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and D, is the discriminant of the field Q(V'%,, Vk,). Furthermore, the
classical estimate of fundamental units in real quadratic fields (¢f. Schur
{117) gives

W <HH (G =1,2),
and it is readily verified that

1D < 64k, Tog [Ty~ Toy

Thus we obtain a, < ¢,d***logd, whence log H = @™ satigfies the above
condition. '

It is clear that the inequalities are consistent only if d << ¢y, and this
completes the proof of Theorem 2.

We conclude by expressing our thanks to Professor Heilbronn for po-
inting out & mistake in an earlier draft of this paper.
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Subgroups of the modular group
generated by parabolic elements of constant amplitude

by
R. A. RanuiN (Glasgow)

Dedicated to the memory of Harold Devenpori

1. Let (1) = 8L(2, Z) denote the modular group of unimodular
2 x2 matrices with rational integral emtries and put

R U_ll]
W _[0 1], ol

For each positive integer » we write A{n) for the normal closure of U™;
it iz the subgroup of I'(1) generated by the conjugate parabolic matrices
LY U*L(LeI'(1)). Further, 4(n)is a subgroup of the principal congruence
group

Din) = {Tel'1): T == I(modn)}.

The purpose of this paper is to provide a new proof of the well known

THEOREM. (1) For L n <5, d(n) = I'(n). (ii) For «# = 6, the inden
[I(n): A{n)] = oo. i

¥ @ is any subgroup of I'(1), we denofe by g the corresponding
inhomogeneouns group. Thus I'(1) = LF(2, Z) and & is the image of &
under the natural mapping from I'(1) to I'(1)/4, where A = {I, :—I}
iz the centre of I'(1). A corresponding theorem holds for 4(n) and I'(sn).

Ag pointed outi by Knopp [5], who gave an independent proof of
part (ii) of the theorem, the results stated can be excavated by the perse-
vering reader from the first volume of Klein and Fricke’s monumeptal
treatise ([4], pp. 354-360). An alternative proof of part (i} of the fheorem
has been given by Brenner ([1], pp. 215-217). The quickesff and most
elegant proof of the theorem is obtained by using the canonical presen-
tation of a Fuchsian group; see Wohliahrt [10]. For an application of
properties of tesselation groups to prove part (i), see Mennicke- [61. ‘

The proof of part (i) given below uses elementary properties of in-
definite binary quadratic forms. It is, perhaps, worth pointing out that

10 — Acta Arithmetiea XVIII
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it hag the merit of providing a constructive method of expressing am
arbitrary element of I'(n) as a product of elements of A(n). The fact that
I'(n) is & free group when # > 2 is used in the second part of the theorem,
which follows from the stronger result that A(n) I'(n) has infinite index
in I'(n); here I”(n) is the derived group.

The proof which follows appeared originally in lecture notes [9]
of 2 course of lectures on the modular group gwen in Madrag in September,
1968.

2. Proof of the first purt of the theorem. We fiveh dlspose of the
case n = 1. Since I'(1) is generated by the two parabolic matrices U and

10 0 —1
(2) W = = VUV, where V = )
1) , 1 0

we deduce that I'(1) = A(1).
Now let # = 2 and take ahy

(3) 8 ='[“ ﬂ] eI'(n).
y 6

The idea of the proof is to multiply & on the left by an clement of A(n)
50 a8 to obfain a matrix with a amaller trace and so, after a finite number
of steps, reach a matrix T of trace 2. If this is possible, it will then
suffice to prove that TeA(n). For such a matrix T ig necessarily of the
form ¢L' U?L, where ¢ = 11 and qeZ, the set of rational integers. Since
Tel'(n), it follows that ¢ = 0(modn) and that ¢ =1 when » > 2. Bince
—I = WU ' W2l U2 d(2),

we deduce that T'eA(2) when n=2.

Write #, = tr8, so that ¢, = 2({modn). Since I'(n) contains no elliptic
matrices when % > 2, we must have [t;| = 2 and, in view of the fo regoing
remarks, we can assume that [§) > 2.

Take any

e ow
(4) I = [ ]em),
v @ . .
8o that ¢ and ¥ can be any coprime integers. Then, for reZ,

[ [1-!—_%@31 nrt ]’
—nry? | 1 — nray
and we put
(5) : 8 =L UYL-8,
#0 that, as i3 easily verified,
(6} o= te8; =i+mQs(z, v),

iom
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where S
(7) Os(®, 9) = y07+(a— B)ay— fy*.
This is an indefinite quadratic form of diseriminant

(a—6)+-4py =3—

Now, it Q(z,¥) is any indefinite binary quadra.tlc form. of diseri-
winant D, eoprime integers @, ¥ can De found such that

{8) 0 < |, 1) <VD/5;

moreover, the minimum positive value of [Q(», )i is equal to VD[5 if
and only if ¢(x,y) is equivalent to the form

€y g (o my— y2)

for some real g. If this is not the case, then coprime integers r, y ean be
found such that

(10) 0 < |Q(w, ¥} < VDJ8.

See, e.g., J. W. 8, Cassels [2]. The form (9) is the first special form in the
eo-called Markoff chain of forms.

In this connexion, two quadratic forms are said to be equivalent when
one can be transformed into the other by a change of variables

4>0.

(@, y) — (do+ by, cw+ ay),
where a, b, ¢, deZ,

a b
T=[ ] and detT = +1.
. o d N
Now it is easily verified that
(11) QTST_I(‘W’ y) = dﬂtT'QS(dﬂ?—'— b?!! GQH"‘W)-

This is well known; zee [3], for example. Hence, if Qg is equivalent to
a form @, we may choose T so that

(12) Opgpr (@, ¥) = Lot T-Q (o
We now return to (5) and (6). It follows from (8) that we can find
coprime integers m, ¥y to make
0 < Qsle, ) < {(5—4)/B}7,
and, by (8), we can then choose r to make
(13) [t < 301Qs(w, ¥)] < n{(G— 4)/2017.

Now n{(t;—4)/20}" < [t,| for n = 2, 3 and 4, so that [{,] < [t,|. In this
way, by left multiplication by elements of 4(n), we can reduce the trace
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snccessively, when # = 2, 3 or 4, and so reach an element of trace :2;

as indicated above, this shows that Se(n). Observe that, in these three.

cages, we only require the result (8), which can be proved quite simply.

Tor the remainder of this section we assume fhat # = 5 and form §,
from § as hefore; soe (5). There are now two possibilities: either (1) @ (z, ¥)
is equivalent to the form (9), for some real ¢, or (ii) coprime # and ¥ can
be chogen to make

(14) ) < § 1@sl@, )] < T {lB—H)/8F" < [t

Tn ease (i) we shall show directly that S (5). If case (ii) holds, then (14)
apples and, if [t,| > 2, we premultiply 8, by L7 UL, (I, el'(1), r,¢2Z)
and proceed as before. At each stage there are two possibilities and,
after a finite number of steps, we reach either o matrix associated with
2 quadratic form eguivalent to (9) or a matrix of trace 4-2, and so deduce
that SeA(5).

It therefore remains to show that SeA(5) when Qg(w, y) is equiv-
alent to the form (9). When this is the case we can choose a matrix T
as above (see (11) and (12)}, so that

{(15) Qrar-1(@, y) = qle*+ay—y?),
where, clearly, geZ. Write
5 . a ’
8y = TRT* z[ ’ ﬁ"J,
vo o

go that 8,eI'(5); note that both I'(5) and A(D) are invariant under the
(possibly outer) automorphism 8§ — T8T ' It therefore suffices to show
that 8,¢4(3). By (15),

Yo =fo = as— 8 = ¢,
go that we obtain the Pellian squation
(16) By = (gt 89)* = Bgi+-4.
The complete set of solutions of (16) iz given by

o = eUypprtUsmo1)y G = ElUp,, (MeZ),
where w, = 0, 4; =1, %, =1, ..

Note that

. ia the Fibonacci sequence and e = 4 1.

U+ U1 = Wiz (meZ).

icm
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It follows that, for some meZ,

T "
{17 8, = e[ mal im ] = gdA™,

U Ham_1

A=UW:[2 1].

where
11
Azzlﬁ 3’ 4 13 8 e 34 217 e 89 55
3 2 8 5] 21 13| 55 34|

so that —A® = I{mod5). Since S,¢I'(3), we deduce from this and (17)
that

8y = (“‘As)r

Accordingly, we need only show that —A°<4(5) to complete the
proof. In fact

{18) —4°

where

for some reZ.

= U UL U3 U3 U3, U™,

Up=L,'UL,, L,=VU™V3I0 ((1<m<4)
and

U* =L*10L*, I*=7VU0%
ses (2). The result follows.

In conclusion, we note that the generators for 4(n) and therefore I'(n),
for # < 5, can be found by using the fact that in each matrix L~ UL,
L iy a product of the elements U, W and their inverses. Thus, when
% = 2, gince

U WU = —~W T

we conelnde that

and WIEW™! = —WU—2,

I(2) = 4(2) = (I, T, WH.
Bimilarly,
I(3) = A(3) = (U, P U'P, P [P P,
where P = VU; note that P* = —1. _
3. Proof of the second part of the theorem., We prove. that
[ (n): A0} (n)] = oo for # 3> 6; from this the second part of the theorem

follows since each of the three inhomogeneous groups iz isomorphic to
the corresponding homogeneous group under the natural homomorphigm.



150 R. A. Rankin

It is an easy consequence of the Kurosh subgroup theorem that
every subgroup of ) of index > 3 ig free; see Newman [7], or [9],
§ 4. From thiz and the fact that (1) has index 6 in J'(1) it is easily
deduced from Schreier’s theorem that the rank of every free subgroup
of (1) of index p is 1+ t.,,u, this result was first stated by A. W. Magon.

Congider the gronp I*(n) for n = 2. This is a free group; we write
for its index and put x = m¢ so that s is the parabolic class number. If
RI'(n) is any left coset, the n cosets U*RIn) (0<k < n) are easily seen
to be disjoint. It follows that there exist s elements R, el (L) {0<r <y
such that the elemenis

U'R, (0<h <m0y <s)
run through all the x cosets of I'(n) in I'(1).

Now take any Lel*(1) so that L = U*E,S for some k <n,v <s

and Sef*(n). Then

1 U"'L_ = 87,8,
where

T, — RAUR, (0<v <s).

Hence A (n) is generated by the elements

87,8 for Selff(n) and 0y <s.

Now suppose that A, A,, ..., 4,, where

=1+ E o ™
(19) rolb =14

are r independent generators of I' () and consider the map

e: N'(n) > Z"
defined by
G(S) = (61(8)7 32(3)5 LS 67'(S))?
where ¢;(S) is the exponent sum of the generafor 4, in the word §; see [8].
The kernel of the mapping e is I"{n). Since

e(L71U"L) = o(871T,8) = o(T}),

it follows that e maps p) (n) into a linear subspace H of Z" of dimension
not exceeding s. Note that ¢ (H) = A (n)I"(n).

Bince & < » when # = 6, by (19), it follows that
H H] = 00,

[F(n): 4 (m)F(n)] = [Z

icm
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