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Representation of Markeff’s binary quadratic forms
by geodesics on a perforated torus
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Harvey CoEN (Tueson, Arizona)

In memory of Hareld Davenpori

1. Imtroduction. One of Harold Davenport’s most remarkable
contributions was a succession of papers (notably [4] and [5]} on the
minima of the product of three ternary homogeneons linear forms (compare
Mordell [11]). Davenport showed that (with unit deferminant) the two
largest minima, 1/7 and 1/9, are discrete. No further minima have besn
established since then.

One of the reasong that this problem is o intriguing and challenging
is the comparison one naturally makes with the Markoff theory of binary
(indefinite) quadratic forms (see [10],[6], [2]). The Markoif theory
represents a state of perfection at the fringes of utter chaos! A discrete,
convergent sequence of minima exists with & limit point (1/3) below which
the spectrum of minima varies locally from continuous to discrete ([9],
{12]). The original theory depended heavily on continued fractions,
although & revision of Frobenius [7] made the theory depend more on
chains of reduced forms. A paper of the author [3] used as a substitute
tool some algebraic (matrix) identities which, in principle, are less specia-
lized than continued fractions. .

We now return to our earlier approach [3] in the hope that additional
ingight might be gained in understanding the discrete nature of the minima
by an exploration of the geometric aspects of the Markoff forms. We
interpret these formas in terms of closed geodesies of preassigned homology
type on & perforated torns. It is possible, specifically, to gain a better
understanding of some of the “fringe” behavior at the limit point of the
diserete set of minima. '

2. Rational Markeff forms. We briefly summarize the classical theory.
Let [10] -

(1) Qw,y) = aat+boy+cy?, 4 =bi—dac>0
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be a quadratic form with integral coefficients and irrational roots £,
(i.e., @(w,¥) = a(z— &y)(z—ny)). Let us define the minima,

(2) m(Q) = inf|Q (2, y)|/d"

taken over integer-pairs (z, ) # (0, 0), Then consider the sequence o:
Mazkoff triples MY = (MY, MP, M) given by the positive solution
of (HPP+(UP)P+ (M) = 3MY MY MY arvanged so that every
solution (Markotf number) ocours once in order MYV < M « M« ...
-We construet the forms '

(3) {2, y) = a;@*+boy+ opy®
where a; = MY, b; = (2u;—3M), ¢; = (1,—3p;), u; I the least positive
residue of L+ MY /MY (modulo MP) and v; = (1-Fud)/ MY, Hero m(Q;

= {9—(2/MPP)7""* > 1/3; and the minima m(@,) are discrete and have
1/3 as & limit point. The first three cases are

M=(1,1,1), Gilm, ¥} = m2M3my+y2, m{Q,) = 1/51f25
then
M=(2,1,1), Qo,y) =20 —day—2y%, m(Qy) =1/8",
and finally

M= (5,2,1), Qiz,y) =5e°—1llay—By?, m(Q,) = b5/221"2,
Markoff’s famous result is that if

(4) m(Q) >1/3,

then ¢ i8 a rational multiple of a form equivalent to a Q.

In the alternate derivation [3], the sequence of Markoff triples ‘were
seen. to be one-third the traces of matrix triples serving as generating
elements of an antomorphic group with fundamental domain, of genus one.
In the interpretation (as geodesics) undertaken hers we shall require

some of the continued fraction theory (see [61), which must Le summarized
for reference.

3. Markoff symmetry property. Let & and 4 be roots of the Markoff
form (assumed reduced) so

(5) E>1>—1>0.

Then £ and —y are given by continued fractions in the usunal notation
(Ga) £ = ot 1/(at1/(as+... = {ay, a,, a,, coibs

(6h) —n =1f(a_s+1f(a_s+... = {0, Gy, @ s, ...},

with «; positive integers. Using the obvious notation
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(N {—"7’1‘,5} ={---aa-27“—1y“05 @y y Tg, "'};?

we obtain a periodic sequence (Markoff period) consisting of integer pairs
1,1 or 2,2 satisfying the following symmetry property:
Write the periodic sequence as

B e (11, 02,2,(1,1),,2,2,(1,1),,,2,2,...}
= [y To_yy Poy Pay o] = R

(Clearly this owits {...,1,1,1,1,...} which we might designate as
[oo] = R; bub {...,2,2,2,2,...} would be merely [...,0,0,...] = R.)
Then the Markoff symietry property is that

(i) the items of sequence R have at most two values of the form
#,#-+1 (or 7, #—1), and

(ii) if #;, s 7;,; we go fo the right and left a distanes i to form
dy = 1y p—"s10p- LThen the first 7 >0 where d; 7 0 iz one where d,
and ¢, disagree in sign.

The symmetry property is not disturbed if we add or subtract a con-
stant to each item. Also the symmetry property is vacnously satisfied
if all #; are equal. This ean serve as an effective criterion of gymmetry
owing to Markoff’s derivation condition. If we write R as

{9) R = [-“-7 ('P:‘Z]-)s,_lsry ('fil)au: ¥y '--]
then we obtain a derived sequence
{(10) B =8 =[...,8_, 8 81,82, +.4]

which hag the Markotf symmetry property if and only if R has the prop-
ertv. It is mot hard to show that any Markoff period can he reduced
to & trivial one (all the same value) by derivation.

4. Juxtaposition of periods. It is important for latter purposes to
constrnet Markoff periods by juxtaposition of shorter periods _'ra’n]?er than,
derivation (whiel gerves us only a& o tool for the proofs). Oert_a-mly not
every juxtaposition of (1,1) and (2,2) is a Markoff period (e.g.,
(s 1.1,2,2,1,1,2,2,2,2,2,2,...} fails to satisfy the symmetry
condition). To begin with, we need this theorem, essentially due to Mar-
koff {10]: .

Let {1, %) be two relatively prime positive (or zere) integers, where. a
denvtes the number of pairs (2,2) and v denotes the _numl:ter of pairs
(1, 1). Then all Markoff numbers correspond to such pairs uniquely with
M, v) formed by the following rules: First,

(112) MO,1) =1, M(1,0)=2, M(1,1) =35
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and the general Markoff triple M; = M(u;, ;) (¢ = 1,2, 3) correspond
to a general triple of (u;, v;) of which any two are unimodular, %,v;— ;1
= +1 {i % j). The chain rule of formation is that if

{11b) (M, Moy My) = (M (ug, ve), M (s, v5), M (%s, 0s))
then (for 3M, M, > M,)
(1le} (M, M., 3.M, M,— M)
= (M (g, 9y)y M {thgy )y M {20y 10y, 01 05)).

{The saane rule holds, of course, with any permutation of indices.)
Thig result, actually, follows very eagily from the basiy constructio:
given in [3]. Note that to start the induction,

{12a)  (u, ) = (0, 1), 7
R =[oo], {—n,&={.11...}, @=¢ (M=1),
{12b)  {ut, ) = (1, 0}, _
R=[0], {—, & ={..,2,2,..}, Q=0, (M=
(12¢)  (u,v) = (1, 1),
R=1[0,1], {—n, & ={..,1,1,2,2,...}, Q =0Q, (M =5).

Thus M (1, 2) =13, M(2,1) =29, M(1,3) = 34, M(L, 1) =89, M (3,1
=169, M(2,3) =194, M(1,5) =233, M(3,2) =433, M1, 6) =610
M(4,1) = 985 (which accounts for all M < 1000).

We now consider the general Markoff period

(13a) Plu, o) ={.,2,2,..,1,%,...}, (4,9 =1, u=0, v,

and divide all sneh periods into two types (overlapping only whe:
# = v == 1), Here P(u, ¢) 15 of type 1 or 2 depending on whether ther
are more ones (v = ) or more twos (w = v). For every Pu, v) of (say
type 2 we have two normalized forms of the period {called upper and lower)
namely

(13b) P (u,v) ={1,1,...,2 2}; P_(u,v) ={2,2,...,2,2}

(eﬁcept, P.(1,1)={1,1,2,2} =P_(1,1)), with the property tha
various pemocls P_(u,0) of type 2 ean be placed in juxtaposition by the
following rules of the continued fraction:

Let the comvergents of y = {gy, g1, ...} be u,/v, (g, > 0), o

{14a) (Upqny Vysa) = [/ (T Tpp) - (U, 1) -
Then for n odd (ie., w,, fo, . < u,lv,),
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(llb) Pm— (Q'{'n-l-zs !U.u.--}-l) = P (T-&.,,_, 'un,)+ Gn —1—2P~ (TLfZ-+l! 'vu—:—l) ?
(14¢) P (thygas Uy} = Goya P (Uyyqy 0, s Py, 1,);

while for n even (Lo, w,., v, > u,fv,),

(llj‘d) p. (%M-ﬂ? Iun--l-2) = gnl}-.‘!P»(%"’n»irlr Wn-l—l)‘i‘P—- ('“'m "‘-"n);
(lde) P.E- (uﬂ-1-2 ) ’Dn.-!-iz) == ‘P-f- ('H’n} @aa)+gva+2P+ (un-l-l:' 'Dn-}-l):

with similar relations for lype L. (Note the noncommaulative Justaposition
of words in (14b) to {Lle).)

5. Polygonal model of period. The proof of these assertions consists
of an examination of the sequence R (see (3)) corresponding to a general
period P (say) of type 2. First note the B must congist of only zeros and
oned. {For if there are » values of (k1) and s values of (k) in a period
of p = r4s in R, then » = r-+& valves of 2, 2 oceur in P and v = ks
4+ {k+1)r values of 1, 1 oceur in P, which requires that & = 0 in order
that « 2= v). Now we suppose R to be a period of p = (r+5) terms with ¢
ones and & zeros, where {r, s) = 1. We define an upper and lower derived
period B, (Tor P.) and R_ (for P_) ag follows: Define

(16) o = [trfs]—[(t—L)r/s], Ay = —[—tr[s]-}F[—({E—1)r/s].

(Note —[—a] i3 the next “large or equal” integer, while [«] is the next
“smaller or equal™). Then define (for 1L j<38)

(1a) o =0,1,...,1 (with @, elements 1 in juxta.pbsition),
(16D} Py =0,1,...,1
Then the normalized upper and lower derived periods are
{17a) R, =V, ..., V.,

(17b) R_ =[0;,..., 0

The upper and lower Markoff periods (of type 2) are uniquely determined
from them (4 == -8 > v == r). Through an accident of notation, the
“npper” polygons for rfs correspond to “lower” polygons for u/v.

Before proving that B, and R_ have the Markoif symmetry property
(a8 well as the juxtaposition property) it is well to interpret them geo-
metrically as in Figure 1. Here B_ (and R,) are geen to represent the
lower (and upper) polygon #_ and #, approximating the diagonal from
(0, 0) to (r, ) so that no inlegral Zwttwe point lies between the polygon and
the diagonal. In & sense, #, and #_ are the “straightest” polygonal
approximations to the d.la.gonal later on we shall see they determine the
paths of geodesics!

(with A; elements 1 in juxtaposition).

9~ Acla Arithmetice XVIIL
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The construction is lustrated for v == 5, § = 3 so that
R_=J[0,1,0,1,1,0,1,1], R, =([1,1,0,1,1,0,1,0],
and by (8) we retrieve
P_(8,5) ={,2,1,1,2,2,2,2,1,1,2,2,1,1,2,2,2,2,1, 1,
2,2,1,1,2,2},
P_(8,5)=4{,1,2,2,1,1,2,2,2,2,1,1,2,2,1,1,2,2,2,2,
1,1,2,2,42,2}.

. . — G

Fig. 1. Upper and lower polygons #, and #_. Thoy represent the normalized uppe
and lower derived periods R,. and R._ for (r,8) = (5, 3)

The corresponding Markoff number iy 48, 928, 105 from the rule {11le)

To #ee that {say) R_ satisfies the Markoff symmetry condition
write it as R_ = [0, 1oy 0y 140 ..., 0,1, ], so its derived period is th
shorter expression R_ = [ay, a,, ..., a,], with each a; = [#/s] or 1 [r/s]
If we subtract [r/s] from each item of R’ , we get a set of #* omes and s
zeros where (for k = [r/s]),

(18) v =r—sk, § =sk+s—r.
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Now we can see this new set of » -+ s’ zeros and ones is the B_ of {#", 8').
It ix easiest to see this by the fact that (18) is an affine unimodular
transformation (with % paradoxically imagined to be a constant!) And
the property of the lower and upper polygons are unimodular-affine
invariant., (In Figure 1, the direction of the new coordinates is shown
by the dotted lines. Here (r',¢') = (1,2), e.g, R. =[1,2,2], and
subtracting [r/s] =1, we get [0,1,1], illustrated as the dotted lower
polygon in the new coordinates.)

The juxtaposition relations (14b) to (14e) now follow almost imme-
diately from the H. J. 8. Smith geometric construction of the continuned
fraction ([9], p. 38). The essence of the construction is that the vector
sum (14a) produces the resultant (u,.,, 9,,.) a8 a diagonal, but no lattice
points occur between the addends and the diagonal. (In Figure 1,
y=1{1,1,2,...}, 80 uyfo, =1, #,/v;, = 2, uy/v, = 5/3.) Thus the “upper
and lower polygons” are preserved by the juxtaposition.

6. Representation of forms by geodesics in the wpper half plane.
We begin with the traditional Klein-Poincaré mon-Fuclidean model
of the upper half » plane with the metric

(19) ds = |de|/(Tmz).

Thus if § and # are any real numbers, then 'we can represent the geodesics
ag G(n, £} the upper semicircle from 5 to & with center on the real axis.
This semicirele ean be represented in the fundamental domain D, of the
modular group I, namely

(20) Dy ¢ >1, |Rez|<1/2

by integral fractional unimodular transformations [3]. We shall find
it more convenient to consider the image in the union of integral translates
of D,, namely ' '

(31 D, Nlg—nl=1l (Imz>0),

for all integers n. Now the geodesic & (x, £ can be represented by use
of an additional symmetry operation z — — Z (together with the modular
group). Then the geodesics continually “bounee” along the 60-degree
arcs forming the base of D (see Figure 2).

Thus the (unoriented) geodesic in D_, for roots n, & corresponds to the
equivalence dlass of quadratic forms eQ (¢, v) (6 +0), with rational coeffi-
cients. They are closed geodesics under tromslation by even infegers (com-
pare [8]).

On 2 geodesic arc we note the

(22) sup(Imz) = (2m (@),
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because the (ordinary) radius of a geodesic is [(£—7)/2| == d'*/(Za),
where the first coefficient, o, can take the minimum of the form.
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Thus the Markoff forms are characierized by the translationally closed
geodesics which remuoin below the horizoniel line Tnz = 3/2 (see the (ofted
line in Figure 2). We ignore the trivial case of a rational voot & or s, hscause
there it iz seen that the geodesic will go straight up to oo somoewhore.

The relation between the “jumps” of the geodesic in D, mut the
denominators of the continued fraction is a generally very snnoying
one, but here the nature of the Markoff forin is more than adequate to
gimplify matters.

Let Q{x,y) be o quadratic form whose period contains only ones and
twos (not necessarily pairéd). Then the geodesic connecting the roots Gy, &)
enters D, (starting from 7)) in the interval |Rez| <1/2 and leaves D,
{continuing to &) in the infervel |Rez—a| < 123, where in the wsual
aotation

(23) § = {a, LR N —n = {0, a_,, } (“; =),

Thus the “Jumps® of such a geodesic ewactly display the denominalors of the
continued fraction.

Let us consider, for proof, the entry (from 7). We are concernsd with
cerfain distance inequalities making the radiug (£—15)/2 lie between. tho
distance from the center (£+4#)/2 and the end-points of the interval
+1/24+48"2/2 (see Figure 2). Thus

(23a) (FE+-m—g)+2 <(§2—”) < Glé+n+iP+4,

(23b) E—D—0H+] <0 <(E+D+H+4
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We shall first prove the right hand inequality. It iz trivial if &, =2
for then (n4+4) >0. If a_, =1, —y ={0,1,...} < {0,1, 2,1,2,..}
=3¥—-1 and £<{2,1,2,1,...} =8Y24+1. Thus (E+P(—~n—1
< 9/4—3' < 3/4. To prove the left hand inequality, we just examine the
less favorable case a; =1, so £>{1,2,1,2,...} = (1+-3"%)/2 and
—>1{0,2,1,2,1,...} = (3 —1)/2. Thus (§—%)(~5+%)> % (The
last inequality may appear uncomfortably “close”, bub in a Markotf
form the ones and twos are paired, which provides stricter mequalities
and hence an absolute lower bound on the distance from a point of crossing
of the geodesic to the elliptic fixed points.) The exit relation is quite
similar since £—a, = {0,a,,,,...} and 5—a = —{a;, a,_,, ...} 8o fthe
same discussion holds, completing the proof.

7. Representation of forms by geodesics in the elliptic period plane.

We now consider the geodesics transferred to the torus (or doubly periodie
U-plane) by : '

(24) - 1—=J(2) = @' (U) = 4p*(U)+1

(see [3]}. The period parallelogram corresponds to the fundamental
domain of I'y a subgroup of the modular group I, of index 6. (In £3],
we saw how the Markoff triples correspond to various vector bagses of the
period or generating substitutions of I.) Actually the fundamental
domain of the periodic structure is best represented by six image of D,,
as & period hexagon (see Figure 3).

Fig. 3. Path of geodesic in U-plane, as approximated by {..., V1, V,,...}. The num-
bering of triangles agrees with replicas of Dy, in Figure 2
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Now the geodesic of a Markoff form will become a geodesic in the
U-plane (closed under translations of the lattice periods). It will he
characterized by the fact that it does not get within a certain “digtance”
of the images of # = oo, L.e., it remaing on a perforated torus with open
digks excised according to the images under (24) of Imz > 3/2.

Indeed the transformations

(25a) ¢ =1-+1/1+1fz), or & =141j(L+1/3),
(25D) ¢ =24+1/@2+1fz), or 2 =2-42/F+1/z)

correspond to displacement vectors ¥, and ¥, shown in TFigure 3. in
trangferring the geodesic from the z-plane to the U-plane it is important
to note that z-+1 represents a positive rotaiion within oach hexagon
and 1/2 represents a reflection across the side of the hexagon reversing
the sense of rotation. Particularly the period {...,1,1,...,2,2,...}
ig homotopie to a polygon of displacement vectors {... +V,+... 4V, ... g
within the torus, as shown in Figure 3. (Note that this polygon completely
determines the triangulation of the geodesic.)

These geodesics also have no double points on the U-plane (although
they clearly would have such points on the torus); they progress mono-
tonically in the directiong V; and ¥,. '

Hence, if we prescribe a (primitive) Lomology class on the {unper-
forated) torus, vV 4+uV,, (u,v) =1 (w32 0,02 0), there is precisely one
displacement polygon (within symmetries) corresponding io that Fkomology
class amd homoiopic to the geodesic for a Markoff form on the perforated
torus. If these displacement polygoms correspond to normalized periods,
then the jumtaposition of displacement polygons corresponds to the justla-
position of periods (in Section 4). The dosed geodesics on the perforated
torus correspond to (only) the Markoff forms.

8. Limiting geodesics. We now consider indefinite binary qunadratic
forms for which the coefficients are no longer proportional to intogers
but for which the roots are still irrational. The previcus theory still holds
with minor modifications. No new minima ave introduced above the limit
point 1/3, but now there exist an wncountable infinity of go-ealled “liniit-
Ing” Markoff forms where m(Q) = 1/3. Some partial results on these
forms are cited by Koksma ([9], p. 32) and a complete digeussion of the
continued fraction theory appears in Dickson’s aceonnt [6]. The continued
fraction (7) for {—x, £} of course is no longer petiodic, but the Markoft
symmetry property still holds.

Whait about the geodesics of the limiting Maxkoff forms? It follows
from classioal theorems of compactness of geodesics on a compact manitold
that some of these geodesics can be found as limiting geodesics of integral
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Markoff forms. For example, if we consider normalized periods P_ (w, )
{» > v, of type 2, say), we can build up the continued fraction y of (14a)
by the rules (14b) and (14d) so as to represent essentially an “irrational
slope” u/v. The geodesic will have a limiting geodesic lying within the
same triangulation (by the compactness theorems for compact manifolds)
in the homotopy class determined by the displacement polygons (now
infinite). It will not be possible in general to associate such geodesics
with a “slope” /v because the limiting ratio (of pairs 2, 2 to 1, 1) depends
on the central point in the continued fraction from which we begin the
Averaging process.

The simplest case might be cited here, where y = (1+5'%)/2. Then
we can build up the normalized periods corresponding to the convergents
P_{u, ., u,) with w, = u,_,+u,_, (the Fibonaceci sequence, u, = #; = 1),
Thus we obtain

(n=20)y P_(1,1)=14{1,1,2,2},
(n=1) P_{(Z1)=1{2,2,1,1,2,3},
n=2 P_(3,2)=P_(2,1)+P_(L,1)
=1{2,2,1,1,2,2,1,1, 2,2},
=3 P.(b53)=P_2,1H+P_(3,9)
=1{2,2,1,1,2,2,2,2,1,1,2,2,1,1, 2, 2}.
Now if we call P_(w,.,,u,) = P, it is not hard to find varions ways
in which the periods of the continued fraections become stationary. For
example, with # odd,
Py = PutPoyy,
P, y=P + P, =P+ Po)+ Py,
Py =P o+ Py = (Pt Pp)+(Pu+ P+ Pyy), ete.

We notice that the juxtaposition (P, ...+ Py} (P4 -+ Ppq)
i permanent. Thus the period P, will stabilize to the right and left of
each point of juxtaposition; the geodesies will converge to a limit; and
the ratio of twos to ones will converge to (1--5%)/2. This, however,
iz & very special situation.

It would be interesting to know if all of the limiting Markoff forms
(with. m(Q) = 1/3) can be determined from some type of continned
fraction device. Very little has been done with sueh problems, and
ingufficient nse has been made of geometric representations (compare [1]
for a related ergodic problem).
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1. Introduction. It is well known that every class of primitive binary
gquadratic forms with diseriminant D represents a positive integer <C cl/!Dl,
where ¢ is an abgolute constant. In general the estimate cannot be improv-
ed either for D < 0 or for D > 0; in the first cage this is shown by the
saquence nat- (n--1)y% (v ==1,2,...) and in the second it follows as
a vonsequence of the so-called Markov chain. The main aim of this paper
is to show that for genera of forms in question, however, a better estimate
obtains:

THEOREM 1. Buery genus of primitive binary quadratic forms wilh
discriminant D represents a posilive integer < e(e)|DIM*+® for any & >0,
where o{e) denotes o number depending only on &,

It seems likely that in fact every genus represents a positive integer
< e(e) |D|* for any &> 0 but we are unable to establish this conjecture
with ewr present argnments. Also our proof does not allow the number
¢(s) mentioned in the theorem to be etfectively computed when & < 1/8;
an effective estimate, on the other hand, would enable one to deternine
all the “numeri idonei” of Fuler. This resnlts at once from the following:

THEOREM 2. Al negative discriminants D with one class of forms in
evary genus satisfy |D| < O(e), where C(e) is effectively computable in terms
of «(e) for any & < 1/8. :

The proof of Theorem 1 involves an argument similar to that used
by Linnik and Vinogradov in their paper (8] on the least prime guadratic
residue: thus we shall appeal to the well-known result of Burgess [3]
on character smng and also to Siegel’s fundamental theorem [12] on
L-functions. The proof of Theorem 2 is based on the work of [2]. As
demonstrated there, for negative fundamental discriminants D with
clags mwmber 1 or 2, where, in the latter case, D is assumed fo be even,
the integers referred to in Theorem 1 can be given explicitly and so, by



