 —8f5 yy35 pr-1ys|
Om expl«—z—k 03 log|.

Hence, if A;(z) denotes the error term in the asymptotic formula (3.9),
then we have

. , A
(3.18)  A(x) =0 (wlf’“exp{H o3 kb s V‘“s} logw) + By {w).
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. Case k = 2 or 3. Inthis case, wehave 0 < 1—ka < 1,8ince } < a<C $.
By (3.15) and (3.13), we have .

A0 ) eyl ACI vy,

R = exp{

so that by (3.5),
A(l—ka) 15 Tr—1/5
Ek(ﬁ’) - 0($ GXP{—"—‘“ - T /s TAEEN 8 1 .

Again, since 0 < 1—ke < 1, the first O-term. in (3.18) iz also of the
?
above order of F,(z). Hence .

(3.19) Ay () = Oz Fexp{— Blog*® w(loglogz)~ "),

where B is a positive constant. . ‘
Hence Theorem 3.1 follows in this case.

Case k3> 4. In this case, by (3.5), Bp () = 0{#°) and the first O-term
in (3.18) is O(m”’“) Hence A (@) = 0.

Hence Theorem 3.1 is eompletely proved.

TaRoREM 3.2. If the Riemann hypothesis is true, then for o = 3,

FGC’(]G)
Zr(k](% C(k (10gm+2y 1— CU) )-l—Ak(m),

nEE

(3.20)

where
20

Ay (x) = O(»’ SR gy () ot O(2%),

according as k.= 2,3 or k = 4; where a is given by (L. 2) and w(m) 18 Fien

by (2.6).
Proof: Following the same procedure adopted in Theorem 3.1 and
malking use of (2.7) and (2.8) instead of (2.3) and (2. 4), we get that

- S Pl 1 .
(8.21) Ap(@) = O{e* jcz”loc_gwm(gz))—!— O(g2 Fzzlog (Wé«)w(gz)) +H, (@) .

Case & — 2 or 3. In this case, choosing

1
- 1FE(l—a) ,

g =#
~ we see that 0 < g<< 1,1/p < 2, so that log(1/g) < logz, and
1 ) 2—a

1

Z -k = —_———
— 1—

2 el 91 k”z — m1+2k( a) .

e

Sinee w(»} is monotonic increasing, we have w(oz) < w(2).

The number of k-free divisors of an integer 333

Hence, by (3.21) and the above, we have

2o L 2—a

Aple) = Ofa ' +¥0==) (2 )loga) = 0 (it 0o g )

Case k=4, We have w(r) = 0(z°) and loge = 0(z) for every
z> 0. We assume without loss of generality that = < 1. Hence, by (3. 91),
we have

Y ke lim L l—ke 1
(322)  dy(n) = 0(¢ " )+0( e 1og(3))+0(m“>‘

Now, choosing

we see that 0<C o< 1,1/e<C 2, 5o that log(1l/g) < logz = 0(2°) and

%—k-%-e ;--}-22 .
g . =&,

Hence, by (3.22), 4,.(x) = 0(=z").

Thns Theorem 3.2 is proved.

Remark. In ease k=4, we may chooge the function p = o(z),
which tends to zero as x — oo, more rapidly than the function chosen
above. In such a case, although the first and second O-terms in (3.22)
are O(2°) where § < a, but because of the third O-term in (3.22), we again
get A, (z) = O(z*). Hence we cannot improve the result thit A (z) = Oz
for k= 4, even on the assumption of the Riemann hypothesis.
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Some properties of Davenport-Schinzel sequences

by

D. P. RoszuLe* (Baton Rouge, La)
and R. G. Sraxrton (Winnipeg, Canada)

1. Introduction. Davenport and Schinzel [1] introduced the following
problem on sequences. Suppose that Z, = {1,2,..., 2} and that V,(d)
denotes the set of all sequences a, b, a, b, 4, ... of length d, where ¢ and b
ave distinct elements of Z,. One congiders all sequences made up of ele-
ments from Z, such that no two adjacent elements are equal and no
subsequence is an element of 7, (j) for § > d. If N (n) denotes the maximal
length of any such sequence, we call any sequence of length Ny(n)
a Davenpori-Schinzel sequence (or a DS sequence.) The problem is to
determine all DS sequences and, in particular, to determine Ng(n). Of
course, it will be sufficient to determine all normal DS sequences; i.e.,
DS sequences in which the elements appear in order from left to right.

Davenport and Schinzel consider ¥,(n) for fixed ¢ and obtain the
results ¥, (n) =1, No(n) = n, Ng(n) = 2n—1. Two proofs of the restlt
for N4(n) are given, the second being based on Mrs. Turén's observation
that, in a DS sequence of length N,(n), there is some element which
occurs exactly one fime. They remark that 1,2,1,3,1,...,%4, 7,1 and.
1,2,..,8—1,8,72—~1,...,2%,1 are both D3 sequences for d =3.
Finally, they obtain bounds on N,{n) for fixed d, including the result
N,(n) = bn—0, where ¢ 15 a constant.

The authors [2] have proved that N,{2) = d and, for 4 > 3, N4(3)
— 3d—4 or 3d—5, depending upon whether d is even or odd. It is also
shown that, for » = 3, a DS sequence is unique.

The object of the present paper is to prove

(L.1) Ny(1) = 6d-14 (@ 0dd, 4> 4),
{1.2) Ny(4) = 6d—13 (4 even, 4 > 1),
(1.3 L [Wa—o< Mam  @> ),

* Partially supported by National Seicnee Foundation gfant GP-11397. Part
of this work was dope during a visit to the University of Manitoba.



