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set has volume > 4% Now (u, Gias Qis) Gars Gaoy Gas) i8 Telated to (%, )
= (U1 Ugey Wasy o1, Usay tag) De the linear transformation (40) of deter-
minant (ry3#e— f1afyy)® 7 0. Hence (41) and (42) with N = 1 together
with (39) and (40) define a bounded set for {u,;, u,) in 6-dimensional gpace
of volume 2> % For arbitrary N we obtain the same get but blown up
by the factor &. Hence by Lemma 6 there are > 5?N°® pairs of points
Uy, W, Which are part of & basis sueh that (41) and (42) are satisfied.
There still are > 4?N°® such pairs wu,, u, all of whose components arc
different from zero.

It remains to be shown that for every such iy, U, one can find a third
basis vecetor wu; such that (38) holds. There certainly will be snch a vector
ug of the type wy = iu;+ d,u,+u,, where < % (j =1,2) and where
U, 18 the point with 4(w,, u,, uy) = 1 which is orthogonal to uy and u,.
It is easy to see that the coordinates of u, have absolute values at rmost 1,
and hence

(o] < F g+ hge] -1 [t3q] 4 [0

since we made sure that wy = 0, 4y, 7 0. Thus our u, does satisfy (38),
and we have z(¥)><'(¥N) > »2N°. This proves (26) and hence the
theorem.

(i =1:273)?
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Bounds for solutions of diagonal inequalities
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JANE Prvan (Adelaide, South Australia)

In mbmory of H. Davenport

1. Introduction. In 1958 the following theorem was proved by Birch
and Davenport [17:

£ Ayy Agy ovny Ay ave Teal numbers, not all of the same sign, such that
|4 z: 1 for all 4, then for any § > 0 the Diophantine inequality

e+ ...+ Al <1
has & solution in integers =, ..., #;, not all zero, such that
A3+ - |4505) < Epldidy ... AgP'H.

A corresponding theorem on solutions of the diagonal cubic ine-
quality
B+ ...t Al <1
such that
A3l |2y 5] < Bl . 29O

wag proved in Pitman and Ridount [7]. In thiz paper I obtain a similar
theorem for the diagonal inequality '

(1) b+ ..+ 208 <1,

where k is an integer, k> 4, and 1, ..., 4, are not all of the same sign
if & is even. By a solution of a Diophantine equation or inequality I shall
always mean a solution in integers a,, ..., @,, not all zero. .

For the case when the 4;/4; are not all rational, Davenport and
Heilbyonn [4] found that the condition n > 2%41 is sufficient for the
existence of infinitely many solutions of (1); lafer Davenport and Roth
[6] showed. that n > cklogk iz sufficient if % =12, and Danicic [2] showed
that # = 14 is sufficient if & = 4.

In order to find bounds for solutions of (1) by analytic methods
similar to those of [1] and. [7], we must first deal independently with the
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case when the 4,/4; are all rational, that is, with the diagonal Diophantine
equation
(2) T+t o =0,
where py, ..., 4, are non-zero integers; I do this in another paper [6],
which I shall call DE (diagonal equations). In the present paper I use
the main resutt of DE (Lemma 1 below) to prove the following theoremn
{of which Lemma 1 is a gpecial case).

TuarorEM. Let k be an integer, k 2= 4, and let # be the integer (Zefal'n,ml by

w = 2L_£_1 @f 4 < Z:l‘:
w 2= 2K (2logk+loglogk+3)+1 > n—1 4f k> 12.

Then for any 6 > 0 there ewists a constant K,, depending only on 0 and %,
with the following property. If Ay, ..., A, ave veal numbers which satisfy
;1 = 1 for all i and which are not all of the same sign if I is even, then the
inequality (1) has & solution in non-zero integers such thot

(3)

Wbl k] < Bl L A,

where

) o= L 7 1Lk
) w=3% if )

v=1 i k=12,

The method of proof is similar to that of Theoremy 2 of [7], except
that for & = 12 we use Vinogradov’s estimates and that we avoid certain
complications because the cases & =2,% = 3 are excluded. In DI I
discuss the possibility of reducing the number of variables by nmodifving
thig method.

. This paper depends heavily on ideas developed by Professor Daven-
port and owes much to his advice. I am deeply grateful for all his generous
help and encouragement.

2. Notation and preliminaries. Let & be an integer, %k 2= 4; Jet 2 be
the integer defined by (3); and let 8 be given such that 0 < § < 1 {this
involves no loss of generality). Let 1, ..., 4, be # real nwnbers which
satisty

Wizt (@ =1,..,n)

and which are not all of the same sign if % is even.
We write

1
v=y M= nm, A = max 4],
i

and take P to be a large positive integer such that
() P’ G=1,..,n).
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We define
Bifa) = Y e(kank),
;
where @, runs through all integral valuey in the range
(6) < |l m < 3P,

and we write
{7 V(e

= fISi(a).

= 2 v~ " e(Bm),

m

We also define

(8} L)

where m rung through all integral values in the closed interval
(9) LP%, (3P)*].

We nge the notational conventions of DB, §2 (which correspond
exactly to those of [7], § 2}; in particular, ¢ denotes an arbitrarily small
positive number, and the constants implied by 0, <,>» are always
independent of P and of the 1. In addition to some standard general
lemmas on exponential sums which are collected together in DE, § 2,
we shall use the following prelininary resulfs.

LevymA 1. Let & and « be as above. Then for any 8 > O there ewxisis
a constant Oy, depending only on & and k, with the following property. If
By ooy i, are non-zero integers which are not all of the same sign if & is
even, then the equation (2) has a solution in non-zerc integers such that

|,u1m I+

where yw s defined by (4).

Proof. See DE, Theorem 1.

TEvMMA 2. For any positive integer v, there exists a real valued funclion
of & real variable, f, such thet
(10) [f(a)] < Cr)min(1, o™

for o >0 and the following conditions ere satisfied. If

}#n-’l;'ﬁl < Oslpty v .”’n!m’-{-as

gln) = 2 [ e(na)f(a)da,
11}
then
' Ogg( y<1  for all real n,
0 for |ylz=1
Iyl < §.

()f- for

Proof. See Davenport [3], Lemma 1.
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Let r be a positive integer (whose value will be decided later) und
let f be the corresponding function given by the lemma. Let A4 (P) denote
the number of solutions of (1) such that (6) holds for all ¢, Let

(11) F(P) =& [V(a)f(a}da,
o

where V{a) is defined by (7) and J == [0, o). It follows from Lemms 2
thait

(12) M(P) = #(P).

We therefore set out to show that #(P) > 0 whenever P is some-
what larger than II”, and when this approach fails we shall fall back
on Lemma 1.. - .

Since the main term in our estimate of #(P) will be >H"P*7% an
error will be “permissible” if it iz substantially smaller than 7P %,

3. Dissection of the interval J. In order to estimate the 8;{a) (and
henee #(P)), we must consider rational approximations to the A, Onr

estimates involve a fixed number 8 such that 0 < § < 1 whose value
will be deeided later.

For each we[0, P*], by (5) and Dirichlet’s theorem on Diophantine
approximations, there exist rationmals a;/g; such that
la; 4y =1, Jya = (a/g;)+ By,
0 <@ < (AP, 18] < gt (|47 Py,

We ghall distinguish between the cases

{13)

(]_4) q: < |2i!—1l(n—1)Pa,
(15) g; > |A~He 0P,
where
1 ,
(16) g =
= #  kz12
2 (2log k| loglog k- 3) 0z

(i.e., 0 i3 as in DE, Lemma 4). Fortunately the bound in (14) and (15),
which is the smallest that will work in Lemma 8 below, is small enough
to give the following lemma.

Lwyva 3. Let ae[0, P°].

(@) If P >2[5" then there is at most ome appropimation a,ly, to
Ao such that (13) and (14) hold.
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(ii) Suppose that P > 4|4, 1'% i ], and the approximations a/g;,
a;ly; satisfy (13) and (14); then :
Loy % | _ 1
Lu he| tkAwe) P
If, further, @; # 0, then a; 0 and a;q;/a;q; 18 a convergent in the
continued fraction expansion of A;)3;.
Proof. (i) This is similar to Lemma 8 (i) of [7]; see also DE, Lemma 9.
{ii} By (13) and (14), we have

b B

(17)

z_Phk—H-}-ok
=TT R
74P

Ll A Ao
By (14) again, it follows that {17} holds if
8 U‘ili]l_kjm_l) < P"k_l_sgk7
which is easily verified under our assumptions. (It is false for k = 2, 3.)
Now suppose that a; # 0. Since @; i3 integral, (17) implies that a; # 0.

‘We know that a,¢,/a;¢g; is & convergent to A,/; if

1
2ie;g;

Je o
2 4y
and this inequality follows from (17}, since, by {13),

i

0 < lag| <24 q:P°.
In order to use Lemma 3, we assume from now on that
(18) P4

{without loss of generality, since I7¥3> IT'®). We dissect the interval
J = [0, oo} as follows. We wrife

(19) Q — A—v{l—ﬁ}P-—*k‘l"lwﬁ,
and define &, K as the intervals
G =100,Q], K =[P, );

we define H as the set of all a in (@, P%) such that for each ¢ there ix
a rational a;/g; which satisfies (13) and (i4). The main term in our estimate
of the integral #(P) defined by (11) ecomes from @, which is simply the
gset of a for which a,/g; = 0/1 satisfies (13) and (14) for all 4. The essential
difficulty arises from the contribution to #(P) from H, and we therefore
deal with H fivst.

4. Contribution from H. Let aeH and for each i let afq, e an
approximation to 2;a which satisfies (18} and (14). By (18) and Lemina 3,
the a;/g; ave unique, a; # 0 for all 4, and @;q,/a.q; 18 a convergent to
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Mja foré =23, ..., n Fori =2,...,n, we define 4;, B; to be the integers
such that (4, B;) =1, B; > 0, and A4;/B; = a,q,/a,q;, that i,
(20) by o Ay

4 ¢ B;
The 4;, B, are bounded above by fixed powers of P, since this is true
of @, ¢, q. Hence the number of possible aets of convergents
.1-12/_32, el An/ ) is O(Pg)

We define

o= @y g = 1 -
(a1, BBy ... By’ (gry Apdg ... 4,) ’
so that, by (20), a; is divigible by ¢ and g; is divisible by g, for all i. We
can therefore write

(21) a =aa, @ =4qg (E=1,...,m).

Here, @, = (@, By... B,)y ¢, = (41,42 ... 4,), so that a;, ¢, are both
divisors of A.... 4, B,... B,, which is bounded by a fixed power of P.
Hence the number of possible pairs a,, ¢; is O(P9).

Now @, ¢, are unignely determined by @, g, ai, g;; and, by (20),
Uoy vnny By Gy o=y 4, 826 uniquely determined by a,, ¢; and the set of
convergents 4,/8,,..., 4,/B,. Hence, by the concluding remarks of the
lagt two paragraphs, the number of sets of approximations e, /gy, ...
.., &, /g, which can correspond to a given pair 4, ¢ in the manner described
above iy O(P°). .

We shall find that the error term contributed by H is permissible
provided that a;...a,(q; ... ¢y~ is reasonably large for all ¢ in H.
Therefore we start by applying Lemma 1 to do what we ean with the
case when this prodnct is small.

Leayna 4. Suppose that o > 0 and thal for all 1

Ao =—q_+ﬁ1,r |ﬁ1[<2g¢. Cti=0;a§::, Qi"—“ti‘!l:;,

where a;, g;, &, a;, ¢lc., are integers, a; 70, @&>0,a>0, g> 0. Let

B = max 1BilAsl s

and let Uy be as in Lemma 1. Then (1) las a solution in non-zero indegers
such 1hal

(22) Z |2 @] < (3P,
provided that
(23) Colag ovv gy - ) < Joa gmin (3P, aB7Y).
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Proof. We have
€ &
EEE
= g\~ &
Writing @, = ¢;y;, we obtain

a(z ;umi-.‘) - %(Z ()" 1yi‘) _Z Bilayyl

.y ¥, such that

mf) + Z Bt

By Lemma 1, there exist non-zero integers yi, ..

Za (g ok =

y las(gs) % < Cslay ... (g .- A s

and

Suppose now that (23) holds. Then
(24) 20 ag™! 2 |a; (g1 | <min((3P)’“, aB7Y).

It is E‘rla‘)l].y deduced from our hypotheses that ;g = f;q;¢7" satisfies
the inequalities

B:0i < 2077 Bagtail,  1B.gil < og g
Hence for the non-zero integers #;, ..., &, corresponding %0 ¥y, ..., Y

we obmm

M‘ii #a"‘IZﬁm(m W <2 33&9”2!&5(%)"”‘91-‘1,

leml ‘?a“laq“lZla (g 9El

i

Tt now follows from {24) that @4, ..., z, satisfy (1) and (22).

\We now consider the contribution from H to # (P) in the cases which
are not covered by the above lemma, We resume the notation introduced
at the beginning of § 4

LEaMA 5. Suppose that 6 < 1fn, and let Oy be as in Lemma 1. For
aefl Tatf

B = max |4 = 18/,

say, where j = j(a). Suppose that for all a in H
(23) Cylal ... oplgs - ) " 2 daa™ gmin (3P, aB™).
Then .

[V (@f(e)lda < T PPF 7P,

ir
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where

1—nd
26 5 = — 0
t MO = gt 5)

FProei. Suppose that acH. Since |f{a)|<€1, it follows from (14)
and Lemma 3 of DE that

@n V(@) KT (g - )P [ [min(L, P4 as,).
=]

We now obtain an upper bound for the right-hand side of (27). By (13)
and (21) we have '

O (g YT L T g,
Also gz 1, a <P, P> 1, and

8(1— - —
r (1—nlew--nd) ;P nkd

- Qn) i {q—n(QI “ee Qn)}k—l‘

(a8 p<1 ahd 6 <1/n). Hence we deduce from (25) that
(e B S q PR in (1, PR BTY).

Bince »2{(kp--0) < 20% and k—1 > 1, it then follows from (27) that

(28) |V (a)f(a)] € IT-*+7% =2 g0 pr—s@ly 1

where

m(a) = [ [min(1, P¥{8;0) < Y min(1, P~|3,/8,).
T5=F 1

Now for all « corresponding to a fixed set of approximations a/g;

we have |f,/%] = la— (a;/%,¢,)] < 1. Also '

[min(1, P~*|3|7Y) d8< P~tlog P& P+,

'The.refore, by integrating (28) with respect to o, we gee that the eontri-
bution to #(P) from all ¢ in H corresponding to o particular sel of -
proximations is |

< TR aﬂwsmnvz g--mzpﬂ—l‘('y)“k*‘“

By 9)’ 1gwe hfwe2 ">n—2 > 1% gince k=4, and therefore the series
2a Mgt are absolutely convergent. Henge, smuming over the
O(P*) gets of approximations corresponding to a given pair @, Q, and then
summing over all g, ¢ we obtain the required result, -

5. The mam term. We now give the main term of our extinato
of #(P) that is, the contribution fronm @.
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LemMMA 6. We have _
& f Via)f(a)da = eIT"P* L+ QP ) L O {II 7P (A7 Py (B0
&

where ¢=¢(P) = a positive constant depending only on and .
Proof. Suppose ae<G. Then for all 4 the pair a; = 0, ¢; = 1 satisfies
{13), and algo, by (8), satisfies

¢ < (|47 Py

Henee, by Lemma 3 of DE, we have for all 4

8i(a) = W7 I{(+£a)+0Q),
where -+ is the sign of 4; and each term of the right-hand side is

< |57 Pmin(1, P~*a™).

Therefore we have

Via) =17 [[I{£ o)+ B,

==

where ..,
E £ {Pmin(1, PEHP L PP min (1, P g,

Since |f(a)j<€1 and G <= [0, 1] and

[min(1, P~} dag P,
it follows that ’
) 2 [Vefode =1 [[[ (20 (@) et 0.
¢ =3

g1
The error in (29) caused by replacing & on the right-hand side by
J = [0, o0) is : :

e .

{(30) - < [o7PMnmin(d, P e de,
Q

where @ iz defined by (19). Now

f,a"“ da Q! = A8 (n=1) plle—1+8n—1)
o

Thus by (30) the error is
<ﬂ—uPn—-k_{Av—uP)—(ﬂ—l)(l——.é),
and so we have .

(31 & [V(a)f(e)da =& Hl(ia)-f{a)da—]—
& o

1=1

£ ORI L QIR AT ) D00,
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Tt is easily deduced from Lemma 2 and the definition (8) of I(f)
that

o N

(32) .%fnl"(iu) Sfla)da =" 2 (g vor By) V7 = 2,

0 oi=1 Wy auas Mg,
say, where the smmmation is over all integral m,, ..., m, such that the
m, ave in the interval (9) and

g Wy Wy, =

Since we may assume without loss of generality that 4, > 0 and 4, <0,
we may take this equation to be of the form

MWy — Wy Mg v efmimty, = 0

By Lemma 6 of DE, we now have 2z 3>P""*, and the lemma follows from
(31) and (32).

6. Contributions from X and J -G —H--K. First we congider the
“tail” of the infegral # (P), that ig, the contribution from I
Lemma 7. We have

f [V {a)f{a)l dag T prré
rie

Proof. This follows from (10) in Lemma 2 and the twivial inequality
|V {a)] < I P~

Finally, we estimate the contribution from the remaining subset
J—@—~H—XK, which consists essentially of the “minor arcs”. The
limitations on this estimate determine both the number of vériables and
the bound in the theorem; since the argument is exactly similar to that
in Lemma 8 of DE, we omit some of the details.

Levma 8. We have

V(@) f(a)|da [T~ PP -0 p (o 20
JGrH-K

Proot. Let aeJ —G—H—K; note that o« < P’. Since (15) holds
for some ¢ and »¢ < 1/(n—1) (by (3)), it follows from (16) and Lemmag 3
and 4 of DE that for sowme ¢

(83) 8, (@) <€ max {(|4; " P, |47 g PY<E (A, TV pleotd

We now use {10), Holder’s inequality and Lemma 5 of DB (with
X = P%, and deduce that the contribution to £ (P) from all ¢ in [0, P’}
guch that (33) holds for a particnlar i iz :

< !li]~?+1!(%—1)P1~6+ﬂ ((IA_|—1:‘P)7L_1_‘;',;+3_P,]) 1{n—1) .
] }
The required result follows immediately.
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7. Completion of the proof. Suppose for the moment that (29) holds
for all « in H and that 6 < 1/n. Then by Lemmas 5,6, ¥ and 8 we have

(34) FiP) = eI Pk LI PR,
where ¢ > a positive constant which depends only on n and k, and
(35) E<HN2P28—FI(5)+HVP-—I+ (A—v;p)-—(n—l)(l—ﬁ)__l_Pk—r§+ﬂll(1a—1)1)—a+25+s,

where x(8) and ¢ are defined by (26) and (16).

We choose ¢ > 0, 8 > 0 and then a positive integer r in such a way
that 6 < 1/n and that the right-hand side of (35) is bounded by & constant
multiple of

{HP_(pu)zw}uZP—#ﬂ/z_‘_ {HvP_(1_e)}P-a+{ﬂu(n-a)P_(pa)a}P—aaiz'

{Thig iz possible because wu(8)1»*/y as 810 and I3 A= 1.) Each of the
expressions {...} is at most 1 if P'""> 7", since 1—~0>0,p>v and
p 2 1/{{n—1)c}. Hence there exists & constant I, 4 such that if
P15~ L, I7° and (34) holds, then #(P) > 0. We now choose the positive
integer P go that

L,JI° < P10 < 2L, IT%;

this jraplies that (5) and (18) also hold (as we have assumed throughout).

Tf (25) holds for all « in H, then, by the preceding discussion, together
with (12), we have A" (P) = #(P) >0, and therefore there is a solution
of (1) in non-zero integers such that

3 12,08 < ni3P).

On the other hand, if (25) fails for some « in. H, then by Lemma 4 there
is @ solution of (1) in non-zero integers such that
el < (3P).
Hence in either case, by our choice of P, we have
il < LI,

(3

say, and sinee pk/(1—0)ipk as 010, this completes the proof of the
theorem.
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On Bombieri’s estimate for exponential sums
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J. H. H, Crarx and R. A. Syora (Toronto, Canada)

In memory of H. Davenpor

1. Intreduction. In the course of an article [2] devoted mainly to
the strneture and interpretation of multiple exponential sums over finite
fields, Bombieri included an egtimate for the magnitude of eertain gpecial
exponential sumg “along a curve” (and, incidentally, generalized Weil's
method [20] for similar sums “along a line”). For comparigon purposes,
it will be nsefrl to have an abridged statermnent of this result (ef. [2],
Theorem 6, p. 97). Thus, let % = [¢] denote the finite field of ¢ = p~
elements (@ 2 1) and characteristic p, ¢ denote the absolute trace from
I¢"] to [p], ¢{x) denote exp(2miz/p), X a projective curve of degree d,
deiined over % and embedded in projective n-space P" over %, X, the
set of pointy of X defined over [¢™], B(X,, X, ..., X,) & homogeneous
rational funectionin P* defined over % (d, being the degree of its numerator)
and

(1) FulR, Xy = Y e|o(R()],

xeXym

where “'" indicates that the poles of R are omitted. Then

(2) L (B X)| < (di— 3d,+2d,d,) g™+ d,

provided that
(A) for every lLomogeneous rational %ek(X,,..., X,), the function

{(3) B— (&)

does not vanish identically on any absolutely irreédncible component of X.
This eondition (A), which restricts the choice of B not only in its

behaviour over L but algo over the algebraic closure & of k, is stated
(without details) to hold if(?) '

(B) p > d,d, and B is not constant on any such component of X.

(*) It seems likely that (2) continues to hold even if the restriction on p in (B}
i8 ignored. '



