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1. Introduction. It is well known that every class of primitive binary
gquadratic forms with diseriminant D represents a positive integer <C cl/!Dl,
where ¢ is an abgolute constant. In general the estimate cannot be improv-
ed either for D < 0 or for D > 0; in the first cage this is shown by the
saquence nat- (n--1)y% (v ==1,2,...) and in the second it follows as
a vonsequence of the so-called Markov chain. The main aim of this paper
is to show that for genera of forms in question, however, a better estimate
obtains:

THEOREM 1. Buery genus of primitive binary quadratic forms wilh
discriminant D represents a posilive integer < e(e)|DIM*+® for any & >0,
where o{e) denotes o number depending only on &,

It seems likely that in fact every genus represents a positive integer
< e(e) |D|* for any &> 0 but we are unable to establish this conjecture
with ewr present argnments. Also our proof does not allow the number
¢(s) mentioned in the theorem to be etfectively computed when & < 1/8;
an effective estimate, on the other hand, would enable one to deternine
all the “numeri idonei” of Fuler. This resnlts at once from the following:

THEOREM 2. Al negative discriminants D with one class of forms in
evary genus satisfy |D| < O(e), where C(e) is effectively computable in terms
of «(e) for any & < 1/8. :

The proof of Theorem 1 involves an argument similar to that used
by Linnik and Vinogradov in their paper (8] on the least prime guadratic
residue: thus we shall appeal to the well-known result of Burgess [3]
on character smng and also to Siegel’s fundamental theorem [12] on
L-functions. The proof of Theorem 2 is based on the work of [2]. As
demonstrated there, for negative fundamental discriminants D with
clags mwmber 1 or 2, where, in the latter case, D is assumed fo be even,
the integers referred to in Theorem 1 can be given explicitly and so, by
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virtue of Theorem 2, all snch D can be completely determined. For odel
discriminants D with clags number 2 (whence I = 5 (modB) for D < —15)
we do not know an explicit construetion for the relevant integer represented
by the non-principal genus; if, however, this integer could be determinecl
then a bound for | would follow at once from an old lemma of Heil-
bronn [5] without appeal to Theorem 2(%). A resuit related to Theorem 2
has recently been published by Anferteva and Cudakov [1]. Their theoren.
allows one to give a bound in terms of 6(s) for all negative discriminants
with one class in every genus and a prescribed class number.

2. Lemmata. For the proof of Theorem 1 we ghall need two lemmata.
Levma 1. We have
L ” 0 if 0 <y,

ori ) SGED(s12)(s48) %(1__1_)*’ ¥ oy>1.
) ; |

Proof. Thig is a speéiai case given by k =3, ¢ = 2 of Theorems B
on page 31 of Ingham [6].

Levmwma 2. For any non-principal character y with modulus & and
conductor f and any e >0 we have

@) | r@a| < B sloge,
d<a
@ oo | 3 aidyas] < wpneg,
d=1
(111) I Ex(d) d—-l ’ < kef‘%.’lﬁ m—l/z,
]

where s = {+ it and the constants implied by < depend only on .
Proof. Let y be induced by the character y, with modulus [, and setb

N

S, Ny = N yn).

b= A4-1
The sum can he expressed alternatively in the form
N
2 nm 3 owd) =3 pg@ S .
o= M1 a|{n.k) ik Mid=n<Nid

{*) It will be seen from the proof of Theorom 1 t
there can be chosen relatively prime to D.
Added in proof: The class number 2 problem hiag recently been resolved

by some new results on linear forms in logarithms; see papers by Baler and Stark
to appear in Annals of Math,

hat the integers roferred to
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By Theorem 2 of Burgess [3] with =2 we have

N

Z‘ Zj(“)' <Nl/2f3116+.s
n=n{+1
and thug we see that
{1) |§(M, N} < 2 3 () U2 fasHe & e pafis e
i

Similarly from the Poilya~Vinogradov inequality we obiain

(2) IS(M, N) €K f  logf < WP
Now the identity
N N
D @a =5 [ S(M, [u)w " dut8(H, N)NS
=M1 M
gives
N N
| D a@a| <lsl [ IS(M, [whlu™ " du+ | S(H, N)| N,
d=M+1 ar

where 8 = g+ it. Applying this with M =0, N =,¢ =1/2 and us'%ng
(1) we easily verify (i). Further, substituting M =, ¢ =1 and taking
limits as N — oo we obtain (iii). Finally, to prove (ii), we put M =7,
g = 1/2 and appeal to (2); again taking Hmits as N — oo we get

o]
| D z@a| sl [ PP dn <lsl
& i
and (ii) now follows as a consequence of (i) on sgbstituting @ == f in the
latter.

3. Proof of Theorem 1. Let D = ¢*D,, where D, is a fundamental
discriminant, and let y, be the principal character mod . We shgll denote
hy U the set of all generic characters for D; the set U eo-nsmts.of all
Legendre symbols (n/p), where p runs through the odd prime f11v1sors
of D together with at most two supplementary characters given by
(-~1[n), (2/n) or their product(?). By T' we ghall denote the subset of [
given by the generic characters of Dy (*) and, for any gubset 8 of U, we put

xs = x| ] 3
%eS
by the law of gquadratic reciprocity we have then y, = (D /%),
2y (f, Dickson [4], p. 82 or Mathews [9], p. 185. .
Eﬁ% The generic characters of Dy are confained in U except possibly for the

produet of the supplementary characters mentioned above; in the axcept_iunal case,
however, both factors areincluded in ¥ and we replace one of them by their product,
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icm

Now consider a genus determined by the values ¢, = -1 to be taken

by ¥ in U and thns satisfying

63 H g, =1.
xelt

We shall suppose that mno positive infeger < x and 1ela‘r1vely prine
to 1} is represented by the genus and we shall obtain a contradiction
if # 3 | D", The supposition implies that for each integer < # we
have either y(n) = — e, for some y in U or, if » is not represented by any
genus, yp{p) = —1 for some prime p which occurs in the factorization
of » with odd exponent. On writing

n_zx&“

it is easily verified that the second possibility is é'iquivalent to the condition
a, = 0(%). Hence we see that

2 =nfmpa,zm) [ [+ zm) =0,

nEE

that is
(4) De.nw, 8 =0,
" SeUxes
Wwhere
(@, 8) = Z(l—ﬂ/m)a%xs(ﬂ)‘
We have e

n.y‘:'(n - 78’(.,"?“ Z/T((1

ﬂb

2 A (n]d) yy. s (d),

where 7' = § denotes the symmetric difference, that is the set of slements
in precisely one of § and 7, and thus it is clear that

Bx,8) =E(x,T - 8).

Burthermore we have

.fo o) ) (Lemafe) gy (m)

mesafd

and, by virtue of Lemma 1, the lagt sum can be exprosgecd in the form

Yo Tm“‘ e 2 g,
=i omi ) s(s1)(s-2)(s+3) (mdf

() Cf. Landau {7)], Satz 204.
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Hence we obtain
1 2+fon
Bz, §) = —— f Fla, 8, s)ds,
2 .Y
where
65"

F(o, 8, 5) = (5,26 ) tras (T

L
s(s+1){s-+2}(s-+3) “
On moving the line of integration from o = 2 to ¢ = } we get

1 1+ioo .
{5) Bz, §) =5 Bz, 8, s)ds+ RS},

4—1o0

where BE(8) =0 if 8 is not @, the empty set, and
d
R(O) = m @ ID Z (@)

In view of Lemma 2 and & property of £(s) we have, on the line ¢ = 3,
IL(s, zs)l <€ Is!IDIFE,
| Dt @ | <L sl |DFfHSlogn (8 # 1),

d<E

where fy denotes the conductor of y5. It follows that, if S # 7', the above
integral is (%)

< o' loga | DI (fefrs’"*-
Also from Lemma 2 we gee that, if T' # 3,

yon (d . .
D 2, ) 04D,
i<z
and obviously the left-hand side is at leagt 1 if 7 = @. Further we note
thad
D e (D)) L DI

But now, on observing that the number of elements in U is & 27101
& |Di*, where »(}D|) denotes the number of distinet prime divigors of
{D|, and recalling also that HE(z, T) = E(z, O), we readily verify from
(3), {4) and (5) that

L1, ) <&~ 10g@| D[ (frasfs)*! -+ [DI1H w70
{5) Here essential use is made of the four factors (s—}~ §); $(8- 1)-a8 occurs in [8]
does not suffice.
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if T # &, and that the same holds if ' = @ with L(1, y;) replaced by 1.
Since finally fr.sfs = frf% where f depotes the conductor of y. with &
defined as the set of elements in § but not in T, and f,, f divide D, ¢
respectively, we clearly have a confradiction to Siegel’s estimate [12]
for L(1, y) if # > |D/¥*%, The contradiction proves the theorem.

4. Proof of Theorem 2. Let & be a positive fundamental diseriminant
relatively prime to d and let x(n) = (k/n). By k() and « we denofe
respectively the class number and fundamental unit in the qguadratic
tield Q(V'%). Further we set D = —d, denote by h(kd) the class naumber
of quadratic forms with diseriminant D and suppose that

[ = ax®+ bay - oy®

runs through a complete set of inequivalent quadratic forms with
diseriminant D(%). We have (see [2])

(6)  h{E)h(kd)loga

=tk I/E(;‘x(a)/a.)H(lmp—é)_l_Bo-_i_Z 2001 B, ¢mrtia)
ol 7

where
By = —logp ) x(a)
f

it : is the power of a prime p, B, = 0 otherwise and, for r == 0(7)
1B, < k| d—n[rﬂfﬁl(ak)_

By Theorem 1 every class represents a positive integer < ¢(s)d*t+®
and, after dividing by a common factor if necessary, we can assume thatb
the representation iy proper. Thus we can suppose that a < o(e)d/™*
for every f. We have

M |3 B <a@ S byt = shiami—n),
For

pre oy
where /(d) denotes the number of f and » = ¢ ¥ Agsuming that
k< @, where § = }(4—s), it is easily seen that n < ¢~1% where 01
like ©y, cg, ..., signifies & number effectively computable in terms of

{*) It would suffice to consider fundamental discriminants since by & result
of Grube 1874, recently rediscovered by Grosswald (these Acta 8, pp. 205-306) any
nonfundamental diseriminant D < —315 with one elags in overy genus differs
from a fundamental diseriminant only by a factor 4.

{") Though it is. unimportant, a factor 2 which mistakenly entered in the work
of [2] via the definition of A,, has been omitied here.
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¢(e). If d > ¢, then < 1/2 and, recalling that A{d) is also the number
of genera, it follows that the expression on the right of (7) is at most

8 (d)y < POy < gmeud®

e

Now there exist four distinet primes p, p’, p"’, ¢’ say, not dividing
4 and less than dU7%; for there are < d*/*** prime divigors of 4 and
Cebyiev’s estimates, for instance, show that there are > 4™ primes
helow @M. Lot &y, = pp’, ks = pp” or »"'p'” so that, for % =k, or &, we
have &k =1mod4, (k,d) =1 and B, = 0. We introduce the suffix j (=1
or 2) to distinguish the guantities defined above corregponding to %, or k.
We write

by = bk he ) . P1Qs ([ [ @) 3 za(a)fa,
H i

where
2 =HSP2: Q2=”(’p2—1},
piky plicg
and we define b, similarly by interchanging the suffixes 1 and 2. Then
clearly by, b, are rational integers and from (6) and (7} we obtain

|b1log ey~ belog a,| < ZHeﬁcadaa

where H is some number exceeding the maximum of [b,], |b.]. Further,

it d > e,, we have
(1/16)8

[e< Vo<
H
and, for ¥y = y; Or %o,

IZx(w)/ai<21/a< h{d) < d.
7 7

Since also h(k) < &, h(kd) < &%, P, <d®, Q,<d” we see thab
a possible value for H is ¢®’. This gives
[bJog ay— bylogay| < e

On the other hand, by Theorem 2 of [10], a version of well-known
theorem of Gelfond in which the dependence on the logarithms is specified
explicitly, we have(®)

|b,1og oy — bylog ay) 3= ¢~sto8 A,

- provided that logH > ae+1+ay * where

Gy = logmaaX{[BDel”’“g 1, J-(le IEI, Ialaﬂl}

(8) To apply the result of [10], note that je*—1[ < ls]e/?l, where ¢ = bjloga;—
—b,loguy, and that oy, e, are muliiplicatively independsent.
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and D, is the discriminant of the field Q(V'%,, Vk,). Furthermore, the
classical estimate of fundamental units in real quadratic fields (¢f. Schur
{117) gives

W <HH (G =1,2),
and it is readily verified that

1D < 64k, Tog [Ty~ Toy

Thus we obtain a, < ¢,d***logd, whence log H = @™ satigfies the above
condition. '

It is clear that the inequalities are consistent only if d << ¢y, and this
completes the proof of Theorem 2.

We conclude by expressing our thanks to Professor Heilbronn for po-
inting out & mistake in an earlier draft of this paper.
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Dedicated to the memory of Harold Devenpori

1. Let (1) = 8L(2, Z) denote the modular group of unimodular
2 x2 matrices with rational integral emtries and put

R U_ll]
W _[0 1], ol

For each positive integer » we write A{n) for the normal closure of U™;
it iz the subgroup of I'(1) generated by the conjugate parabolic matrices
LY U*L(LeI'(1)). Further, 4(n)is a subgroup of the principal congruence
group

Din) = {Tel'1): T == I(modn)}.

The purpose of this paper is to provide a new proof of the well known

THEOREM. (1) For L n <5, d(n) = I'(n). (ii) For «# = 6, the inden
[I(n): A{n)] = oo. i

¥ @ is any subgroup of I'(1), we denofe by g the corresponding
inhomogeneouns group. Thus I'(1) = LF(2, Z) and & is the image of &
under the natural mapping from I'(1) to I'(1)/4, where A = {I, :—I}
iz the centre of I'(1). A corresponding theorem holds for 4(n) and I'(sn).

Ag pointed outi by Knopp [5], who gave an independent proof of
part (ii) of the theorem, the results stated can be excavated by the perse-
vering reader from the first volume of Klein and Fricke’s monumeptal
treatise ([4], pp. 354-360). An alternative proof of part (i} of the fheorem
has been given by Brenner ([1], pp. 215-217). The quickesff and most
elegant proof of the theorem is obtained by using the canonical presen-
tation of a Fuchsian group; see Wohliahrt [10]. For an application of
properties of tesselation groups to prove part (i), see Mennicke- [61. ‘

The proof of part (i) given below uses elementary properties of in-
definite binary quadratic forms. It is, perhaps, worth pointing out that
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