icm

ACTA ARITHMETICA
XVIT (1671)

On the representation of integers 7
by certain binary cubic and biquadratic forms

by
W. LouoNgerEN ( Ozlo)

1. Let f,(x,y) denote any irreducible form with rational integral
coetficients of degree n >> 2. Some sixty years ago Axel Thue [18] proved
that the diophantine equation

(1) .ﬁlz(w:?/) = 1,

where m is a given rational integer = 0, has only a finite nomber of
solutions in rational integers » and y. However, the method used does
not help in finding the values of » and y in question. It is only possible
to obtain an upper bound for the number of solutions. Recently Alan
Balker [4] has shown that bounds can also be given for the magnitude
of the solutions. However, the bounds for {z] and |y| are extremely big,
even for small values of #.

A quite different method of mvestigating (1) has Dbeen developed
by Th. Skolem in a series of papers. See for example [23], [24], [25]
and [26]. The method works in case f,{x, —1) has at least one pair of
conjugate complex zeros, and it can be considered as a generalization
of & method used by T. Nagell and B. Delone [18] for # = 3. The appli-
cation of Dirichlet’s unit theorem plays an important role. Otherwise
Skolen’’s method is a p-adic one, which is also of a non-effective character.
But it can be used to obtain an upper bound for the number of solutions,
and in all nwmerieal examples hitherto treated these bounds are low,
sueh that it in many cases has heen possible to attain a complete solution.

Ag to the case where f,{#, —1) has only real zeros Skolem himself
proposed a manner of proceeding to deal with the simplest case where
n = 3. 1 have carried out this proposal in.[10]. In 1939 . Chabauty
gave an outline of a proof of the proposition that it was possible to use
Skolem’s method also in the remaining cases. A complete treatment
appeared in 1941 [6]. Iowever, it geems to be too complicated to géb
a low upper bound for the number of solutions by Chabautay’s method,
even for gmall values of a.
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The purpose of this paper is to show that the eubic forms with
positive diseriminant can be t_rea,ted in a way, which is simpler than the
manner of proceeding proposed by Th. Skolem. In addifion we solve
some cases with n = 4, where fy(z, ——1) hags only real zeros.

2. It is Well-hlmvll that any eubic form f = fi{@, ¥) has two

covariands:
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satisfying the identity
(2) _ @ = 17 —27Df*,

D denoting the diseriminant of the form. See [8], pp. 132-135. In cave
falw, y) =1, we obtain from (2) :

(3) QF = 1A —27D.
It was shown by Mordell [17] that the diophantine equation
(4) v* = dUd— gt — g,

where g, and g, are given rational integers, has at most a finite number
of rational integral solufions (u,%), when it right-hand side has no

squared factor in «. He proved that to every infegral solution (u, #)

~of (4) there corresponded a binary guartic with invariants g, and g which
represented unity, and conversely.

. In (3) we have g, = 0 and g, = 27.0. The problem of solving fy{w, ¥)
=1 is now transposed into the problem of finding all representations
of 1 by certain binary biquadratic forms having these invariants. Since
such a form f,(x,y) has negative discriminant D, = 2°(g3—27¢;
= —2%.35. D% the corresponding equation f,(x, —1) =0 will have

* Hwo real roots 4 and ' and two complex roots »”' and %', T @(n) we
have two independent units, and the only roots of unity are 1. Henee,
the method of Skolem can be used.

In an earlier paper [16] I have given the complete solution of the
equation
() : yt—k = g?

in cage k¥ = — 7 and ¥ = — 15, using the p-adic method in the treatment
of the oecuring binary bigquadratic forms. By the way we got the complete
golntion of -

6 8 6 agE- 29 = 1

icm

On the represenioiion of integers 381

and
(7) p—Gmiy-}-29° =1,

where the cubic forms on the left-hand side of (6) and. of (7) have positive
discriminants. The equation (6) has the two solutions (w,y) = (1,0)
and (x, ) = (1, 3), while the equation (7) has the only solution (z,¥)
= (1, 0). :

However, I did not emphasize that we could start with an arbitrary
cuhic form with positive discriminant.

In my paper [10] T gave the complete solution of the equation

(8) ad— 3wty =1, D =81.
Corresponding to (2) fve_ find '
(@4 Bty Bwyt - y)? = A (2P ay - y?) - 3 (2 — 3oyt — Y2

In order to olve (8) in rational integers (@, y) we must solve in rational
integers (u, v) the equation

v? = 4ud—3,
which leads to the problem of solving
ot — 6ty — 4oyt — 3yt = 1

in rational integers (2, ¥). I do not enter into this here since (8) is already
completely solved. _ .

It may even happen that our problem can be solved by considering
only one exponential equation with one unknown exponent. We shall
illustrate this by an example. Using fi(z, y) = o®— 6zy®4-2y® ag in (6},
we obtain the following identity, corresponding to (3):

(29 1208y + Gay— G2+ T (05— 6ay?+-2%)2 = 8 (a+ ay+2y7).
The eguation

(9 ot 1222y 4 Gay?—06y® =1, D = 4-218

leads to the equation
{10} \ 14 Tu? = 8u3.

Tn an earlier paper [11], pp. 50-52, T have proved that (u,») =(1,1),
(3, 2) and (39, 11) are the only solutions of (10) in rational integers (u, v).
Combining (9) with z*4axy--2y% = », we find that (9) has exactly the
following three solutions (z,%) = (1,0), (=, %) = (1, —1) and (&, 4}
= {1, 2). In the proof use was made of Skolem’s method and only one
exponential equation occured. The cause of this is the reducibility of
898 —1 in Q.
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3. In this section we are going to treat some cases with 2 = 4,
assuming that the corresponding quartic field o (n} has a real quadratie
subfield, i.e. that the reducing cubic equation has & rational root. See
for instance T. Nagell [19], p. 349.

We need some well-known results from the theory of eovariants
and invariants of biquadratic forms. Referring to the textbook [8],
pp. 138-147, we write :

Fu(, 4) = auat+ day 2y - 0y 2ty - dayy® -+ gy

The form f = f,(z, ) has the two covariants

1 {0 7 ( o f )2)
E=HEn= "1 (am- oyt \dwdy
and ,
1({8f 6H of 0H )
Q=Q(‘1’5y)—§('§£ _OI Gy ow
satisfying the identity .
(1) Pl =,

" where the two invariants g, and g, are given by
(12) go =% “¢“4“1“3‘|‘3a§:

The diseriminant D of the form has the value

8
b = %%%‘5‘2“1%%—“2’“%“3'—“?%-

) D = 256 (g5 27¢3).

Putbing
(14) H(z,y) = b+ b2’y + bgmzy + by’ by,
we have

b, = 3aj~

b, = ai — Gy ay.

2 —
by = @i —agdy, by = 2{4 03— Gy ts), 20 G3— Gy,

(149 By = 2 (agty— 0, dy),

Deno‘mng by ey, ¢, and e; the roots of the reduemg cubie

(18) ded—goi—yy = 0

then the following formulas are valid

(16) H—of =¢i(®,9), 1
The three binary quadratics ¢(®, ¥) =g¢

variants, and Q = 2¢,psps.
Let ¢, be a rational root of (15). Then we may write

=1,2,3.

are the “irrational” co-

an _ H—e6f = kyi(o, 9),
and therefore (H e ){H—¢sf) in the form
(18) B e Bf+ (61 —1g:)1" = k(o 1),
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where w; (@, ¥) = v, = P22 qay-+ry* (8 =1,2) with rational integer
coefficients and rational k.
Replacing H— e, f by ki in (18) we obtain

vi+ 3¢ kfﬁ +* (332._%92) == k"Pg .

In cage
(19) . | Flw, ) =1
we geb
K i+ 3e ki + (361 —40u) = ki,
or '
(20) Aur4+But - ¢ = D2,

4, B, ¢, D denoting rational integers.

Sinee f,(¢, —1) = 0 has four real roots, the reducing cubic (15)
has three real roots. This fact implies that B*—4AC > 0. However,
in an earlier paper [15], p. 8, I have shown how it is possible to apply
Skolem’s method o solve (20) by passing to an appropriate algebraic
field of degree 8, then getting two exponential equations with two unkuown
exponents.

Agguming g, =0 V. K_lechlmu [9] proved that f,(z,v) =1 had
at most twenty solutions in rational integers =, y. This case is included
in our considerations above, becanse then z = 0 is a rational root of (13).
Besides, the following identity is easily verified
(21) ‘J:Cf'ubpf4 (2, ) = 4y (0" + 2@, 2y + a, 7Y — o (b, y* -+ Lby o).
Hengce, Q(l/a,obo) is a quadratic gubfield of Q(x). Here we have ab,
= ay(0i—aga,) > 0. In (20) is then B = 0.

We shall give two examples, chosen for the purpose of &v01d1ng
laborious caleulations.

Txavere 1.
(wy —2y%)" =
We find gy, —37-16, g, = —%-17-16, D =2V and ¢, =3.
These values vield further '
H—ef = 2(x2— day -+ Gy*)?,
and corresponding to {20) we obtain
(23) w4 2u®— 1 = 207,
where _
o=t —day 4+ 6y and v = o' — 850y - 12277 - 16wyt —28y" .

However, in [15] I have proved that the only solutions of (23) in rational
positive integers (¢, ) are {#,v) = (1,1) and (u,») = (3, 7). The only
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golutions of (22} ave then # = +1, y =0 and ¢ =3,y =1, = —3,
y = —1L
ExavPLE 2
(24) Jalz, y) = (m2+2wy_y2)2__8$2y2 =

Here we have gy = 8,43 =0, D =2 and H = 2 (x4 We
aote the following identity
(0 — 6297+ 3+ Loty — da7°)

corresponding to squation (20) in the form

(gt — 6%y oyt — Aoy eyt = 20 4 97,

(25) ut—1 = 2.

The only solutions in nabural numbers (u,v) of (25) are (u,®) == (1, 1)
and (i, v) = {13, 23%). See [12], pD. 9-—12 The equation (24) has the
eight sclutions (41, 0), (0, £1), (3, 2), (— ~‘)), (2, —3) and (—2, 3).

4. In the following we wish to add some considerations concerning
quartic forms with negative discriminant, with the further property that
the coneslaondmg field € (x) has a veal quadrabic subfield. Here we have
¢ = 2. As in the preceeding section we may obtain the solntion of (19)
by solving (20), where now B*—44( < 0.

Tn wmy paper [111 I have shown how it is possible to deal with
(20) by disenssing only one exponential equation with one unknown ex-
ponent. Besides [11] containg several general theorems on the solvability
of equations of the type (20).

ExAvpiE. _
(26) fulm, ) = (@ +ay -+ —3(@y—o* =
We find g3 = —6, 65 = —5, &4 = ~1,
H—ef = 4(m — Dy — 27)*
and .
{27) o ate— 20l 4 = 307,
where

v = ot 200y L bty — day® - 4yt

In [11], Theoremn ITI, p. 4, 1 hawe proved that the only solutwns in natural
numbers u, v of (97 ) are given by

(w,%) = (1, 1), (13, 97) and (2, 2).

‘The only solutions of (26) are then (z, ¥) = (+1,0), (3, —1) and (—3, 1).

V. D. Podsypanin {21] has given ancther method for solving the
same probler by working in a totally complex quartic field. As an appli-
eation he treats the equation «'4-4ey®—y* =1, proving that the only
integral solutions are (¢, y) = (+1,0),(1,4) and (—1, —4).

u = 2t — 2wy — 2%,

icn
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As to more general investigations we quote the following two
theoremis:

Let a, b, o, d be integers in Q; a, b, ¢ positive, d 7 0, a and ¢ squarefree;
39 . ) + .
&L Lach® not a perfect squave. For fived a, b, ¢, d and for every pair of
notural numbers by, by satisfying by bs= b, the equations

abl at— eyt —detyt = +1,
AW gt — b3yt acdr’y® = +1

are insoluble in natural numbers x, ¥y, except possibly one, which has exactly
ane solution. '

See Ljunggren [13] and Podsypanin [20].

Let p and q be integers in Q. The diophantine equation

falmy ) = a* L pdy+ g PP oyt yt =1,

where f,(t, —1) has exactly fwo real zeros, and where ¢ 7 2lp|—3 has
at most 8 solutions in rational integers m and y, including the four trivial
solutions @ = =1,y =0 and & = 0,y = £ 1. If ¢ = 2(p|—3 the equation
has ot most 10 solufions.

In the proof use is made of the fact that the algebraic integer

RCES IR CE S I Co
is o unit with relative norin 1 in Z[4]. See [14] and [14'].

5. Spedial diophantine equations of the form fy(z, y) = 1 has been
investigated by the Russian mathematician B. T. Avanesov. See the
papers (1] and [3]. In [2] he obtained a result concerning (1) in case n = 3,
m =1, where fy(#,——1) = 0 has three real roots. His procedure is exactly
that of Skolem, mentioned in Section 1. See [23], pp. 58-61. However,
Skolem gave no details. One ends with systems of four exponential equa-
tions with four unknown exponents. In my treatment in [10¢] I showed
that one could handle the problem using onky two exponential equations
with two nnknown exponents. T did not discuss which of these methods
would give a minimum of laboriouse caleulations. By use of the method
in [5] V. I. Baulin gave the complete solution of fy(z, y) = 1, where the
occuring cubic form had diseriminant 49. :

There are at most fitteen solutions of (1) if 2. = 3 and the discriminant
of the form is positive and great compared with . See papers [22] and [7].

Added in proof If the wank of (1) over ¢ does not excaed 1, m is without
cuhic factors, aud {02, m) = 1, then for [D|m? = 6'%%, tho equation (1) has at most
three solutions in rational integers in the case I = &2, s eZ, and nine solutions in the
cage D = s (see V. A. Demjancnko, On the representation of numbers by a binary
cubic irreducible form (Russian), Mat. Zametki 7 (1970), pp. 87-87, English {ransla-
tion, Math. Notes 7 (1-2) (1970}). . .
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